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E�ects of tannic acid on growth
performance, relative organ
weight, antioxidative status, and
intestinal histomorphology in
broilers exposed to aflatoxin B1

Yu Xi†, Jing Chen†, Shuangshuang Guo, Sitian Wang,

Zhipeng Liu, Liyun Zheng, Ya Qi, Pengtao Xu, Lanlan Li,

Zhengfan Zhang* and Binying Ding*

Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan,

China

A total of 480 one-day-old AA broiler chicks were randomly allocated to one

of four treatments in a 2 × 2 factorial to investigate the e�ects of tannic acid

(TA) on growth performance, relative organ weight, antioxidant capacity, and

intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments

were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1,

CON + 500 µg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 µg/kg

AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1
challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05).

The TA in the diet did not show significant e�ects on the growth performance

of broilers during the whole experiment period (P > 0.05). The liver and kidney

relative weight was increased in the AF challenge groups compared with the

CON (P < 0.05). The addition of TA could alleviate the relative weight increase

of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had

lower activity of glutathione peroxidase, catalase, total superoxide dismutase,

S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and

greater malondialdehyde content (P < 0.05). Dietary supplemented with 250

mg/kg TA increased the activities of antioxidative enzymes, and decreased

malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced

the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In

conclusion, supplementation with 250 mg/kg TA could partially protect the

antioxidant capacity and prevent the enlargement of liver in broilers dietary

challenged with 500 µg/kg AFB1.
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Introduction

Aflatoxins are mainly produced by Aspergillus flavus and

Aspergillus parasiticus, and widely exist in food and feed that

are frequently caused health and economic problems in many

countries (1). Among the 18 types of aflatoxin derivatives,

aflatoxin B1 (AFB1) is the most common and toxic in the

poultry feed industry (2). Poultry is extremely sensitive to

AFB1, and long-term exposure to AFB1 may cause growth

retardation, immunosuppression, hepatotoxic, and even death

(3–5). Oxidative stress has been reported to play a significant

role in the toxicity mechanism caused by AFB1 (6, 7). FDA (8)

refines the maximum concentration of aflatoxin in poultry is

100 µg/kg of feed, whereas 500 µg/kg can be a practical testing

concentration in feedstuff in the USA.

Chinese gallnut tannic acid (TA) belongs to the hydrolyzed

tannin family, and is a polyphenolic compound of high

molecular weight (500–3,000 Da), which can remove free

radicals and prevent lipid oxidation (9). Because of the

polyphenolic hydroxyl structure, the TA has various biological

activities, such as antimicrobial, anti-inflammatory, anticancer,

and immunomodulatory effects (10–12). Moreover, studies

have shown that dietary supplementation with antioxidants,

including plant extracts and tannins can protect broilers from

AFB1-induced toxicity by enhancing the antioxidant capacity

and immunity (6, 13–16). Nevertheless, it remains unclear

whether dietary supplementation with TA could alleviate acute

aflatoxicosis by improving the antioxidant capacity of broilers

fed AFB1 contaminated diets.

Therefore, the aim of this study was to determine the

effects of the TA on growth performance, antioxidative status,

and intestinal histomorphology of broilers exposed to feed

contaminated with 500 µg/kg AFB1.

Materials and methods

All animal procedures used in this study were performed in

the experimental farm of Wuhan Polytechnic University,

and were approved by the Institutional Animal Care

and Use Committee of Wuhan Polytechnic University

(Number: 20161121).

AFB1 and TA

The AFB1 (purity ≥98%, HPLC) was produced from

Aspergillus flavus provided by Qingdao Pribolab Biological

Engineering Company Limited (Shandong, China), and the

AFB1 concentration in the feed was designed to 500 µg/kg in

AFB1 treatments. Dietary AFB1 concentrations were confirmed

by analysis (17). Briefly, feed samples were extracted with

acetonitrile:water (86:14), and an aliquot of the extract was

passed through a puriTox TC-M160 cleanup column (Trilogy

Analytical Laboratory Inc., Washington, MO, USA) and suitably

diluted with water before analysis using HPLC with Kobra

cell postcolumn derivatization with fluorescence detection at

365 nm excitation and 440 nm emission.

The hydrolysable TA was extracted from Chinese gallnut

by the Wufeng Chicheng Biotechnology Company Limited

(Yichang, China), which contained ≥80% tannin, crude fiber

<2.00%, ash <2.50%, and moisture <8.00%.

Dietary treatments and animal
management

A 2 × 2 factorial complete randomized block design was

employed and 480 one-day-old sex-mixed AA broilers were

randomly assigned to 4 treatment groups, each with 10 replicates

of 12 birds per pen. Experimental diets were as follows: (1) CON,

basal diet; (2) TA, CON + 250 mg/kg A; (3) AFB1, CON + 500

µg/kg TA; and (4) TA+AFB1, CON + 250 mg/kg TA + 500

µg/kg AFB1. The basal diet was formulated to meet or exceed

the nutrient requirements of AA broilers. Diets were fed in 2

phases: phase 1 (from days 1 to 21) and phase 2 (from days 22

to 42). The composition and nutrient levels of the basal diets are

presented in Table 1.

All broiler chicks were reared in stainless steel pens (1.4m

× 1.4m) in an environmentally controlled room at the Animal

Research Center of Wuhan Polytechnic University and given

ad libitum access to diets and water throughout the study. The

room temperature was maintained at 33 ± 2◦C for the first

week and then gradually decreased to 24◦C until the end of the

experiment, and broilers were maintained on a 23 h constant

light and 1 h darkness every day throughout the whole trial.

Growth performance

Broilers and feed were weighed on the beginning, days

21 and 42 of the trial, and calculated the average daily gain

(ADG), average daily feed intake (ADFI), and feed conversion

ratio (FCR).

Sample collection

On days 21 and 42, two broilers from each replicate (20

broilers per group) were randomly selected and blood samples

were aseptically collected from the wing vein into vacuum blood

vessels. Plasma was obtained by centrifuging (3,000 × g for

15min at 4◦C) the whole blood and stored at −20◦C for the

assay of antioxidative parameters.

Then, the same broilers were weighed individually and

euthanized by cervical dislocation. The liver, spleen, bursa

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2022.1037046
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xi et al. 10.3389/fvets.2022.1037046

TABLE 1 Composition of experimental diets (as-fed basal).

Ingredients (%) Days 1–21 Days 22–42

Corn 51.45 51.49

Soybean meal 40.73 37.40

Soybean oil 3.36 7.18

Dicalcium phosphate 1.92 1.64

Limestone 1.16 1.06

Trace mineral premixa 0.20 0.20

Vitamin premixb 0.04 0.03

Sodium chloride 0.35 0.31

l-Lysine (99%) 0.28 0.22

dl-methionine (98%) 0.26 0.32

Choline chloride 0.25 0.25

Calculated composition

ME (MJ/kg) 12.55 13.18

Analyzed composition

Crude protein (%) 21.50 20.50

Lys (%) 1.30 1.20

Met+ Cys (%) 0.90 0.70

Thr (%) 0.82 0.74

Calcium (%) 1.00 0.90

Available phosphorus (%) 0.45 0.40

a Provided per kg of complete diet: 10mg Mn (MnSO4), 80mg Zn (ZnSO4), 5mg Cu

(CuSO4), 0.5mg I (Ca(IO3)2), and 0.3mg Se (Na2SeO3).
b Provided per kg of complete diet: 10,000 IU vitamin A (transretinyl acetate), 3,000

IU vitamin D3 (cholecalciferol), 30 IU vitamin E (all-rac-α-tocopherol acetate), 2.4mg

menadione, 6.0mg riboflavin, 2.5mg pyridoxine HCl, 13mg calcium pantothenate,

23.5mg niacin, and 0.04 mg biotin.

of Fabricius, thymus, and kidney were removed cleaned

of the adhering tissue by trained personnel and weighed.

Relative organ weights were calculated as follows: Relative

weight = (Organ weight)/(Final body weight) × 1,000. The

small intestine was removed and gently cleaned with ice-cold

saline. Intestinal segments (1–2 cm) taken from the mid-region

of the duodenum, jejunum, and ileum were immediately fixed

in 4% paraformaldehyde for the examination of morphological

parameters. Additionally, the portion of liver and jejunum were

sampled and stored at−80◦C for analysis of antioxidant status.

Antioxidative status

Approximately 1 g of liver or jejunum was homogenized

in 10mL of ice-cold saline and centrifuged at 2,500 × g,

4◦C for 10min. The supernatants were collected for further

analysis. The activities of glutathione peroxidase (GSH-Px), total

superoxide dismutase (T-SOD), total antioxidant capacity (T-

AOC), glutathione S-transferase (GST), catalase (CAT), and

the content of malondialdehyde (MDA) in the plasma and

supernatants weremeasured using purchased assay kits (Nanjing

Jiancheng Bioengineering Institute, Nanjing, China), according

to the instructions of the manufacturer (18).

Intestinal histomorphology

The intestinal histomorphology was measured as described

by Guo et al. (19). Briefly, the fixed intestinal segments

were embedded in paraffin. Consecutive sections (5µm)

were stained with hematoxylin and eosin and were observed

for histomorphological examination. The measurements were

performed with an Olympus optical microscope using ProgRes

CapturePro software (Jenoptik, Jena, Germany). The villus

height and crypt depth were measured from 10 randomly

selected villi and associated crypts on each section at 40×

magnification. Villus height was measured from the tip of the

villus to the crypt opening and crypt depth was measured from

the base of the crypt to the level of the crypt opening. The

villus height to crypt depth ratio (V/C) was then calculated from

these measurements.

Statistical analyses

All experiment data were analyzed by a two-way ANOVA

analysis using the GLMprocedure of SPSS 26.0 software. In cases

where the differences were significant, themeans were compared

by Duncan’s multiple range test. The results are shown as

mean and the standard error of mean (SEM). Significance was

considered at P < 0.05, and 0.05 ≤ P < 0.10 was considered to

have a trend of difference.

Results

Dietary analyses of AFB1

Biochemical tests indicated that the CON and TA diets were

negative for AFB1 throughout the experiment. The analyzed

concentration of AFB1 in AFB1 and AFB1+TA diets were 505.9

vs. 503.2 µg/kg during days 1 to 21, and 520.3 vs. 521.3 µg/kg

during days 22–42, respectively.

Growth performance

As shown in Table 2, AFB1 challenge increased the FCR

during days 1–21 (P < 0.05). The addition of TA in the diet

did not show significant effects on the ADG, ADFI, and FCR

of broilers during the whole experiment period (P > 0.05). No

interaction effect was observed between AFB1 and TA on the

growth performance (P > 0.05).
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TABLE 2 E�ects of tannic acid on growth performance of broilers challenged with AFBa
1.

Items CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Days 1–21

ADG (g) 32.92 32.76 33.41 32.30 0.23 0.968 0.195 0.325

ADFI (g) 46.34 46.20 47.57 46.55 0.31 0.227 0.371 0.497

FCR 1.41 1.41 1.42 1.44 0.01 0.022 0.322 0.444

Days 22–42

ADG (g) 63.63 61.89 62.27 61.19 0.68 0.474 0.328 0.817

ADFI (g) 114.11 112.70 114.67 112.12 1.05 0.997 0.387 0.802

FCR 1.80 1.82 1.84 1.83 0.02 0.454 0.801 0.637

Days 1–42

ADG (g) 49.06 47.68 48.72 47.51 0.42 0.774 0.153 0.923

ADFI (g) 81.33 79.59 81.30 80.44 0.60 0.751 0.323 0.733

FCR 1.66 1.67 1.67 1.69 0.01 0.475 0.460 0.757

a Each mean represents 10 replications with 12 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .

TABLE 3 E�ects of tannic acid on relative organ weight of broilers challenged with AFBa
1.

Items (g/kg) CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Day 21

Liver 20.00b 20.54b 23.67a 20.90b 0.28 <0.001 0.002 <0.001

Spleen 0.78 0.76 0.92 0.84 0.03 0.049 0.356 0.608

Bursa of Fabricius 2.89 2.93 3.10 2.98 0.07 0.391 0.781 0.596

Thymus 3.51 3.70 3.38 3.45 0.11 0.394 0.553 0.795

Kidney 7.75b 7.98b 9.27a 7.96b 0.13 <0.001 <0.001 <0.001

Day 42

Liver 18.20b 18.41b 22.18a 18.91a 0.33 <0.001 0.001 <0.001

Spleen 0.93 1.18 1.22 1.09 0.06 0.376 0.592 0.117

Bursa of Fabricius 2.39 2.26 2.31 2.47 0.11 0.781 0.955 0.529

Thymus 3.06 3.46 3.44 3.27 0.13 0.716 0.670 0.302

Kidney 5.78b 5.53b 7.23a 5.65b 0.13 <0.001 <0.001 <0.001

a Each mean represents 10 replications with 2 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .
a,b,cMeans in the same row with no common superscripts differ significantly (P < 0.05).

Relative organ weight

As shown in Table 3, on days 21 and 42, AFB1 and TA

exhibited significant interactive effects on the relative weight of

the liver and kidney in broilers (P < 0.05). The liver and kidney

relative weight was increased in the AFB1 treatments compared

with the CON (P < 0.05), while supplementation with TA into

AFB1 contaminated diet decreased liver and kidney relative

weight (P < 0.05). The relative weights of the spleen, bursa of

Fabricius, and thymus were unaffected by AFB1 challenge and

TA treatment on days 21 and 42 (P > 0.05).

Intestinal histomorphology

As presented in Table 4, on day 42, AFB1 challenge reduced

the villus height and crypt depth ratio in the ileum (P < 0.05).

The ileal villus height tended to decrease (P = 0.079), and the

crypt depth of the jejunum tended to increase (P = 0.082)

in AFB1 treatments compared with non-contaminated diets.

The TA did not show significant effects on the intestinal

histomorphology of broilers (P > 0.05). However, the villus

height (P = 0.059) and villus height/crypt depth (P = 0.052)

ratio were tended to increase in TA treatments. No interaction
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TABLE 4 E�ects of tannic acid on intestinal histomorphology of broilers challenged with AFBa
1.

Itemsb CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Day 21

Duodenum VH (µm) 1144.03 1212.71 1014.64 1133.42 32.65 0.119 0.159 0.700

CD (µm) 89.57 92.50 86.41 86.29 2.94 0.464 0.825 0.811

V/C (µm/µm) 13.04 13.63 12.36 14.35 0.62 0.989 0.334 0.597

Jejunum VH (µm) 814.13 883.12 715.60 861.82 28.00 0.281 0.059 0.485

CD (µm) 65.81 68.59 68.64 66.80 1.35 0.856 0.869 0.426

V/C (µm/µm) 12.33 12.87 10.44 12.83 0.38 0.195 0.052 0.209

Ileum VH (µm) 668.47 696.48 597.15 628.85 18.96 0.079 0.440 0.962

CD (µm) 80.93 74.12 76.11 85.60 2.89 0.583 0.825 0.184

V/C (µm/µm) 8.90 9.57 8.34 7.90 0.32 0.093 0.859 0.396

Day 42

Duodenum VH (µm) 1417.00 1369.67 1261.61 1320.79 46.49 0.298 0.951 0.584

CD (µm) 139.15 113.19 108.09 114.06 7.08 0.298 0.489 0.272

V/C (µm/µm) 12.01 13.90 12.91 12.28 0.70 0.809 0.672 0.401

Jejunum VH (µm) 962.97 915.73 896.66 940.08 27.25 0.715 0.973 0.431

CD (µm) 93.60 98.79 99.91 116.26 3.47 0.082 0.114 0.404

V/C (µm/µm) 9.45 9.87 9.72 8.73 0.31 0.501 0.654 0.277

Ileum VH (µm) 687.38 655.45 630.79 600.11 25.53 0.298 0.558 0.991

CD (µm) 80.06 81.49 87.07 90.84 2.50 0.116 0.612 0.818

V/C (µm/µm) 8.90 8.41 7.61 6.96 0.31 0.028 0.346 0.895

a Each mean represents 10 replications with 2 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .
b CD, crypt depth; V/C, villus height and crypt depth ratio; VH, villus height.

TABLE 5 E�ects of tannic acid on plasma antioxidant capacity of broilers challenged with AFBa
1.

Itemsb CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Day 21

T-AOC (mmol/L) 0.52a 0.48ab 0.42b 0.49ab 0.01 0.103 0.723 0.034

CAT (U/mL) 3.35 3.60 2.64 2.85 0.12 0.002 0.304 0.936

GST (U/mL) 19.22 20.32 18.44 20.74 0.32 0.760 0.006 0.312

GSH-Px (U/mL) 1624.26 1698.25 1535.91 1550.99 20.09 0.002 0.222 0.417

T-SOD (U/mL) 105.51 105.02 99.98 103.11 1.25 0.147 0.603 0.475

MDA (nmol/mL) 4.22 4.05 4.52 4.27 0.10 0.198 0.293 0.865

Day 42

T-AOC (mmol/L) 0.43 0.40 0.43 0.46 0.01 0.368 0.831 0.351

CAT (U/mL) 3.82 3.89 3.69 3.99 0.04 0.826 0.014 0.118

GST (U/mL) 20.85a 21.31a 17.29b 20.62a 0.37 0.001 0.002 0.015

GSH-Px (U/mL) 1782.43a 1888.16a 1559.46b 1894.93a 31.21 0.026 <0.001 0.019

T-SOD (U/mL) 108.19 107.23 105.91 110.43 1.60 0.889 0.591 0.409

MDA (nmol/mL) 3.34b 3.21b 3.92a 3.16b 0.07 0.030 0.001 0.011

a Each mean represents 10 replications with 2 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .
b T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase; GST, glutathione S-transferase; T-AOC, total antioxidant capacity; MDA, malondialdehyde.
a,b,cMeans in the same row with no common superscripts differ significantly (P < 0.05).
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TABLE 6 E�ects of tannic acid on liver antioxidant capacity of broilers challenged with AFB1.

Items CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Day 21

T-AOC (nmol/mgprot) 207.24 235.86 184.09 180.90 5.96 <0.001 0.211 0.120

CAT (U/mgprot) 15.28 18.58 15.81 18.66 0.66 0.813 0.021 0.861

GST (U/mgprot) 23.35 26.88 16.69 20.32 0.84 <0.001 0.006 0.969

GSH-Px (U/mgprot) 63.38 69.81 31.68 44.88 3.11 <0.001 0.022 0.413

T-SOD (U/mgprot) 1692.04b 1885.59a 1443.62c 1413.18c 38.77 <0.001 0.103 0.027

MDA (nmol/mgprot) 1.71 1.65 1.73 1.58 0.06 0.864 0.404 0.730

Day 42

T-AOC (nmol/mgprot) 143.34 147.58 125.06 126.11 3.78 0.008 0.713 0.824

CAT (U/mgprot) 19.32 18.96 19.49 19.84 0.60 0.676 0.998 0.778

GST (U/mgprot) 52.71 54.63 47.56 44.78 1.27 0.002 0.851 0.315

GSH-Px (U/mgprot) 58.87 56.95 51.96 60.32 1.51 0.552 0.282 0.090

T-SOD (U/mgprot) 1766.21 1723.15 1606.53 1802.90 37.69 0.595 0.310 0.117

MDA (nmol/mgprot) 2.01 1.86 2.00 1.70 0.09 0.642 0.202 0.674

aEach mean represents 10 replications with 2 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .
b T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase; GST, glutathione S-transferase; T-AOC, total antioxidant capacity; MDA, malondialdehyde.
a,b,cMeans in the same row with no common superscripts differ significantly (P < 0.05).

TABLE 7 E�ects of tannic acid on jejunum antioxidant capacity of broilers challenged with AFBa
1.

Itemsb CON TA AFB1 TA + AFB1 SEM P-value

AFB1 TA AFB1 × TA

Day 21

CAT (U/mgprot) 7.80 9.85 7.58 7.94 0.48 0.275 0.219 0.386

GST (U/mgprot) 21.87 23.25 21.08 21.06 0.35 0.033 0.321 0.308

GSH-Px (U/mgprot) 20.72 21.19 18.31 19.07 0.44 0.009 0.460 0.860

T-SOD (U/mgprot) 275.90 277.80 266.84 277.97 3.07 0.479 0.301 0.462

MDA (nmol/mgprot) 5.02 3.90 4.94 4.47 0.16 0.407 0.010 0.264

Day 42

CAT (U/mgprot) 7.10 8.50 8.50 6.73 0.31 0.072 0.225 0.277

GST (U/mgprot) 24.99 27.75 24.47 27.75 0.88 0.883 0.094 0.883

GSH-Px (U/mgprot) 19.93 21.09 17.89 19.37 0.58 0.112 0.261 0.892

T-SOD (U/mgprot) 300.37 330.85 295.25 329.45 5.49 0.747 0.003 0.854

MDA (nmol/mgprot) 4.37 3.99 4.51 4.21 0.12 0.451 0.166 0.876

a Each mean represents 10 replications with 2 broilers per replication. CON, control diet; AFB1 , 500 µg/kg aflatoxin B1 of feed; TA, 250 mg/kg tannic acid of feed; TA+ AFB1 , 250 mg/kg

TA+ 500 µg/kg AFB1 .
b T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase; GST, glutathione S-transferase; T-AOC, total antioxidant capacity; MDA, malondialdehyde.

was found between AFB1 and TA in intestinal histomorphology

(P > 0.05).

Antioxidant capacity

The results of the antioxidant capacity in the plasma are

shown in Table 5, AFB1 challenge decreased plasma CAT and

GSH-Px activities on day 21 (P < 0.05). Compared with the

diet without TA, TA supplementation increased CAT activity

in plasma on day 42 (P < 0.05). The AFB1 and TA exhibited

interactive effects on the T-AOC, GST, GSH-Px, and MDA

(P < 0.05). Compared with the CON, dietary expose to AFB1
decreased the T-AOC, GSH-Px, and GST activities on days 21

and 42, and increased the MDA content on day 42, respectively

(P < 0.05). The addition of TA to AFB1 contaminated diet
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significantly improved the CAT, GSH-Px, and, GST activities,

and decreased the MDA content on day 42 (P < 0.05).

As presented in Table 6, AFB1 challenge decreased the GST

and T-AOC in the liver on days 21 and 42, as well as GSH-Px

and T-SOD activity on day 21 (P < 0.05). Broilers fed the TA

diet had greater hepatic CAT, GST, and GSH-Px activities on day

21 (P < 0.05). Furthermore, on day 21, AFB1 and TA showed

interactive effects on the T-SOD in the liver (P < 0.05).

In Table 7, AFB1 challenge decreased the GST and GSH-

Px activities in the jejunum on day 21 (P < 0.05). Dietary

supplemented with TA increased the T-SOD activity in jejunum

on day 42. The MDA content of jejunum was also decreased in

the TA treatments compared with other treatments (P < 0.05).

Discussion

Dietary exposure to AFB1 can cause tremendous economic

losses by reducing growth performance, feed efficiency, and

increasing mortality in the poultry industry (20–24). In our

study, we found that the administration of 500 µg/kg AFB1
diets increased FCR during days 1–21 in broilers. These results

are in alignment with several studies, which demonstrated the

detriment of broiler health and performance by feeding diets

contaminated with 0.1–1 mg/kg AFB1 (25, 26). These adverse

effects can be explained as AFB1 could inhibit protein synthesis

and lipogenesis, reduce the activity of digestive enzymes,

and change the energy metabolism of the cell (15, 27). We

hypothesized that a commercially relevant concentration of

AFB1 (500µg/kg) during 42 days could decrease the growth rate

in broilers. Unfortunately, the ADG and ADFI were not affected

by the AFB1 challenge in the present study. Slizewska et al. (28)

also reported that fed 1 mg/kg AFB1 of diet did not affect the

ADG andADFI of broilers. Likewise, Chen et al. (29) andMesgar

et al. (30) noted that feed intake, body weight gain, and feed

efficiency were not affected by the 500 and 1,000 µg/kg of AFB1.

Therefore, the toxic effects of AFB1 may be acute or chronic,

influenced by the age, dose, diet composition, and duration of

exposure (31).

In a previous study, we found that 250 and 500 mg/kg TA

increased growth performance of broilers (32). In the contrary,

supplementation with 250 mg/kg TA had no beneficial effect

on the growth performance of broilers. Similar to the current

results, Jamroz et al. (33) found that 250–500 mg/kg sweet

chestnut tannin had no effect on performance, whereas 1,000

mg/kg TA reduced the final body weight in broilers. In addition,

Choi et al. (34) reported that dietary supplementation of 500–

5,000 mg/kg TA linearly decreased body weight of boilers

infected with Eimeria Maxima. On the contrary, Liu et al. (35)

found that 1,000 mg/kg chestnut tannins did not affect the

body weight gain and feed intake in broilers. Cengiz et al. (36)

also indicated that supplemented with 2,000 mg/kg chestnut

tannin in broiler diets did not affect the performance. The

dosage effect of TA on the growth performance of broilers seems

to be unclear. However, it is reported that high dose of TA

has negative effects on the growth of broilers, and biological

effects are strongly dose-dependent (37, 38). Redondo et al.

(39) hypothesized that the addition of excessive TA to the

diet may increase the astringency and bitterness of the feed,

thereby reducing the feed intake. Based on the different results,

the inconsistency might be attributed to the source of tannic

acid, administration dosage, diet composition, and age of the

bird (40).

Aflatoxin has been known to mainly accumulated and

metabolized in the liver and kidney after absorption, causing

impairment of the liver and kidney (41, 42). In the present

study, we observed that 500 µg/kg AFB1 caused a significant

increase in the relative weight of liver and kidney, which is

consistent with other studies (43–45). The enlargement of organ

weight is attributed to disorders of lipid metabolism, and the

inhibition of lipid transportation, leading to lipid deposition,

which results in hepatomegaly (15, 46). Many studies describe

the role of plant extract could ameliorate the adverse effect

of AFB1 in broilers (47–49). In our previous study, we also

found that the increase in liver and kidney relative weight in the

AFB1 group was ameliorated by the supplementation of 250 and

500 mg/kg TA (32). Therefore, these results confirmed that TA

has a protective effect on the liver and kidney damage caused

by AFB1.

Intestinal villus height, crypt depth, and villus height/crypt

depth ratio are important indexes to evaluate intestinal nutrient

digestion and absorption capacity of poultry (50). These

parameters especially the villus height/crypt depth ratio was

positively related to the absorptive efficiency of the intestine (51).

In the present study, intestinal histomorphology result revealed

that dietary AFB1 exposure decreased the villus height and crypt

depth ratio in the ileum of 42-day-old broilers. Similar to the

results by Tavangar et al. (22), who reported that 1 mg/kg AFB1
decreased small intestine villus height and villus height to crypt

depth ratio of broilers. These results showed that AFB1 could

decrease the capacity of intestinal mucosa to digest and absorb

nutrients by depressing intestinal development. Brus et al. (52)

found that tannin extract could promote the proliferation of

intestinal epithelial cells to promote intestinal development

in vitro. Therefore, further studies need to be conducted to

confirm the positive effect of TA on intestinal morphology

in broilers.

It has been demonstrated that AFB1 could induce the

production of reactive oxygen species (ROS) and oxidative

stress, thereby inducing cell and DNA damage (53). The

antioxidant system of organism can eliminate the adverse

effects of ROS, and the GST, T-SOD, CAT, and GSH-Px

are important endogenous antioxidant enzymes, which play

a key role in scavenging free radicals and maintaining the

intracellular redox equilibrium (15). In the present study,

AFB1 significantly increased the concentrations of MDA
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and decreased the antioxidant enzyme activities of T-SOD,

GSH-Px, GST, and CAT in the liver, jejunum, and the plasma

of broilers when compared with the CON. These results

are in consistent with previous studies, which demonstrated

that different dosage of AFB1 decreased the activity of

antioxidant enzymes, increased the lipid peroxidation, and

inhibited the antioxidant capacity of broilers (14, 15, 54,

55). Recently, researchers have been interested in the usage

of antioxidants to counter the toxic effects of aflatoxins

(56). Our present results confirmed that 250 mg/kg TA

could enhance antioxidative capacity, and alleviate the adverse

effects of AFB1 on oxidative stress in the liver, jejunum,

and plasma, which is similar to previous studies (57–59).

Consequently, these results indicated that TA could play an

important role in preventing the AFB1-induced oxidative

damage in broilers.

Conclusion

In conclusion, supplementation with 250 mg/kg TA could

alleviate the oxidative damage, and prevent the enlargement

of liver in broilers dietary challenge with 500 µg/kg AFB1.

Therefore, Chinese gallnut TA may be used as a feed additive in

the prevention of aflatoxicosis and improve the health of poultry.
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