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The genome contributes to the uniqueness of an individual breed, and enables

distinctive characteristics to be passed from one generation to the next.

The allelic heterogeneity of a certain breed results in a di�erent response

to a pathogen with di�erent genomic expression. Disease resistance in

chicken is a polygenic trait that involves di�erent genes that confer resistance

against pathogens. Such resistance also involves major histocompatibility

(MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells,

and CD4+ and CD8+ T lymphocytes, which are involved in host protection.

The MHC is associated with antigen presentation, antibody production,

and cytokine stimulation, which highlight its role in disease resistance. The

natural resistance-associated macrophage protein 1 (Nramp-1), interferon

(IFN), myxovirus-resistance gene, myeloid di�erentiation primary response

88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and

heterophile cells are involved in disease resistance and susceptibility of

chicken. Studies related to disease resistance genetics, epigenetics, and

quantitative trait loci would enable the identification of resistance markers

and the development of disease resistance breeds. Microbial infections are

responsible for significant outbreaks and have blighted the poultry industry.

Breeding disease-resistant chicken strainsmay be helpful in tackling pathogens

and increasing the current understanding on host genetics in the fight against

communicable diseases. Advanced technologies, such as the CRISPR/Cas9

system, whole genome sequencing, RNA sequencing, and high-density

single nucleotide polymorphism (SNP) genotyping, aid the development of

resistant breeds, which would significantly decrease the use of antibiotics and

vaccination in poultry. In this review, we aimed to reveal the recent genetic

basis of infection and genomic modification that increase resistance against

di�erent pathogens in chickens.
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Introduction

The breeding of chicks with polygenic resistance is the
top priority of poultry farmers as these chickens may tolerate
challenging environments without losing their productivity. The

poultry industry is susceptible to bacterial, viral, and protozoal
pathogens that cause several infectious diseases and reduce

growth yield, productivity, and profit. Prophylactic measures,
such as vaccination, antibiotics, disinfectants, and culling, are

used to control infections in poultry (1). However, current

vaccines lack cross-protection against multiple strains of each

virus. Furthermore, the mutagenicity of viruses has led to the

emergence of highly virulent strains (2). To counter emerging

pathogens, a genetically resistant breed should be developed

to prevent outbreaks, enable sustained economic viability, and

retain consumer confidence in poultry products. By rearing

genetically disease-resistant flocks, a breed that can withstand

infectious diseases and pathogens owing to its unique genetic

modifications, can be obtained (1, 3, 4).

Many disease-resistant genes, including MHC, chicken

interleukin 1beta converting enzyme 1 (Caspase1), inducible

nitric oxide synthase, IFN, Nramp-1, myxovirus-resistance gene,

and toll-like receptor (TLR) genes, play a role in the active

immune system of chickens (4, 5). The immune system varies

among different hosts, which exhibit different responses to

immune cells, such as T and B cells, antibody production,

phagocytosis, and lymphocyte proliferation that protect the

host from pathogen damage (3). The communication network

of immune cells consists of T and B cell receptors, MHC,

antibodies, and cytokines that are involved in antigen processing

of the effector cells, and play a pivotal role in resistance and

susceptibility against bacterial, viral, and parasitic diseases (3, 5).

For instance, the Athens Canadian Random Bred strain, which

is the oldest pedigreed meat-type chicken existing since the

1950’s, has a more stable immune response and disease-resistant

phenotype than modern-day broilers (6).

Based on genomic analysis, phosphoinositide-3-kinase–

protein kinase B, Janus kinase/signal transducers and activators

of transcription (JAK/STAT), nuclear factor kappa B (NF-κB),

IL-1β, and IL-6 mRNA are highly expressed in Athens Canadian

Random Bred compared to modern broiler (6). In our previous

work, immunoglobulin lambda light chain precursor, Ig-gamma

(clone-36 chicken), P01875, and PIT-54 genes were identified to

be involved in immune response during embryogenesis (7). In a

subsequent study, dietary ellagic acid was found to significantly

increase antioxidant and antibacterial activities in layers and

improve bird health status (8). Importantly, breeding with

new technologies improves poultry productivity and enhances

disease resistance traits. For example, the livestock-breeding

program produced nematode-resistant sheep (9). Similarly,

birds resistant to lymphoid leucosis and Marek’s disease (10),

mastitis-resistant cattle (11), immunocompetent pigs (12), bird

flu-resistant chickens (13), Trypanosoma resistant cows (14),

porcine reproductive and respiratory syndrome virus-resistant

pigs (15), and prion protein-resistant sheep and goat (16, 17)

have been developed.

As poultry products are globally consumed on a large scale,

there has been substantial interest in generating disease-resistant

chicken. Here, we aimed to discuss the genetic responses

of chickens to bacterial, viral, and protozoal pathogens, and

summarize recent advancements in the generation of pathogen-

resistant chickens via gene expression modulation using the

CRISPR/Cas system (clustered regularly interspaced short

palindromic repeat/Cas9), RNA interference (RNAi), and viral

vectors. Finally, we highlighted some candidate genes that are

involved in various biological pathways and may contribute to

the resistance of chickens against the diseases.

Genetic roles in host resistance and
susceptibility

The MHC gene is widely evaluated in chickens to identify

differences in their resistance and susceptibility to certain

pathogens and infectious diseases. MHC class I, II, III, and IV

molecules are unique and distinct between species, leading to

a differential MHC response among individuals (3). Chickens

have few MHC genes with different haplotypes involved in the

development of resistance against bacterial, viral, and protozoal

pathogens. For instance, MHC haplotype B19 is associated

with susceptibility, while B2 and B21 are involved in resistance

(18). MHC-dependent resistance and susceptibility rely on

peptide-binding specificity. For example, chicken-affected cells

expressing MHC-I haplotype, which binds to the Rous sarcoma

virus src peptide targeted by cytotoxic CD8+ T cells, are

resistant to Rous sarcoma virus (19). In susceptible chickens,

the MHC haplotype does not bind with viral peptides, and

chickens are infested by the virus. For instance, the MHC

class I haplotypes do not bind to the antigenic peptides of

Marek’s disease virus (MDV), resulting in chickens remaining

susceptible (19). The chicken MHC haplotype has a regulatory

effect on immune cells resistant to the Rous sarcoma virus and

exhibit enhanced natural killer cell activity (20). In a recent

study, the MHC haplotypes B15 and B21 homozygotes led to the

lowest MDV-induced tumorigenesis and lymphoma formation

in VALO specific pathogen-free chickens, demonstrating that

MHC conferred resistance to oncogenic herpesviruses (21).

Notably, the MHC-peptide complexes engaged T cell receptors

(TCRs) that recognize antigens on MHC molecules with the

cooperation of CD4+ or CD8+ coreceptors and activate T

cells (22). Each T cell has a unique TCR that recognizes

and binds with the antigenic peptide on the infected cell

surface. The antigen peptides are derived from intracellular

pathogens, such as viruses and bacteria, and are displayed at

the cell surface by MHC for immune clearance (23). Viruses,

such as the avian leucosis virus, have six subgroups, with
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subgroup J causing severe outbreaks in China. The avian

leucosis virus subgroup J receptor is a sodium/hydrogen

exchanger 1, which is edited on chicken somatic cell lines

that are resistant to avian leucosis virus in vitro (24). Avian

influenza virus replication is facilitated by the acidic leucine-

rich nuclear phosphoprotein-32A (ANP32A) protein in chicken

and waterfowl. An in vitro study revealed that the deletion of

a minor region of chicken ANP32A stops the replication of the

avian influenza virus (25). Although such studies have increased

our understanding of the genetic roles, a functional study of

edited ANP32A and sodium/hydrogen exchanger 1 gene has

not been performed in vivo and edited chicken has hitherto

been developed.

Generally, increasing poultry resistance to infectious

pathogens via gene modification is an ideal approach for the

development of transgenic livestock. In particular, resistance

to diseases originates from the interplay of numerous genes.

For example, the mouse fibroblast cell lines are resistant to

influenza virus owing to the autosomal dominant Mx1 allele of

the murine Mx gene (26). The introduction of the Mx1 gene

in mice lacking the Mx1 allele leads to influenza-resistant mice

(27) whereas transfer of the same gene in swine does not result

in viral-resistant pigs (28). The overexpression of pathogen

anti-receptor proteins blocks viral attachment and penetration,

and alters the host receptor genes that prevent viral attachment

and enhanced resistance against diseases (29). Transgenic

chickens express a recombinant avian leukosis envelope protein,

which inhibits the corresponding subgroup of avian leukosis

virus attachment (30). Similarly, transgenic sheep express the

Maedi-visna virus envelope protein and display resistance via

the prevention of virus adhesion to host cells (31). Collectively,

the observed immune responses of chicken against viral,

protozoal, and bacterial agents are pathogen-specific, and are

closely linked to expression changes in MHC, Nramp-1, RIP2,

MyD88, IFN, interleukin, MX1, TLR4, antibodies, and immune

cells that govern antibacterial and antiviral states (Figure 1).

Genetic resilience and viral pathogens

Viral diseases cause more outbreaks, reduce growth

performance and productivity, and cause immunosuppression

in poultry (3). Marek’s disease, a well-known viral disease, is

caused by MDV. Marek’s disease is a lymphotropic disease

in chickens and the MDV targets all avian species, causing

symptoms such as paralysis, loose watery stool, lymphomas,

wasting, and immunosuppression. The poultry response to

Marek’s disease is the activation of MHC molecules and

cytokines that give resistance to MDV (22). Other genes that

confer resistance to MDV include GH1, SCA2, IRG1, CD79B,

PTPN3, LY6E, and SMOC1 (32). Another important virus is

influenza, a zoonotic virus that causes avian flu. Genes, such as

interferon-inducible transmembrane, a retinoic acid-inducible

gene I, and MX1 gene polymorphisms are reported to be

associated with susceptibilities to avian influenza in chickens

and ducks (33, 34). Newcastle disease virus widely infects

chickens. Newcastle Disease is characterized by ruffled feathers

of chicken, and respiratory, neurological, hyperthermia, and

listlessness complications in affected chickens (35). Potential

genes, such as IFNα, IFN-γ , DDX-1, MHC-1, and IL-6, were

identified in chicken embryos infected with Newcastle disease

virus. These important genes have an antiviral function and

induce TLR-mediated activation of macrophages and dendritic

cells in response to viruses (36). Newcastle disease virus-infected

Fayoumis birds were found to have lower expression of EIF2B5,

EIF2S3, EIF2B4, and EIF2S3 than Leghorn’s infected lines. Such

results indicate that different genetic lines display different

expression of host translation initiation factor-2 associated

genes, which might contribute to their differential resistance

to Newcastle disease virus (37). In a study conducted in

Ghana, three Ghanaian local chicken ecotype responses to the

lentogenic and velogenic strains of Newcastle disease virus

assessed. Based on the findings, resistance to Newcastle disease

virus was identified to be caused by an individual’s chicken

genetic makeup and not by the chicken ecotype (38). The

genes, MHC-B locus, LEI0070, ADL0146, LEI0104, ADL0320,

and ADL0304, are associated with a direct response of antibody

titer against Newcastle disease virus in chickens (39). Wang

et al. (40) revealed that the hemoglobin family genes, functional

involvement of oxygen transportation and circulation, and cell

adhesion molecule signaling pathway play significant roles in

disease resistance to AIV infection in chickens. The influenza

H5N1 strain was inoculated into genetically resistant and

susceptible Ri chicken native to Vietnam. The resistant chicken

displayed a group of genes, MX1, TLR3, STAT1, IRF7, IFN, and

cytokines, which are found in H5N1 strain-resistant chickens

(41). Avian Leukosis virus infection is highly receptor-specific

and the Leukosis virus subtype A uses specific membrane

proteins, such as Tva receptors for binding, CAR1 receptors

for avian Leukosis virus subtypes B & D attachment, and

SEAR receptors for Avian Leukosis virus subtype E, which

is encoded by tumor virus genes (42). These chicken breeds

express certain receptors on their cell surface, such as Tva

and CAR1, and are susceptible to the corresponding avian

Leukosis virus subtype (42, 43). Chickens resistant to infectious

bronchitis, Newcastle disease, Marek’s disease, coccidiosis, and

salmonellosis had high production of IFN-γ, which validated

the enhanced production of Th1 and cytotoxic T cells (44). By

examining fowl Adenovirus serotype 4 infection, which causes

hepatitis hydropericardium syndrome in poultry, Xiang et al.

(45) revealed that the expression levels of IL-6, IL-1β, IFN-

α, JAK, and STAT were significantly high after viral infection.

In summary, during infection, the host induces changes in

gene expression that confer transient or long-lasting protection

against pathogens. Exploring why, when, which, and how a

host reprograms its genome against infectious pathogens is an
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FIGURE 1

The host edited-genome and active immune responses of chicken during pathogen attack. Usually, chicken antigen presenting cells (dendritic

cell, macrophage, B cell) engulf, digest, and present pathogen antigen on the cell surface in conjunction with an MHC molecule. The

MHC/peptide complex stimulates the TCR and activates CD4+ and CD8+ cells. Accordingly, cytokines are produced, cell-signaling pathways

such as JAK/STAT are activated, and a disease resistance state is developed inside the chicken that counters the pathogen virulence.

exciting research topic that can reveal the amplitude of virulence

and its genetics.

Genetic resilience and autoimmune
diseases

The TCR exhibits polymorphism that creates high diversity

and differences in disease response by T cells (38). The TCR

diversity is due to gene rearrangement where different segments,

including variable (V), diversity (D), and joining (J) segments

of the TCR gene, randomly recombine, and genes for the α, β,

γ, and δ chains are formed (46). Although chickens have few

V, D, and J genes that limit TCR diversity, TCR heterodimers

can be created. For example, the TCR heterodimers of the α

and β chains are the αβ T cells distinguished by the V region

of the β-chain that causes Vβ1+ (TCR 2) and Vβ2+ (TCR 3)

with functional multiplicity (47). TCR defects in chicken are

associated with susceptibility to autoimmune diseases. In fact,

the TCR defects in scleroderma disease cause low CD4+ cells

and non-specific T cell response in chicken (48). Moreover,

autoimmune thyroiditis disease is prevented by the depletion of

CD4+ cells, highlighting the involvement of the TCR Vβ1 gene

(49). Coccidiosis-resistant chicken lines have a high number of

CD4+ cells whereas susceptible chickens have a high number of

CD8+ cells (50). Moreover, a low number of CD8+was detected

in turkeys infected with Newcastle disease virus, Pasteurella

multocida, and Erysipelothrix rhusiopathiae (50) whereas a high

number of CD8+ cells was found in amyloidosis-resistant

chickens compared to susceptible chickens (51). Altogether,

the amount of CD4+ and CD8+ in resistant or susceptible

birds does not align with a particular disease or pathogen

in poultry, which might be due to the polymorphism of

CD8+ and CD4+. CD4+ cells exhibit resistance toward non-

intracellular while CD8+ cells exhibit toward intracellular

pathogens that direct differential immune responses against

a pathogen (52, 53). In conjunction with cellular immunity,

humoral immunity plays a very key role in resistance to diseases.

Immunoglobulin genes produce antibodies, and chickens with

high antibody production display resistance against microbes,

such as Mycoplasma gallisepticum, Escherichia coli, Newcastle

disease virus, and Salmonella enteritidis relative to low antibody

producers (54, 55). Chicks that are high antibody producers

have numerous CD4+ and type II helper T lymphocytes (Th2),

whereas low antibody producers have numerous CD8+ cells

and type I helper T lymphocytes (Th1) that improve their

resistance against pathogens (56, 57). The Th1 cytokines include

IFN-γ, IL-2, and IL-12 whereas the Th2 cytokines include IL-

4, IL-5, IL-6, and IL-10, which stimulate cell-mediated and
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antibody responses, respectively (58). Altogether, variations exist

in cellular and humoral immune responses in different chicken

breeds, and high expression of cytokines leads to a higher

immunocompetence of the host.

Genetic resilience and bacterial
pathogens

Bacterial invasiveness in chickens depends on the species,

severity, and virulence of the pathogen. The predominant

bacterial pathogens affecting poultry are Escherichia coli,

Campylobacter jejuni, Clostridium perfringens, Mycoplasma,

and Salmonella spp. In contrast, Erysipelothrix rhusiopathiae,

Gallibacterium anatis, Pasteurella multocida, Riemerella

anatipestifer, Avibacterium paragallinarum, Ornitobacterium

rhinotracheale, and Bordetella avium are infrequently detected

(59, 60). The most devastating bacteria in terms of yield in

the poultry industry belong to the genus, Salmonella, and

include the species, S. enterica and S. bongori, that easily infect

the newly hatched chicks and cause a decline in growth, egg

production, and hatchability in chickens (61). To counter

salmonellosis, prophylactic measures, such as antibiotics,

vaccination, and disease management, are insufficient in

poultry flock surveillance (62). Accordingly, the importance

of resistant-chickens has increased, and the development

of disease-resistant traits through genetic improvement

has become more significant. Chicken MHC I, MHC II,

Nramp-1, heterophils, IFN γ, and interleukins are involved in

Salmonella-specific antibody responses and lead to resistance

to salmonellosis (63). In a previous study, heterophils from

chicken resistant to S. enteritidis had a higher level of cytokine

mRNA than heterophils isolated from susceptible chickens

(64). The mRNA level of interleukins and IFN γ increased

in resistant chicks relative to that in chickens susceptible

to salmonellosis (65). IFN γ plays a significant role in the

eradication of Salmonella carriers and persistence state (66).

The genes, Nramp-1 and Nramp-2, are the macrophage proteins

expressed in heterophils and leukocytes that facilitate S.

enteritidis phagocytosis in resistant chicks (67). Other genes,

such as transforming growth factor B4 (TGFB4) and Sal1, are

involved in controlling Salmonella and other bacterial loads in

the spleen, and have been linked to increasing genetic resistance

against S. enteritidis (68). In a recent study, Beijing-You and

Cobb chicks were orally challenged with S. typhimurium,

which revealed robust responses of natural killer-cell-mediated-

cytotoxicity, phagosomes, cytokines, MHC, and antibody

production in Beijing-You chicken, ultimately indicating the

greater resistance of Beijing-You breed to S. typhimurium (69).

The chicken RIP2 pathway plays a significant role in resistance

against avian pathogenic E. coli infection. E. coli infection

promotes RIP2 expression and inhibits cell viability, whereas

knockdown of RIP2 restores cell viability and represses the

apoptosis of chicken HD11 cells. Nuclear factor I B increases

the expression of RIP2, reduces cell viability, and accelerates E.

coli-induced apoptosis, confirming that RIP2 supported E. coli

proliferation in chicken cells (70). Mycoplasma gallisepticum

infects the lungs of chickens and causes chronic respiratory

disease. Glycyrrhizic acid is a herb that has anti-inflammatory,

anti-microbial, and antioxidant activities and inhibits M.

gallisepticum infection by suppressing the expression of matrix

metalloproteinases through the JNK (c-Jun N-terminal kinase)

and p38 pathways and inhibiting the expression of virulence

genes of M. gallisepticum (71). Campylobacter jejuni infections

are prevalent in poultry and colonize the intestine of birds. The

bird’s response to C. jejuni is similar to Salmonella infection, and

high expression levels of cytokines, T and B cells, and antibodies

are detected in C. jejuni-resistant birds relative to susceptible

birds (72), except quantitative trait loci localization, which is

located in different chromosomes (73). Breeder selection of

traits that correlate with enhanced resistance against pathogens

is highly desirable, and can be determined via extensive

immunogenetics research. Therefore, screening host genome

for disease-resistance genes and pathways in chickens can pave

the way for the development of immunocompetent chickens.

Genetic resilience and protozoans

The next important etiological agents that cause infectious

diseases in chicken are protozoal parasites, including Eimeria

tenella, Ascaridia galli, and Histomonas meleagridis. The

protozoan, H. meleagridis, causes blackhead disease or

histomoniasis (74); E. tenella causes coccidiosis in chickens (75);

and A. galli infects chickens and turkeys and causes stunted

growth and enteritis (76). Pathogen-specific immune responses

occur against parasitic infections in chicken. For instance, the

myeloid leukemia factor 2 gene help in resistance to Eimeria

(77), and the IFNG gene is associated with Ascaridia resistance

in poultry (78). Moreover, the MHC haplotypes protect the

jungle fowl from coccidian (79) and chicken lines fromAscaridia

infections (80). Other genes, such as TGFβ 2-TGFβ 4, Caspase-

1, inhibitor of apoptosis protein1, prosaposin, inducible nitric

oxide production, IL-2, immunoglobulin light chain, and tumor

necrosis factor-related apoptosis-inducing ligand, have been

relatively less explored in protozoan resistance, but can improve

the disease resistance traits in poultry.

Yang et al. (81) discovered that butyrate, forskolin, and

lactose compounds synergistically increase the expression of

multiple host defense peptides, improve the survival of chickens,

and reduce the colonization of Eimeria maxima and Clostridium

perfringens. A list of candidate genes in poultry that exhibit

important functional activities in animals, but have not been

explored for disease resistance in chickens, is provided in

Table 1.

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2022.1032983
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gul et al. 10.3389/fvets.2022.1032983

TABLE 1 The key genes are involved in the infectious diseases of chickens.

Gene

ID

Gene

symbol

Gene name Access

code

Study

type

Function Location Reference

396241 TF Transferrin NM_205304.2 In vitro Iron-binding glycoprotein

and involved in

anti-microbial activities,

against Marek’s disease

chromosome:

9

(7, 82)

416928 IGLL1 Immunoglobulin

lambda-like

polypeptide 1

NM_001278545.1 In vivo Antibacterial properties

against Streptococcus mutans

chromosome:

15

(83)

100543636 LOC100543636 Ovoinhibitor XM_010719004.3 In vitro Antibacterial activities during

embryo developments

chromosome:

15

(7, 84)

424533 VTG2 Vitellogenin 2 NM_001031276.2 In vivo Transfer of nutrients for

developing embryo and

reduce intestinal oxidative

stress

chromosome:

8

(7, 85)

418974 VMO1 Vitelline membrane

outer layer 1

NM_001167761.2 In vivo Diagnostic marker of ovarian

cancer in hen

chromosome:

1

(86)

395364 PIT54 PIT54 protein NM_207180.2 In vivo Hemoglobin-binding protein

of plasma in chicken which

has antioxidant activity

chromosome:

31

(87)

420897 OVALY Ovalbumin-related

protein Y

NM_001031001.1 In vitro

and

In vivo

Ovalbumin has antioxidant

and radical scavenging

activities

chromosome:

2

(88, 89)

396393 EX-FABP Extracellular fatty

acid-binding protein

NM_205422.2 In vitro Function as an antibacterial

siderophore binding lipocalin

chromosome:

17

(90)

395722 CLU Clusterin NM_001396177.1 In vivo Serve as a marker for

follicular atresia and involve

in developmental phases of

follicles

chromosome:

3

(91)

396384 IRF1 Interferon

regulatory factor 1

NM_205415.2 In vitro Inhibits the replication of

avian influenza virus and

Newcastle disease virus

chromosome:

13

(92)

769014 TLR2 Toll like receptor 2 NM_001161650.3 In vivo Immunity and resistance to

bacterial infection

chromosome:

4

(93)

395764 CASP1 Caspase 1 XM_015295935.4 In vitro

and

In vivo

Involved in apoptosis,

necrosis, mitophagy, and

autophagy

chromosome:

19

(94–96)

418300 ZYX Zyxin NM_001004386.2 In vivo Zyxin is a candidate gene

potentially associated with

increased resistance to

experimental avian

coccidiosis.

chromosome:

1

(97)

396260 AVD Avidin NM_205320.2 In vitro Antimicrobial activity chromosome:

Z

(98, 99)

418812 ACOD1 Aconitate

decarboxylase 1

NM_001030821.2 In vivo Antimicrobial activity chromosome:

1

(100)

(Continued)
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TABLE 1 (Continued)

Gene

ID

Gene

symbol

Gene name Access

code

Study

type

Function Location Reference

374125 LITAF Lipopolysaccharide

induced TNF factor

NM_204267.2 In vitro

and

In vivo

Initiates the activation of

caspases and kinase protein

signaling of the cell death

pathway and has

antimicrobial activity

chromosome:

14

(101)

395283 TRAIL-

LIKE

TNF-related

apoptosis inducing

ligand-like

XM_015278184.4 In vitro

and

In vivo

It declines the autoimmune

response by suppressing cell

cycle progression.

chromosome:

4

(102)

420963 PTPN3 Protein tyrosine

phosphatase,

non-receptor type 3

XM_419047.8 In vivo Involved in immune

suppression disease.

chromosome:

2

(103)

378897 THY1 Thy-1 cell surface

antigen

NM_204381.3 In vitro Involved in chicken Marek

disease.

chromosome:

24

(104)

768688 SMOC1 SPARC related

modular calcium

binding 1

XM_015287582.4 In vivo Enhanced endothelial cell

proliferation and

angiogenesis.

chromosome:

5

(105)

422993 LOC422993 Interferon-induced

transmembrane

protein 3-like

NM_001350059.2 In vivo Highly expressed in response

to avian Tembusu virus

infection

chromosome:

5

(106)

SNP-dependent resistance and
susceptibility in chickens

SNP is the nucleotide sequence variation that occurs

at a single position in DNA fragments and is extensively

used as a molecular marker in genetic studies. The roles

of SNPs are largely associated with production traits in

chicken. SNPs have been detected in follicle-stimulating

hormone, prolactin receptor, dopamine receptor 2, low-

density lipoprotein receptor-related protein, and luteinizing

hormone receptors, with characteristic changes in duck and

chicken (107, 108). For instance, the follicle-stimulating

hormone regulates reproductive activities in birds, and

the SNP detected in the follicle-stimulating hormone is

linked to the reproductive traits of chickens (109). Two key

SNPs, A227G and C320T, were identified in the Muscovy

duck follicle-stimulating hormone gene that improve egg

production traits (110). Ye et al. (111) revealed two SNPs

in the insulin-like growth factor 2 gene and 11 SNPs in

dopamine receptor 2 that are linked with egg-laying traits

(111). In a recent study, the polymorphism of the DMA

gene, a member of the non-classical MHC class II gene, was

associated with disease resistance traits in broiler chickens.

Four SNPs linked to seven haplotype formations were found,

with haplotypes 1 and 5 associated with high immunoglobulin

yolk concentration and ND antibody level, respectively

(112). The SNPs detected in the carboxypeptidase Q and

leucine-rich repeat transmembrane neuronal 4 gene regions

resulted in a decrease in pulmonary hypertension syndrome

and greater innate ascites resistance in chicken offspring

(113). Mountford et al. (2) correlated SNPs with resistance

and susceptibility to MDV, infectious bursal disease virus,

avian influenza virus, and infectious bronchitis virus. These

researchers detected 10 SNPs that were involved in the

resistance to MDV and 8 SNPs associated with the susceptibility

to infectious bursal disease virus. Recently, IL10Rβ SNP resulted

in an R318K amino acid substitution that was involved in

the enhanced regulation of the type III interferon pathway

that reduced bursal damage in infectious bursal disease

virus-infected birds (114). A previous study revealed the

same SNP involvement in increased susceptibility to MDV

(115). Thus, IFN response can vary for viruses owing to viral

mutagenicity and strain diversity. As a result, viruses can

block the IFN responses. Nramp-1, Sal-1, and Tnc are the

genes involved in resistance to Mycobacterium, Salmonella,

and Leishmania infections (116). In chicken, Nramp-1

polymorphism is correlated with susceptibility to salmonellosis.

Frequent sequence variations were detected in this gene that

conferred resistance differences in chicken (4, 117). MyD88
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polymorphism is associated with S. pullorum susceptibility

in chickens and has a favorable effect on vulnerability to S.

pullorum infection (118). These recently identified SNPs are

associated with disease-resistance genotypes that can help in

the identification of new genes and their roles in eradicating

infectious diseases.

Non-coding RNA resistance in
chicken

Non-coding RNAs are biological molecules involved in

epigenetic regulation and disease resistance (119). There are

different classes of non-coding RNAs, such as circular RNAs,

small interfering RNAs, long non-coding RNAs (LncRNAs),

microRNAs, and transfer RNAs, that play important roles in

avian immunity and cell development. Among these classes

of RNAs, LncRNAs, circular RNAs, and microRNAs are called

regulatory RNAs that mediate gene expression in different

hosts (120). LncRNAs are longer than 200 nucleotides and are

known as signaling molecules that interact with mRNA,miRNA,

DNA, and proteins, thereby regulating various processes, such

as apoptosis, tumor cell invasion, RNA transcription, and

host resistance to pathogen infection (121, 122). Based on

recent studies, lncRNAs regulate vitamins A and D during

bacterial and fungal infections and activate immune responses

during chicken leukemia virus infection (123). Specialized

lncRNAs that reduce the production of inflammatory cytokines,

such as IL-6, IL-8, and TNF-α, were identified in response

to E. tenella infection in chickens (124). An important ERL

lncRNA acts as an antisense transcript of MDV carcinogen,

is expressed during the lytic and lysogenic phases of viral

infection, and inhibits the expression of MDV miRNAs (125,

126). The lncRNA, GLAMD3, cis-regulates the gga-miR-223

expression that targets IGF1R (insulin-like growth factor 1

receptor), which regulates Marek’s disease lymphoma (127).

Another important lncRNA, linc-stab1, regulates the Marek’s

disease resistance gene, SATB1, which is also involved in

cell-mediated immunity for termination of MDV-infected

cells (128).

Several studies revealed the roles of circRNAs in avian

leukosis virus infection. Furthermore, differentially-expressed

circRNAs were detected in infected organs. circRNAs are

involved in T and B-cell activation (129), and Jak-STAT pathway

regulation (130). In contrast to lncRNAs and circRNAs, the

expression profile and functional mechanism of miRNAs are

well-characterized in disease resistance in chickens. In fact,

differentially expressed miRNAs have a significant effect on

oncogenicity (131); the regulation of MAPK, JaK/STAT, and

Wnt pathways (132); and suppression of chronic myeloid

leukemia caused by avian leukosis virus in chicken (133). In

conclusion, non-coding RNAs regulate disease resistance traits,

interact with host and pathogen genes, and help to control

infectious diseases.

Modern technology and
development of disease-resistant
chicken

Gene-editing techniques, such as zinc-finger nucleases

(ZFNs), transcription activator-like effector nucleases

(TALENs), pronuclear injection, sperm-mediated gene transfer,

somatic cell nuclear transfer, recombinases, transposons,

viral vectors, and CRISPR/Cas9 systems, are novel molecular

tools that are efficiently used in mice, cattle, sheep, and goat.

For instance, transgenic mice, rabbits, pigs, and sheep were

engineered by microinjection of the target DNA into the

fertilized embryo (134, 135); lentiviral vectors and embryonic

stem cells were used to produce germline transgenic birds

(136, 137); and successful knock-out in chickens were achieved

by homologous recombination in primordial germ cells (138).

In zinc-finger nucleases and transcription activator-like effector

nucleases techniques, the proteins bind to the target DNA

sequence for modification, whereas the CRISPR requires a

guide RNA to recognize the target DNA fragments. Further,

the endonuclease enzyme performs a target-specific cut (139).

Since the introduction of the CRISPR/Cas9 system in genome

editing, substantial progress has been made in the use of

the CRISPR/Cas9 technology in chickens. A CRISPR/Cas9-

mediated chicken was engineered in 2015 (139) and ovomucoid

gene-targeted chickens and knocked-in of human interferon

beta into the chicken ovalbumin gene were edited successfully

(140, 141). The emerging viral strains of avian leukosis and

MDV are highly pathogenic. Further, existing vaccines and

antiviral drugs are becoming less effective. Thus, novel antiviral

strategies are needed. For instance, through CRISPR/Cas9,

the avian leukosis virus subgroup J receptor sodium/hydrogen

exchanger type 1 is mutated, which protects the chicken line

from avian leukosis virus subgroup J. Subgroup J prototype

strain replication is also impaired in mutated birds (142).

Resistance was found to develop in chicken cells against avian

leukosis virus subgroup J by creating tryptophan mutations

at position 38 (143). In another study, genetic resistance to

avian leukosis virus subgroups A, C, J was induced by creating

frame-shift mutations in tva (tumor virus locus A gene), tvc,

and tvj genes (144). Koslová et al. (143) and Hellmich et al. (144)

produced ALV-J-resistant chicken lines via precise gene editing

of chicken sodium/hydrogen exchanger 1. A recent study

revealed that transgenic chickens constitutively express Cas9

and guide RNAs specific to the immediate early infected-cell

polypeptide-4 (gICP4) of MDV upon challenge with MDV, and

exhibit reduced replication compared to wild-type chickens

(145). These examples highlight the use of the CRISPR/Cas9

system to edit genes of interest and engineer chicken flocks that
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exhibit resistance characteristics to viral infection (146). Lately,

CRISPR/Cas9 has been used to develop transgenic animals.

Accordingly, transgenic animals are generated via the targeted

placement of Streptococcus pyogenes Cas9 at the ROSA26

locus and endogenous pseudo attP site in pigs and chickens,

respectively. Transgenic chickens and pigs constitutively express

Cas9. Cas9 was confirmed in pigs and chicken for different target

genes in many cell types with the S. pyogenes Cas9 platform

for in vitro and in vivo genome editing in livestock species

(147). Similarly, different computational and bioinformatics

approaches can be used to design synthetic RNA duplexes that

would target the mRNA sites of viral, bacterial, and protozoal

pathogens. For example, synthetic RNA duplexes that target

specific domains of viral genes can inhibit viral replication

(148). Techniques, such as RNA interference technology, have

strong applications in the development of transgenic poultry

that is resistant to microbial infections. RNA interference is

the method of choice, where RNA molecules inhibit gene

expression by targeting specific mRNA. Similarly, a lentiviral

vector containing influenza-specific RNA hairpin rendered

the cells refractory to viral infection and inhibited influenza

virus replication in mice (149). These results provide evidence

and scope for the development of pathogen-resistant poultry

flocks via the transgenic expression of gene-specific RNA. In

an earlier study, a recombinant plasmid with synthetic RNA

duplex gene was constructed and transferred into Madin-Darby

Canine Kidney cells. The study revealed that the transfected

cell lines were resistant to the avian influenza virus (150). This

landmark experiment provided the breakthrough for transgenic

chicken development and resistance to influenza virus. RNA-

Sequencing is another advanced technique that reveals the

poultry genome responses to different stresses and diseases. The

development of a disease-resistant chick through traditional

breeding is a difficult and labor-intensive task, while the use of

gene-editing technology and production traits is time-saving

and profitable (151). With the development of next-generation

sequencing technology, interest in whole-genome sequencing

as an alternative to SNP chips for genotyping has increased as

it allows the capture of a wide range of variations. For instance,

a genome-wide association study and quantitative trait loci

mapping identified candidate genes for egg production in ducks

(152). These tools would help in the editing of the chicken

genome and fulfill the dire need for disease-resistance breeds

in poultry.

Applications of chicken-genomics in
biomedical research

Chickens are widely used in developmental research

owing to their easy rearing, fecundity, growth rates, and

genetic variations, thereby advancing the field of biomedical

research. The chicken model has been used to evaluate cancer

metastasis, test chemotherapy agents, tissue morphogenesis,

and angiogenesis, and perform toxicology studies. The egg

is an important source of protein and contains phosvitin,

which protects against oxidative stress-induced DNA damage

in human leukocytes (153), and ovotransferrin, which is used

as growth inhibitor for cancer cell lines (154). Avian-derived

cell lines are used for viral culture and are helpful in vaccine

and recombinant protein production (155). Chicken has also

been used as a xenotransplantation model for human stem

cells (156), human multiple myeloma xenograft (157), and the

production of human antibodies (158). The Omni Chicken by

Ligand Pharmaceuticals Inc. is a worldwide unique platform

used to produce human monoclonal antibodies from chickens

(159). Oishi et al. (141) integrated human interferon beta (hIFN-

β) into the chicken ovalbumin locus and produced hIFN-β in egg

white. Notably, antibodies produced from humanized chickens

and antibodies produced in chicken eggs represent significant

industrial applications. Accordingly, chicken is an attractive

developmental model for biomedical research.

Conclusion

This review summarized the disease-resistance genes in

poultry and provided an outlook of advanced technologies that

can be used to engineer disease-resistance characteristics in

poultry. The poultry industry is one of the fastest growing

sectors of livestock for meat and egg production; however, this

industry is threatened by different pathogens, which lead to

substantial economic losses. Vaccination, antibiotics, culling,

and disease management techniques are frequently employed in

flocks to control disease outbreak; however, the success rate is

nominal. Genetic resistance is a promising alternative method

to augment prophylactic measures. Genetic resistance can be

acquired through genetic breeding and genetic modification.

Breeding chickens with disease-resistant strains can increase

flock resistance; however, the genome modification process

can underpin a characteristic of interest and assimilate into

offspring to improve immune responses. Currently, genome

editing technologies are driving desirable phenotypic traits, as

genetic modifications are meeting enhanced production goals in

the poultry industry, and engineering elite chicken for breeders.

Further studies are required to effectively determine the roles of

candidate genes in generating an ideal disease-resistant chicken.

Future prospective

Next-generation sequencing of chicken-genome and

pathogens helps in the understanding of host-pathogen

interactions, natural variations, and the discovery of new

QTLs that may be associated with disease-resistance and

susceptibility traits in poultry. The use of lentiviral vectors is

very efficient for gene delivery in animals and poultry compared
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to homologous recombination of embryonic and somatic cells.

Other alternatives for embryonic stem cells include RNAi and

ZFNs technologies, which may be used for gene targeting and

disruption in animals. The amplified genomic information of

poultry and the advent of more sophisticated transgenic tools

would result in resistance against pathogens. By investigating the

genomics of chickens, new genes with divergent characteristics

may lead to enhanced chicken yield. The use of other bird

species with similar and unique characteristics will also advance

avian research.
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