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Specific anatomical characteristics make the porcine species especially

sensitive to extreme temperature changes, predisposing them to pathologies

and even death due to thermal stress. Interest in improving animal welfare and

porcine productivity has led to the development of various lines of research

that seek to understand the e�ect of certain environmental conditions on

productivity and the impact of implementing strategies designed to mitigate

adverse e�ects. The non-invasive infrared thermography technique is one of

the tools most widely used to carry out these studies, based on detecting

changes in microcirculation. However, evaluations using this tool require

reliable thermal windows; this can be challenging because several factors

can a�ect the sensitivity and specificity of the regions selected. This review

discusses the thermal windows used with domestic pigs and the association of

thermal changes in these regions with the thermoregulatory capacity of piglets

and hogs.
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Introduction

The regulation of body temperature in homeotherms is

ensured by mechanisms of thermolysis and thermogenesis (1).

Thermoregulatory adjustments can be induced by changes in

environmental temperature and various physiological situations,

including age, fasting, food intake, and stress conditions (2–

4). Therefore, the evaluation of body temperature represents

a valuable tool to monitor animals’ physiologic status,

welfare, and stress responses. Under stressful conditions, the

activation of the sympathetic system and the hypothalamic-

pituitary-adrenal axis (HPA) releases effector hormones such

as catecholamine and glucocorticoids, respectively. Stress-

induced hyperthermia, a condition triggered by the sympathetic

system, consists of increasing core body temperature and

the consequences on the thermoregulatory mechanism of

animals (5).

The thermoregulation mechanisms of domesticated swine
face challenges during all stages of growth due to certain

anatomical-physiological characteristics of this species (6) that
make these animals sensitive and susceptible to neonatal

hypothermia, or hyperthermia in adulthood (7, 8), events

that can trigger not only physiological alterations but also a

predisposition to pathologies andmortality due to thermal stress

(9). This impact productive and reproductive parameters and

the quality of meat, milk, and other products of animal origin

(10). The anatomical features that influence thermoregulation

in swine include fine hair that helps reduce heat loss to a

small degree under exposure to cold climates (11) and protects

the skin from direct solar radiation in hot environments

(12). The lack of functional sweat glands (13, 14) and low

amounts of brown adipose tissue (BAT) at birth also impact

the thermal response of domesticated pigs to diverse stimuli

(15). However, some of these characteristics –like the lack

of hair and heat-insulating fat behind the ears and near the

sternum– make certain body regions candidates as thermal

windows that can reflect heat exchange between the animal and

its environment (16).

Infrared thermography (IRT) is used to measure the amount

of heat that a body radiates (17, 18) as a result of vasomotor

control that dilates or constricts peripheral capillaries (8). The

discovery of this relationship suggested that IRT could be useful

in veterinary medicine to evaluate circulatory changes caused

by inflammatory or infectious processes, wounds, thermal

stress, and stressful events (19). IRT could help perform

detailed analyses of thermoregulation and the compensation

mechanisms involved in returning to a state of homeothermy.

However, achieving this goal requires identifying adequate

anatomical regions and the information they can provide

depending on their vasculature and location.

To date, the ocular, auricular, and nasal regions are most

often employed to quantify the heat that animals dissipate

or conserve (17, 20, 21). In species like swine and canines,

appendicular regions are recognized as being more sensitive

to temperature decreases due to prominent blood vessels that

contract to prevent active heat loss (7, 22). IRT can detect

changes of this kind in the surface vasculature of the skin,

depending on the anatomical components of the region (15, 23).

The use of IRT is, however, still controversial because studies

have shown variability in indices of sensitivity and specificity,

two parameters that can be affected by diverse factors, both

internal (e.g., presence of hair, bare skin, and hair length,

among others) (24), and external, that limit its use in veterinary

medicine (11, 24).

This review aims to analyze (i) the thermoregulation

mechanisms of piglets and adult pigs (hogs); (ii) the

thermoregulatory adjustments that pigs of different ages

confront; (iii) evidence for the use of various thermal windows

with domesticated swine; (iv) the factors that affect their

validation; and (v) possible limitations on applying IRT with

this species.

Review methodology

The search was conducted in Web of Science, Scopus,

PubMed, and CAB Reviews databases. The keywords used to

find the literature were: “pig thermoregulation”, “pig surface

temperature”, “infrared thermography”, “pig thermal windows”,

and “infectious or inflammatory disease”. The inclusion criteria

for the articles and books cited in the present review (n =

174) were those regarding the changes in surface temperature

in domestic pigs in response to environmental, physiological,

or biological stressors. In addition, articles between the years

2000 and 2022 were considered. Studies that did not meet the

inclusion criteria or reported the use of infrared thermography

in other species were excluded. Figure 1 describes the overall

methodology for this review.

Thermoregulatory contrasts
between piglets and hogs,
anatomical-physiological aspects,
and di�erences in
thermo-stabilization

The anatomical-physiological particularities that affect

thermoregulation in pigs include scarce fine hair (25), apocrine

glands distributed throughout the body, and the absence of

eccrine sweat glands (26). However, these characteristics differ

in distinct stages of development and growth. For example, due

to the absence of BAT and microfibril mass and low fat and

glycogen reserves, the piglet’s thermoregulatory immaturity (27)

helps explain why newborns are vulnerable to environmental

challenges when the temperature is around 18–20◦C. Piglets

require the activation of compensatory mechanisms such as

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2022.1023294
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gómez-Prado et al. 10.3389/fvets.2022.1023294

FIGURE 1

Flow chart showing the criteria used during the search of
scientific articles for the overview.

shivering thermogenesis, piloerection, and vasoconstriction in

the first hours and days of life to impede heat loss from

vital organs.

In hogs, in contrast, the disposition of adipose tissue is

considered a factor that affects their heat-dissipating capacity,

especially during exposure to high environmental temperatures.

Hogs rely on peripheral vasodilation and panting to dissipate

excess heat. However, due to their few functional sweat glands

and the subcutaneous layer of backfat that impedes heat loss,

they are susceptible to thermal shock that can also lead to death

(Figure 2) (28–30).

Regarding behavioral thermoregulatory responses such as

panting, pigs use a wide repertoire of changes to maintain their

core temperature. For example, newborns huddle as the primary

method to prevent heat loss, representing around 61.2–73.8%

of their time (31). In sows, responses to cold environments

include postural changes (sternal recumbency) (32), decreased

locomotion (33), and an increase in food and water intake (34).

In contrast, wallowing is the first reaction, when exposed to heat

stress, and reduction in feed intake and motivation to search for

warm places are frequently observed (27, 35).

A significant difference between piglets and hogs is the

thickness of the skin and its supporting structures. The dermis

and subcutaneous tissue of hogs measures around 3mm, 21–

26µm (36). The thickness of the epidermis varies from one

anatomical site to another, but ranges around 30–140µm, which

can be considered a barrier against cold temperatures (37). The

skin is thicker and has numerous crests in the shoulders and

snout but is thin around the dorsum and hips (38). In contrast,

studies of one-day-old piglets report a skin thickness of 0.3–

1.4mm, a stratum corneum of 11–48µm, and an epidermis of

33–68µm (39). This influences their thermoregulatory capacity,

tolerance to extreme climates, and interaction with the vascular

anatomy that, in neonates, is similar to that of human skin (36).

Two other factors related to the skin are glandular structures

and the presence of hair follicles. Piglets have a capillary:

follicle ratio of 730/cm2, but reports on hogs estimate just 10.16

follicles/cm2 (36). The importance of these structures during the

first days of life lies in their heat-conserving function generated

by piloerection. In this regard, while swine are considered a

species with scarce hair distribution, a study of Hampshire hogs

weighing 100–120 kg reported the union of an arrector pili

muscle with the outer root sheath (40) that supports the effects

of piloerection and heat retention.

Another important characteristic that distinguishes swine

from other species is the structure of their sweat glands. Unlike

human sweat glands of the eccrine type and function mainly

to cool the skin, pigs have apocrine glands that end in the

epidermis, near hair follicles (41). They have been loosely

described as simple, though the ones in the snout are considered

more complex, as they are coiled and distributed in a ratio of 1:1

with respect to the follicles (40, 41).

Adipose tissue is another essential element for

thermoregulation that differs significantly among swine

of distinct ages. Neonate piglets have small fat deposits

(around 15 g Kg−1) available in the abdomen and on the back

(42), limiting their capacity to produce heat through food

consumption (43, 44). Research has shown that piglets –which

lack BAT at birth– use the process called “browning of white

adipose tissue” (WAT) to perform non-shivering thermogenesis

(45). Mersmann et al. (46) reported that the piglet’s organism

has 4% fat immediately postpartum. Other authors mention just

1%, but this can increase to 16.4% during the first 24 days of life

(47, 48). In pigs, the fat-producing process begins in the fetal

stage. From 0 to 68 days of gestation, the fat content has been

reported to be around 0.06 g/d, but increases to 1.09 g/d at day

69 (47). As the age of the animal advances, the fat percentage

increases to 9.3–24.3% (49), with an average of 30% of extra-

muscular fat (44). This means that mortality by hypothermia

is not a major challenge in hogs as it is in piglets. Instead, the

increase in the thickness of the layer of adipose tissue reduces

emissions of cutaneous heat into the environment through
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FIGURE 2

Anatomical-physiological challenges of piglets related to hypothermia and of hogs related to hyperthermia.

vasodilatation. This situation becomes complicated, however,

when we consider the reduced functionality of sweat glands

in swine, and the limited effectiveness of thermoregulatory

behaviors like panting. These elements can cause imbalances

when hogs are exposed to high environmental temperatures of

24–30◦C and leave them susceptible to hyperthermia (known

as an elevation of body temperature caused by an imbalance

of thermoregulatory mechanisms that leaves them unable to

eliminate heat at the same rate as it is produced) or heat stroke

(50, 51).

Regarding the characteristics of the muscle required to

perform shivering thermogenesis, skeletal muscle fibers are

classified into “slow-twitch” (type I) and “fast-twitch” (type II

with subsequent subtypes IIa, IIb, IIx), according to the isoform

of myosin heavy chain and the contraction speed, where type IIb

is the fastest (52). Vanden Hole et al. (53) determined that the

percentage of type II muscle fibers in the pelvic limbs of piglets

represents 95.58% of total muscle fiber. It has been reported

that piglets have predominantly secondary muscle fibers, that

these correlate positively with muscle weight (r = 0.39) (54),

and that low temperatures of 15 ± 1◦C in 21-day-old piglets

increase the expression of type IIa fibers (55). In hogs, an

immunohistochemical study of muscle tissue samples showed

a higher proportion of type-II muscle fibers (56), which can

increase quadratically with parity (3rd birth, r2 = 0.44; 4th

birth, r2 = 0.54). Other studies of animals weighing 100 kg

showed that the longissimus muscle expresses three isoforms of

type II muscle fibers but not IIb, which were not observed in

Lefaucheur et al.’s work (56). These fibers’ distribution consists

in islets of type I fibers surrounded by peripherally-located IIa-

and IIb-type fibers (56). In hogs, the percentages of type I, IIa,

and IIb fibers are 4, 8, and 88%, respectively (57), lower than

the figures for piglets. The importance of the predominance of

certain fibers is that while type II are fast, they require ATP

production to initiate non-shivering thermogenesis, a substrate

that may be limited in piglets. In contrast, type I rely on

oxidative metabolism to thermoregulate (58), and a shift toward

oxidative muscle can occur in piglets (55). Finally, reduced

muscle irrigation, added to the absence of microfibril mass that

controls the potency of muscular contraction, also compromises

the mechanism of shivering thermogenesis (43), leaving piglets

susceptible to neonatal hypothermia.

Concerning the metabolic mechanisms that pigs use for

thermoregulation, glycogen reserves in skeletal muscle (around

30–35 g Kg−1) and liver are the main sources of energy in

the first hours of life (43, 59). Glycogen concentrations in the

skeletal muscle, front and hind legs, and liver of 32 neonates

of a Topigs x German Pietrain breed were studied in the first

96 h of life. In that study, low birth weight in the piglets

(body mass = 0.79 ± 0.26 kg) was associated with reduced
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FIGURE 3

Thermoregulatory mechanism in domesticated swine. When peripheral thermoreceptors are activated to recognize cold or hot stimuli, the
information is transmitted to the hypothalamus (MnPO) and other brain structures involved in the sympathetic control of peripheral blood
vessels. When exposed to cold environments, these vessels vasoconstrict to conserve heat, but under exposure to hot temperatures, they
vasodilate to dissipate heat. Both responses influence the amount of infrared radiation observable using techniques like IRT, though this also
depends on the thermal window evaluated. IML, intermediolateral column; MnPO, median preoptic nucleus; POA, preoptic area; rMR, rostral
medullary raphe; TRP, transient receptor potential vanilloid (V), melastatin (M), ankyrin (A).

glycogen utilization in the hind legs, as those reserves were

not utilized until 8 h postpartum. Moreover, those newborns

had as much as 50% less glycogen than normal-weight piglets

(mass body = 1.37 ± 0.29 kg). An evaluation of the amount

of glycogen in the liver showed that low-weight piglets did

not utilize their reserves for 96 h, in contrast to the normal-

weight ones that consumed half of that glycogen in the first

8 h of life (P = 0.0238) (60). Another energy reserve available

at birth is glucose. Staarvik et al. (61) evaluated this in one-

day-old piglets, finding average blood glucose concentrations

of 5.48 mmol/l. Interestingly, they also found that male piglets

had higher glucose levels than females, while those born in

large litters had glucose concentrations as much as 0.07 mmol/l

lower. Because glycogen and glucose are energy reserves that

can be depleted quickly, consuming colostrum is essential for

providing the energy newborns require for thermoregulation

and the passive immunity needed to reduce the risks of low

vitality (43, 59).

Recognizing the anatomical differences between newborn

and adult pigs allows us to determine the resources each

age group utilizes when exposed to environmental challenges

like thermal stress, and also helps identify the responses that

occur when those mechanisms are activated. Moreover, this

information serves as a guide for planning strategies to prevent,

diagnose, and manage affectations of the thermoregulation of

swine in relation to their physiological stage of development.

Thermoregulation in the newborn
piglet

At birth and during the first 48 h of life, piglets rely on

shivering thermogenesis as their principal thermoregulation

mechanism (62) (Figure 3) to compensate for low

environmental temperatures of 20–22◦C (43, 63), which

can cause a drastic drop in body temperature, perhaps as great

as 2◦C (15, 64). The placental fluids (including amniotic liquid)

that cover piglets together with the high body conductance and

the high specific surface area at birth worsen this temperature

drop due to the evaporation of 50% of those liquids that usually

occurs in the first 5–30min post-birth (65, 66). Hence, the

main challenge for piglets is hypothermia. Their immature

thermoregulatory center also plays an important role during

birth; in fact, neuroimaging studies suggest that their thalamus
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and hypothalamus do not reach maturity until week 5 of life

(67). This immaturity added to their relative physiological

and metabolic immaturity, helps explain the incapacity of

neonate pigs to thermoregulate when facing environmental

challenges (15).

Because they do not have a mature thermoregulatory

center (67, 68), newborn piglets first mobilize energy reserves

(glycogen, fat, skeletal muscle, in descending order) to produce

heat and survive in the extrauterine environment (7). The lack

of microfibril mass that controls the potency of muscle fiber

contraction (56) and the predominance of secondary muscle

fibers help piglets produce heat through a muscular contraction

so they can remain metabolically active. This may confer a

particular advantage for achieving thermoregulatory success, but

only in a limited way. Causes of thermoregulatory incapacity in

piglets include reduced muscular irrigation, low mitochondrial

mass responsible for the oxidative potential of muscle and,

hence, the energy supply, and the level of bioavailability of

carbohydrates as an energy source that leads to a biochemical

modification of the oxidation of non-structural fatty acids,

compromising the mechanism of shivering thermogenesis and

leaving piglets susceptible to neonatal hypothermia (43).

The total amount of fat in piglets at birth and usually

42% of the limited muscle glycogen reserves are used in

the first 12 h of life to satisfy its energy requirements.

Nonetheless, the expenditure depends on factors such as

body mass and vitality since piglets with low vitality have

less muscle volume and liver glycogen stored at birth (69).

Therefore, for this species, colostrum intake is critical for

their survival. Reports show that colostrum provides around

5.4% of fat and 2.0% of lactose as bioavailable carbohydrates

that support the newborn’s survival. However, colostrum also

gives piglets passive immunity by supplying immunoglobulin

G, substantially reducing susceptibility to infections by agents

like E. coli (70, 71). Under these conditions, piglets that are

born weak with body weights <800 g (72) are rarely able

to ingest colostrum and milk, their two main sources of

energy, because of (i) low energy reserves in their muscles that

impede initial attempts to suckle, and (ii) insufficient insulation

given their higher surface/body mass ratio that can lead to

hypothermia (73).

• Inanition and hypothermia hinder locomotion, increasing

the risk of crushing and death in the first 24 h post-birth.

The piglet’s organism may consume glycogen reserves

in the liver or muscles during the first 6 h of life,

striving to achieve thermoregulation despite hypoglycemia

and limited glycogen reserves (74), but this can trigger

metabolic acidosis, which that can end in coma or death

by cardiac arrhythmia (7, 75). Studies show that piglets’

10–13% of perinatal mortality is due to underlying events

like crushing and cold stress (43). Due to the reported

correlation between piglet survival and the degree and

duration of postnatal hypothermia (76), swine producers

are interested in studies of hypothermia that may help

prevent this condition that causes significant economic

losses (77) as the leading cause of perinatal death

(7, 78). The main threat to neonate piglets is a cold

extrauterine environment that provokes active heat loss

through evaporation and exposure to low temperatures

and cold objects or fluids. Their limited thermoregulatory

capacity exacerbates this due to scarce energy resources that

are quickly depleted in such a challenging environment.

Therefore, the timely recognition of hypothermia is crucial

to avoid dire physiological consequences.

Thermoregulation of hogs at the
slaughterhouse

In contrast to piglets, hogs may be exposed to elevated

environmental temperatures that affect growth, food conversion,

reproduction, health, and welfare. Though hogs have a mature

thermoregulatory center, they are susceptible to heat stress

because they have few functional sweat glands (30/cm2)

(79). Hogs radiate heat by convection and evaporation

through vasodilatation by increasing their respiratory rate and

changing postures (80). However, when temperatures exceed

their body’s thermoneutral zone (81), they cannot lose heat

at the same rate as acquired. Stressful situations can also

compromise the mechanism of peripheral vasodilatation and,

hence, thermoregulation (82). Moreover, the effectiveness of the

evaporative thermoregulatory response varies with the degree of

humidity in the environment: the higher the humidity (50% or

more), the less effective evaporative cooling will be. Hogs can

suffer heat stress at lower temperatures than when the air is drier

because less liquid evaporates from the respiratory tract and skin

in humid environments (80).

It is important to understand that the magnitude of heat

production and exchange in hogs depends, as well, on the stage

of growth, gestation, lactation, diet, stocking density [1 vs. 2

m²/pig (83)], the air movement index, and convection and

conduction methods (80). Animals in stages marked by high

metabolic activity (e.g., early growth, lactation) tend to be more

susceptible to heat stress, so sows, boars, and finishing hogs

weighing over 50 kg may begin to experience the adverse effects

of heat stress at temperatures that barely exceed 20◦C (79).

Another critical characteristic of hogs is the layer of

subcutaneous fat that insulates the skin but impedes thermolysis,

leaving them especially sensitive to heat stress (84). The

thickness of the hog’s back fat is another relevant trait.

Autochthonous, non-selected breeds like Iberian pigs have a

thick layer of subcutaneous fat that can increase their sensitivity

to high temperatures compared to leaner breeds (85). According

to Usala et al. (86), the heritability of back fat depth is greater

in conditions free of heat stress (h2 = 0.34 vs. 0.28). In line
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with these results, studies have proven that hogs weighing

over 51.4 kg are more susceptible to heat stress than lighter

animals, likely due to a limited heat-dissipating capacity because

they have more adipose tissue (87). This corroborates the

idea that certain anatomical features of hogs promote greater

susceptibility to heat stress.

During transport to an abattoir, hogs may be exposed

to stressors like dense loading densities and high ambient

temperatures that can compromise homeothermy (88). When

unable to maintain a balance between heat gain and loss, hogs

suffer heat stress that can trigger myocardial and circulatory

insufficiency, perhaps ending in death (89). The development

of these insufficiencies is due to metabolic disorders like an

increased flow of Ca2+ and consumption of adipose tissue,

which foster a sustained temperature increase (90, 91) that

can lead to oxygen deficiency, electrolyte imbalance, and

oxidative stress caused by the activation of myeloperoxidase

and eosinophil peroxidase enzymes which serve as indicators of

ischemic changes (92).

Adverse e�ects of hyperthermia for the
health of hogs

In hyperthermic conditions, blood irrigation of the

splanchnic tissues is channeled toward the periphery to dissipate

heat. When this increase in body temperature is sustained for a

certain time, it is classified as acute hyperthermia (93). Greater

susceptibility to acute hyperthermia has been registered in hogs

raised in tropical zones and during summertime in regions with

temperate climates. This predisposition is greater than in other

species; one of the factors is the lack of functional sweat glands.

Heat dissipation occurs through two evaporative mechanisms

(respiratory and dermal), but hogs dissipate <50% of the heat

produced via respiratory evaporation. Evaporation through the

skin involves two types of processes: one passive, when water

diffuses through the skin, and the other active, called sweating.

However, hogs have a very low density of sweat glands (30/cm2)

compared to species like bovines (800–2,000/cm2), and the few

they have are not stimulated by heat stress, so little heat is lost

by sweating. The second factor is subcutaneous fat. Heavier

hogs (e.g., gestating or lactating sows and hogs of commercial

weight) require greater energy consumption in relation to

their productive stage but also present a lower heat-dissipating

capacity because of a low surface: mass ratio (volume) and

larger amounts of fatty subcutaneous tissues that impede heat

dissipation (93, 94).

At the organ level, during hyperthermia, the gastrointestinal

system is affected by hypoxia of the intestinal mucosa because

blood flow (nutrients and blood) is diverted to the periphery.

This damages the intestinal tract by reducing the height of

the villi and the depth of crypts, increasing permeability, and

intensifying the inflammatory response (93). There are also

reports of tachycardia, hypertension, and supraventricular or

ventricular arrhythmias, possibly indicative of cardiovascular

damage after an hyperthermia episode (94, 95). Chen et al. (96)

identified polymorphonuclear leucocytes in heart tissue sections

from hogs affected by heat stress, suggesting that the animals

were in an acute stage and may have developed myocardial

lesions. As environmental temperatures rise, efficiency is

compromised because maintaining a stable body temperature

becomes the priority, so nutrients are channeled to achieve

euthermia, pushing the synthesis of products (meat, milk) to a

second plane. Hyperthermia also affects numerous intracellular

signaling pathways responsible for survival and productivity

(97). The effects of high temperatures on production can vary

widely. Sows may present late-onset puberty and long intervals

between weaning and estrus. In addition, the proportion of

impregnated sows that give birth may be low. In boars,

seminal quality may decrease (94), causing economic losses

in the industry due to reduced efficiency, higher outlays for

veterinary care, low meat quality because of increased lipids

and reduced proteins, and higher mortality, especially especially

under challenging stages for dissipating heat (e.g., gestation,

fattening) (97).

Unfortunately, common hyperthermia is not the only

condition threatening existing swine populations, for recent

increases in demand for pork have intensified the breeding

of genetic lines that reach the meat-production stage more

quickly. While this process produces pigs with a higher

muscle-to-fat ratio, it also brings undesirable traits, including

a recessive, monogenic hereditary autosomal syndrome called

malignant hyperthermia or porcine stress syndrome (PSS) (98).

This pathology is described as a hypermetabolic reaction of

skeletal muscle caused primarily by alterations of calcium

channels in skeletal muscle cells and the central nervous

system (Purkinje cells). If untreated, it can be fatal. Studies

have described a mutant ryanodine 1 receptor gene (RYR1)

that can cause episodes of malignant hyperthermia under

adverse or stressful conditions, such as high environmental

temperatures, intense exercise, reproductive activity, transport

to the abattoir, or the application of inhaled halogenated

anesthetic agents (95). Unlike the hyperthermia described

earlier, which develops progressively, malignant hyperthermia

is characterized by a sudden increase in body temperature and

metabolic index. It usually ends in death. The dysfunction of

calcium channels in skeletal muscle cells caused by mutations of

the RYR1 gene produces a high concentration of intraplasmatic

calcium because the Ca2+- releasing channels anchored to

the membrane of the endoplasmic reticulum stay open (99).

This disorder has become more rare due to the extensive

removal of carriers of this gene mutation (100–102); the

environment and the facilities where the animals are kept

continue to be a factor in the development of disrupted

thermal states.
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The evolution of PSS passes through 3 phases. The first

is marked by increased skeletal muscle metabolism, greater

oxygen and glucose consumption, hypercapnia, and higher

CO2 concentrations at the end of expirations that lead to

hyperventilation. As energy supplies are consumed, the hog

presents hypoxemia and hypoglycemia. Then, attempting

to revert this, it intensifies glycolysis, which can produce

lactacidemia. In the second phase, local hypoxia, an acid-

base imbalance, and fever lead muscle cells to suffer necrosis.

Combined with edema, this can trigger compartment syndrome.

The rupturing of skeletal muscle fibers releases their content

into the bloodstream (rhabdomyolysis). The electrolytes that

enter the blood can cause fatal organ damage, while increases

in plasma myoglobin and creatine phosphate kinase (CK)

levels can trigger acute renal insufficiency. In stage three, the

hog suffers systemic metabolic disorders, core hyperthermia,

arrhythmia, heart damage, and continuous rupturing of

myocytes that, finally, cause disseminated intravascular

coagulation (DIC), multiple organ failure and death (95).

Nevertheless, even hogs that do not present the RYR1

gene mutation can die of heat stroke. A hog exposed to

excessive heat may develop hyperthermia and activation of

the sympathetic-adrenal-medullary axis (SAM), as in other

stressful situations. Activation of this axis culminates in

increased catecholamines synthesis and secretion, increasing

gluconeogenesis, tachycardia, and tachypnea (103). It is

important to understand that tachypnea –that is, panting– helps

eliminate heat by evaporating liquid from the respiratory tract

(27). Hyperventilation and greater oxygen consumption lead to

hypercapnia and hypoxia, aggravated by hyperlactatemia due

to increased anaerobic glycolysis. Finally, all these conditions

together produce metabolic acidosis that affects heart function

and, possibly, death (Figure 4) (103).

In recent years, besides changes in pig farm management

and handling, alternative tools have been proposed to aid in

assessing the thermal states of piglets and hogs. One of these

complementary tools is IRT (104, 105).

Infrared thermography (IRT) as a tool
to evaluate the thermal and
physiological state of swine

IRT measures surface temperature non-invasively by

quantifying the radiation emitted by a biological body that

reflects modifications in peripheral blood circulation (18, 23).

Using IRT with humans and animals requires identifying

body regions with specific characteristics called thermal

windows, characterized by a high density of blood capillaries,

arteriovenous anastomosis, and glabrous skin. In veterinary

medicine, the eye, auricular pavilion, and tail are usually

the foci of IRT used in species like rats, dogs, and large

ruminants (23, 75, 106). However, the usefulness of IRT has been

questioned because physiological and circulatory responses can

differ among individuals and species depending on the region

chosen due, for example, to the properties of hair in dogs or the

skin thickness of large ruminants (11).

In newborn piglets, the entire body is considered a thermal

window because of its low-fat content. In contrast, in adults,

as the fat levels increase and reduce heat emissivity (50,

51), the main thermal windows proposed are the eyes (50,

107), ears, vulva, udder (108), armpit, back, shoulder, and

snout, all of which have successfully been correlated positively

with average rectal temperature values. However, the sites

with reports of greatest reliability and accessibility are the

base of the ear, shoulder, and udder (50, 108). Scientific

evidence for thermoregulation in swine demonstrates that

environmental temperatures play a particular role, so any

attempt to determine the efficiency of thermal windows must

consider this external factor.

To date, IRT has been used to detect febrile viral states,

diagnose pathologies of public interest in pigs (109, 110),

or inflammatory processes such as lameness in reproductive

females (111).

Thermal window: Orbital zone
(periocular area and lacrimal caruncle)

Two thermal windows have been identified in the orbital

region: the lacrimal caruncle and periocular area. The

infraorbital and supraorbital arteries pass through this region

as ramifications of the maxillary artery, supplying blood to the

eyelids and ocular muscles (112). The infraorbital artery also

has ramifications of the facial nerve, sympathetic fibers that

permit vasomotor control by activating the autonomous nervous

system (ANS) (113) (Figure 5).

The ocular window has been studied mainly to determine

the thermal state of animals and evaluate body temperature

non-invasively due to its contiguity to the CNS (114, 115). This

was proven in a study by Barbieri et al. (107), who evaluated if

this thermal window could help to determine body temperature

in 108 pigs. They obtained temperature readings with IRT

and a calibrated digital rectal thermometer. The mean rectal

temperature was 38.9 ± 0.4◦C (min = 37.9◦C; max = 40.1◦C),

while the mean ocular temperature was 36.7 ± 0.1◦C (min

= 34.8◦C; max = 38.8◦C). In general, the authors observed a

moderate correlation between ocular and rectal temperatures (r

= 0.58, P < 0.01), meaning that surface ocular readings and

rectal values increased; however, the correlation varied from

strong in recently-weaned pigs (r = 0.73, P < 0.01) to weak in

fattening animals (r = 0.23, P < 0.05). This correlation may be

because food intake and the age of the individual are factors

that affect the animal’s thermoregulation level. This situation

has become evident in piglets, where the colostrum intake
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FIGURE 4

Sequence of the events that culminate in the death of hogs due to the e�ects of high ambient temperatures.

FIGURE 5

Ocular window in pigs. (A) The periocular window is outlined by an ellipse (El1) that surrounds the entire ocular surface, including a few
millimeters of the upper and lower eyelids. (B) Irrigation to the ocular region, mainly by the supraorbital and infraorbital arteries and veins, which
are branches of the maxillary artery and vein. IRT can detect changes in the muscle tone of these vascular structures and the heat radiated
through them.
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FIGURE 6

Auricular window in pigs. (A) The window is delimited by an ellipse (E1) that includes the central cartilage. (B) Circulation from the facial artery
and external jugular vein, with their respective branches, spreads into the ramus auricularis medialis, intermedius, and lateralis, which are
responsible for transporting blood to the ear pavilion and that respond to activation of the ANS.

FIGURE 7

Thermal nasal window. (A) To mark the perinasal window, a large circle is drawn around the entire snout with the upper lip as its ventral limit.
(B) The nasal region and vasomotor changes there depend on circulation through the lateral and caudal nasal arteries and the dorsalis nasi vein,
a branch of the facialis vein. These structures respond with vasodilation or vasoconstriction, according to the stimulus perceived.

improves their thermoregulatory capacity and compensates for

the limited availability of energy resources at birth. In older

animals, food intake helps to maintain the temperature within

the thermoneutrality zone which tends to be narrow. Therefore,

during a state of hyperthermia, Therefore, the pig decreases

feed intake (7, 43). These studies demonstrate the validity of

IRT for determining thermal states in animals when significant

temperature alterations occur. Results coincided with those
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mentioned in a scientific review, which stated that temperatures

recorded in the ocular region reflect the circulatory control

present in that area and its close relation to the ANS (8).

The physiological explanation of the temperature increase

is based on greater cardiac activity in response to the

catecholamine neurosecretion (adrenaline, noradrenaline)

stimulating sympathetic nervous system activity (SNSi),

affecting body temperature, a condition called stress-induced

hyperthermia (88). Since this phenomenon induces a state

of hyperthermia, IRT could serve to detect the increase.

Pulido-Rodríguez et al. (116) evaluated the relation between

temperatures in the ocular region (thermographic images taken

while keeping a distance of 0.50–1m) and cortisol levels in

66 piglets for 7 weeks post-weaning. They found that in the

first 2 weeks, saliva cortisol levels and ocular temperatures

presented a strong positive correlation (r = 0.89, P < 0.05) and

concluded that higher temperatures in this region serve as a

reliable indicator for detecting stress-induced hyperthermia and

adrenal response.

These findings were confirmed by Machado et al. (117) in

their study of 192 hogs transported for 170 km, where they

recorded rectal and ocular temperatures (with a fixed distance

of 0.50m between the animal and the observer), saliva cortisol

levels, respiratory rate, and lactate levels, while also comparing

the influence of the upper and lower transport levels inside

the vehicle. They observed that the average post-transport

temperature in the animals at the upper level was higher than

those below (upper = 39.9◦C, lower = 38.1◦C; P = 0.022).

That finding coincided with higher lactate levels (upper= 61.63

mg/dL, lower = 58.26 mg/ dL; P < 0.001) to indicate that

temperature readings provide information on both the thermal

state of animals and their welfare levels (51, 114).

When considering hyperthermia, Weschenfelder et al. (118)

evaluated 258 hogs prior to sacrifice to determine the effect of the

pre-slaughter process and the influence of meat quality. Those

authors measured ocular temperatures using IRT (keeping a

distance of 0.25m) and the pH of mass in the long dorsal, semi-

membranous, and adductor muscles. Although observations

showed that ocular temperatures correlated with plasma lactate

levels (r = 0.20, P = 0001), with pH at 1-hour postmortem (r =

0.18, P = 0.03), and with pH of the semi-membranous muscle

(r = 0.20, P = 0.02), the degree of correlation was weak. The

authors concluded that the accuracy of IRT should consider

elements such as dirt, hair, and humidity. Results coincided

with those mentioned in a scientific review, which stated that

temperatures recorded in the ocular region reflect the circulatory

control present in that area and its close relation to the ANS (8).

The use of the ocular region to detect hyperthermia could

also be used to identify other conditions, such as febrile states.

Mota-Rojas et al.’s scientific review (104) observed that because

IRT is used to detect anatomical regions with increased radiated

heat, the ocular area could be utilized to recognize febrile

states caused by infection. During infection, the physiological

difference that causes the temperature increase during the fever

must be the release of cytokines like interleukin-1, interleukin-6,

and prostaglandin. Those substances are classified as pyrogenic

molecules that stimulate the preoptic area of the hypothalamus

to increase body heat (104).

The effects of febrile states were proven in a study of 124

Landrace x Yorkshire pigs diagnosed with Actinobacillus sp.

infection. The researchers found that IRT taken at a distance

of 0.50–1m predicted body temperature increases of 0.80 and

0.35◦C (119). That evidence was confirmed byLoughmiller et al.

(120), who evaluated febrile responses in 28 pigs using IRT

(keeping a distance of 2m). In the six animals inoculated

with Actinobacillus pleuropneumoniae, the authors observed

a significant interaction between IRT temperature readings

and inoculation with the pathogenic agent (P < 0.001), as

temperatures were significantly higher than in the control

animals (infected = 39.6 ± 0.3◦C vs. non-infected = 32.6 ±

0.3◦C, P < 0.05). These results demonstrate IRT’s sensitivity

for detecting febrile states and the need to analyze this thermal

window for evaluating body temperature.

Febrile responses are not necessarily associated with

pathological conditions in animals, as they can also occur

as biomarkers of immune responses to vaccination (109).

This was proven in a study of vaccinated pigs in which IRT

(thermographic images of a group of pigs were taken keeping

a distance of 2m) detected a temperature increase of 1◦C in the

3–8 h post-injection (121). Scientific evidence thus conclusively

shows that the ocular region has useful clinical applications for

treating sick animals. Other authors, however, argue in favor of

using the lacrimal caruncle region because it is innervated by

sympathetic fibers and responds to ANS activity and, therefore,

could be a biomarker of stress (23, 24).

The thermal window of the lacrimal caruncle has been

utilized in studies like one by Lonardi et al. (122) that evaluated

2500 Large White and Belgian Landrace pigs’ eye temperature

(keeping a distance of 0.8m between camera and skin surface)

under two conditions: castration and non-surgical handling.

Those researchers observed that the temperature of the lacrimal

caruncle was higher in the first group than in the one that

received only handling at 3 h post-surgery (35.6 ± 0.08◦C vs.

35.4 ± 0.09◦C, P < 0.05). They also found that the temperature

increase had a weak correlation with rectal temperatures (r =

0.31, P < 0.01), perhaps indicating that the ocular window

is more specific for painful conditions or stress in swine.

However, it has also been suggested that this window may be

more helpful in identifying temperature decreases caused by

increased sympathetic activity. This precise increase that triggers

neurosecretion of catecholamines which causes vasoconstriction

of the capillaries to reduce heat radiation, as has been reported

in other species (18, 123). The behavior of this window

continues to be studied, but its clinical utility is undeniable,

as is the assistance it offers veterinarians. For this reason, it is

necessary to gather additional data to efficiently demonstrate the
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information obtained from the ocular region in order to achieve

a strong validation.

Another important factor is the thickness of the skin because

it influences heat radiation. Moreover, the capacity to dissipate

heat differs among anatomical sites like the ear, eye, back, and

buttocks (108). This situation explains that thicker skin impedes

dissipation, in contrast to thinner-skinned animals like the

water buffalo (124–126) (pig: 30–140µm vs. water buffalo: 50–

115µm) (24, 38). Zhang et al. (127) suggest that these variations

are related to the reflection of radiant energy and emissivity,

which vary at different anatomical sites, given that infrared

cameras detect infrared radiation of 0.75–1.4µm and thermal

radiation of 8–15µm (128). For example, the recommended

emissivity values for pigs range from 0.94 to 0.98 (129, 130).

However, the thoracic limbs and eyes values are 0.94 and 0.93,

respectively. Therefore, the anatomical characteristics of the pig

must be considered to achieve precise evaluations of surface

temperatures in real-time. It is also essential to emphasize

that other techniques must confirm IRT diagnoses. Thus, the

best approach is to use IRT and other tools to optimize pig

farm management.

Thermal window: Auricular

Another area that has been shown to satisfy the

characteristics for consideration as a thermal window is

the auricular region. Figure 6 shows the vasculature of

the auricular pavilion, mediated by the caudal auricular

artery (auricularis caudalis) divided into three regions:

lateral (lateralis), intermediate (intermedius), and medial

(medialis) (131). Innervation of this region depends on the

auriculopalpebral nerve (auriculopalpebralis), a ramification of

the facial nerve (facialis) (112).

Contrary to observations of the ocular window and its

capacity to recognize hyperthermic states, the auricular area

has been used to recognize hypothermia in piglets (7). In

animals aged 1–13 days, the surface temperature of the auricular

region presented a strong correlation (r = 0.89, P < 0.01)

with rectal temperatures (132), so it may be indicative of the

information provided by the pavilion. This theory was posited

by Schmitt and O’Driscoll (133) to validate IRT for evaluating

temperature in piglets. The authors assessed 67 animals by

recording temperatures of the ear and back. Results showed that,

in general, the temperature of the ear was lower in low-weight

animals (1.5 kg = 35.2 ± 0.36◦C vs. 1.74 kg = 36.5 ± 0.35◦C, P

< 0.001). This finding was similar to observations of low rectal

temperatures in animals with severe growth delay (severe= 35.8

± 0.46◦C vs. mild= 37.2± 0.42◦C, P < 0.05).

Some authors concur with this idea, according to Schmitt

et al. (134), who evaluated the thermoregulatory capacity (taking

thermographic images of the auricular window at a distance of

1m) of two lines of piglets with differences in food consumption.

They found that post-birth, the high-consumption animals had

lower temperatures than those with low consumption (24.7

± 0.37◦C vs. 26.3 ± 0.36◦C, P < 0.005). The explanation

offered is that exposure to cold induces heat production by

metabolic thermogenesis, which intensifies consumption of

energy resources like BAT, while in neonates with scarce energy

resources, food consumption increases to compensate forand

regulate temperature (27). This explanation makes it possible

to argue that the performance of thermoregulation in the first

weeks of life, up to weaning –when the temperature is strongly

influenced by factors like humidity and the animal’s weight

and average food consumption– corroborates the importance

of monitoring this condition (7, 135). Vascularization and

innervation of the auricular window responding to changes

in ANS tone as an activation of the SNSi, as we saw in the

section on the ocular window. This was posited in a study

by Yañez et al. (136) based on an evaluation of 64 piglets

weaned with or without social disruption who did or did not

receive environmental enrichment. The study animals received

environmental enrichment in suspended ropes, aromatized

bottles, toys, and balls, while the control group did not. The

authors found that temperatures in the auricular pavilion did

not present changes under any of the treatments but that

the temperature of the lacrimal caruncle was 1.7◦C lower in

the animals that did not receive enrichment but experienced

disruption of the social order (P < 0.05; at a uniform distance

of 1m). In contrast, the animals without disruption and

with environmental enrichment had higher lacrimal caruncle

temperatures than controls (P < 0.05). From a comparative

perspective, these results demonstrate that the meaning of the

thermal response observed differed with the condition to which

the animals were exposed and that areas like the ocular region,

specifically the lacrimal caruncle, can help evaluate acute stress

responses. In contrast, the ear region may indicate an animal’s

overall thermal state (137).

The results just reviewed contrast to those of Rocha et al.

(138), who set out to validate anatomical sites like the ear,

ocular region, neck, and rump (taking thermographic images at

a distance of 1.50 and 2.6m) in 120 pigs under two treatments, in

this case, rough vs. gentle handling. They evaluated physiological

parameters like heart and respiratory rate and body temperature,

in addition to surface temperatures at the anatomical sites

chosen for study. Observations included increased heart rate,

body temperature, and saliva cortisol levels in the animals that

received rough handling, with temperature increases in the

ocular region and the ears of 7 ± 0.29◦C and 5.86 ± 0.46◦C,

respectively. It is important to mention that those authors found

moderate correlations for the regions of the eye and ear as saliva

cortisol levels increased in the animals handled roughly (r =

0.49 and r = 0.50, respectively, P < 0.001). This study provides

sufficient evidence to validate the lacrimal caruncle and ear

region as areas where stress responses in pigs can be evaluated.

Some authors, however, mention that readings from these areas
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can be affected by other factors, such as the distance at which

they are taken, the specific region evaluated, humidity, and skin

thickness, so these elements must be considered when choosing

and evaluating anatomical sites (24, 132).

The auricular region, then, can be considered a thermal

window due to its vascularization, which makes it especially

sensitive to changes in environmental temperatures. It is a good

site for detecting hypothermic states in neonates. Its innervation

plays a vital role in changes in the diameter of the capillaries that

can respond to catecholamine levels under stressful conditions,

but it has the additional advantage of having been validated, like

the ocular window (138).

Thermal window: Nasal

The nasal thermal window, located in the region of the same

name, receives blood flow from the nasal artery, a ramification

of the maxillary artery (artery maxillaris) (139) (Figure 7). This

window has been used to evaluate the temperature of the

nostrils because they can lose heat by evaporation through

respiration (140).

Research on humans has analyzed the effects of stressful

psychosocial and physical conditions on vasomotor control of

the nose (141). The blood supply to the nose region is sensitive

to activation of the SNSi, and, therefore, vasoconstriction of

surface blood capillaries, translates into the reduced blood flow

and less heat irradiating into the environment (136). However,

interpretations of surface temperature readings from the nostrils

must consider that respiration produces vapor. While the

presence of this inspired vapor is undoubtedly a drawback

regarding the usefulness of this thermal window, it can also be

considered an advantage because it permits quantifying other

parameters, such as respiratory rate. Ricci et al.’s (19) 7-day

study of 26 pregnant sows collected data on the parameters

of respiratory rate and rectal temperature together with IRT

readings from the nasal window (from a distance of 1 and 1.5m)

in the morning and at night. The animals showed a moderate

correlation between nasal temperature and respiratory rate (r

= 0.350), meaning that as the temperature of the nasal region

increases, the respiratory rate increases due to tachypnea as a

thermoregulatory compensation mechanism, although there is

no direct relationship between these two variables.

Similarly, Jorquera-Chavez et al. (142) conducted a pilot

study with pigs infected with Actinobacillus pleuropneumoniae.

They determined that the respiratory rate in the sick animals,

evaluated by IRT of the nasal area, increased by an average of

10 breaths/min (rpm) compared to the healthy animals. This

coincides with reports on bovines, where the use of this window

has been explored as a non-invasive way to record respiratory

function (24). However, this application requires additional

study because free-moving pigs infected in a normal on-farm

environment have not been tested (142). Furthermore, as was

reported in a study of 24male growing pigs exposed to heat stress

(at 34◦C), to date only rectal temperature has been associated

efficiently to determine respiratory rate, with R2 values of 0.997

and 0.993 for acute and chronic heat stress, respectively (143).

These findings reaffirm that said thermal window could be

associated with the causal factors of heat stress.

Taking into account that rectal temperature is considered

the gold standard for quantifying body temperature, Malmkvist

et al. (144) analyzed the influence of the thermal environment

(15◦, 20◦, 25◦C) on sows during farrowing and lactation based

on thermal responses in the head and body regions, as well as

in rectal temperature. In their analysis of the data, the authors

found that the temperature of the snout increased gradually

in relation to the temperature of the holding room, as they

recorded average values of 33◦, 35◦, and 36◦C, respectively.

They further reported that the rectal temperatures behaved

similarly, showing influence by room temperature (38.0◦, 38.7◦,

and 39.0◦C, respectively). However, the nasal temperature of

the sows maintained a weak correlation coefficient of 0.10 with

rectal temperature, a value lower than those obtained for the

ocular window (0.24) and udder (0.36). It is worth mentioning

that the temperature increase of the snout was accompanied by

tachypnoea, as rpm increased from 29 to 58 in roomsmaintained

at 15◦ and 25◦C, respectively. Due to these findings, it is possible

to affirm that the nasal window could be used to associate

it with respiratory rate, not with rectal temperature, but it is

subject to environmental variations and the effect of social stress

factors (145).

These data provide a better understanding of the influence

of the environment on the thermoregulation mechanisms of

swine in different production stages. In the case of 16 guilts

(primiparous sows), pregnant sows, lactating sows, and suckling

piglets, IRT was evaluated in seven body regions, including the

nose. In general, in all groups, this window showed the lowest

temperature values, with an average of 33◦C, in contrast to the

temperatures registered in the ear root or the tail base (36.2◦ and

37.1◦C, respectively). Their findings led the authors to suggest

that IRT could serve to frequently monitor environmental

temperatures or early disease states (146) since temperatures

reflect the health status of animals (147).

Other thermal windows of the body

Pigs are endothermic animals that retain or dissipate heat

depending on environmental and physiological conditions.

They use metabolism for thermogenesis or vasomotor

changes to perform heat exchange (148). Assessment of body

temperature in pigs helps determine their health status non-

invasively (127, 138). The ocular, nasal, and auricular zones are

considered the main thermal windows, but they are not free

of difficulties. In the case of the ocular window, the size of the

orbital surface can affect temperature readings, and periocular
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structures like the eyelashes can occlude images. Likewise,

animals tend to close their eyes when in agony, precluding the

use of IRT. In the auricular zone, meanwhile, the conformation

and position of the ear may restrict IRT’s usefulness. Differences

between breeds with erect or droopy ears can also cause

temperature variations due toblood vessels’ projection and hair’s

presence (149, 150).

The alternative proposed is to evaluate the temperature in

broader regions like the back, flanks, thorax, or abdomen. A

study of 99 Landrace x Yorkshire pigs by Feng et al. (119) found

that shoulder, center-back, and rump temperatures (taken at

a distance of 0.5 and 1m) had an overall moderate to strong

and positive correlation of 0.5-0.7 with rectal temperatures.

Therefore, IRT can potentially evaluate the core temperature of

animals. Similarly, a report on 91 newborn piglets captured back

and flank temperatures at 11- time points between birth and

48 h postpartum. Due to the strong correlation (r = 0.82) with

rectal temperatures found, the authors determined maximum

surface temperature and rectal values, discovering that they were

affected by time. At 25 and 30min, respectively, those values

decreased by 0.25 and 0.42◦C. Moreover, they found that a

maximum surface temperature of 30◦C was indicative of rectal

values <32◦C (65). What these authors observed would confirm

that other regions may be related to thermoregulation processes.

For example, local temperature in the nostril is affected by other

factors, while regions such as the shoulder or back are known as

a pathway to losing heat, then body temperature influences its

values (104).

The thermal response of the back can also be used to indicate

the mental state of animals. In 46 pigs involved in agonistic

interaction, back and ear temperatures decreased significantly,

by 0.9◦C, during a conspecific confrontation event, and this

variation had amoderate negative correlation with higher lactate

(r = −0.49) and glucose (r = −0.32) levels, where temperature

decreases were accompanied by increases in both endocrine

markers (149). The branches of the vertebral arteries that supply

the transverse spinal muscles are the biological foundation

of these changes, as the branches of the spinal nerves are

susceptible to sympathetic stimulation during stress responses,

in which they also participate (112).

Other regions that have been suggested as thermal windows?

are the gluteal and vulvar areas. Scolari et al. (151) mention

that these areas (monitored from a distance of 0.61m) tend to

change the temperature during estrus. Specifically, the vulvar

region increased its temperature by 1.5◦C 12 h before ovulation

due to the hemodynamic changes that occur during estrus.

This was confirmed by Simöes et al. (152), who found that

vulvar-gluteal temperatures (monitored from a distance of 1m)

increased during proestrus and 25 h before estrus but decreased

by 1.1 ± 0.9◦C 6 h after estrus. These changes suggest the

possibility of adopting this window to predict estrus and increase

reproductive success. In addition, a high success rate of IRT

in detecting estrus and ovulation in 80 sows was achieved

by assessing these conditions in conjunction with ultrasonic

sensors (153).

Regardless of the region used as a thermal window, it

is important to consider that environmental, technical, and

individual factors can cause variations in the results (154). In

the case of environmental factors, Basak et al. (155) determined

the relation of temperature and humidity inside pig barns to

surface temperatures measured on the right and left flanks,

forehead, and back. They found an association between the

temperatures of the barn and the body. In addition to these two

variables, they concluded that other elements –wind speed, air

pressure, body weight, and food consumption– require models

to determine their influence on IRT. Those findings are similar

to the observations by Barreto et al. (156), who found a positive

correlation between solar radiation, environmental humidity,

and wind with body surface temperatures.

Regarding technical factors, the distance between the camera

and the animal, the angle of view, and the resolution of the

thermographic image are the main ones (154). Leizi et al. (157),

after evaluating the influence of camera angle on body surface

temperature readings, determined differences >2◦C between

angles of 74◦ vs. 76◦. A technical report on six pigs published

by Banhazi et al. (158) stated that perpendicular images taken

at angles ≤60◦ minimized the error percentage of readings and

made it possible to detect a thermal response called a cooling

effect 10–15min after wetting, even though the percentage of

the wetting effect was registered only during the first minute.

Strategies for minimizing the effect of the angle of view include

using IRT with kinetic sensors, as this reduced temperature

differences in a febrile swine model from 2◦Cwithout the sensor

to 0.03–1.2◦C with it (157).

On the other hand, the distance between the camera and the

animal also shows ample variation from one study to another

that can affect thermographic readings. Playá-Montmany and

Tattersall (159) found a negative and moderate correlation

between ocular temperatures (r = −0.58) and distance. They

observed less temperature variation at a distance of 1.5m than

at 10–15m. This can be attributed to the dynamics of radiation

which tends to disperse toward other objects in the environment,

causing a reduction in the values registered by IRT, which is

why some authors recommend that thermograms should not be

taken at a distance>1meter (129). However, others recommend

distances of 60 (130) or just 20 cm and maintaining a position

perpendicular to the body (155). Given this variation, studies

must be conducted to identify how distance affects temperature

readings, and establish a standard.

Finally, within the individual factors, the presence of hair has

been shown to cause temperature variations as large as 0.2◦C

(23), while a dark-colored layer can increase heat retention by

impeding dissipation (11, 24). Pigs, however, have only fine hair

that, on the one hand, impedes heat retention (160) but, on the

other, leaves them susceptible to sudden temperature decreases,

above all in the neonatal stage.
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Future directions

Research into the use of IRT with swine seeks to confirm

its applicability in new areas of study due to its information

on physiological states and animal health. One possibility could

be to implement IRT continuously to evaluate the temperature

in real time on production units in both individual animals

and entire herds and so determine the presence of lesions or

infectious diseases (161, 162). Although these future applications

would be the areas to be developed, it is necessary to establish

the reliability of IRT at different body regions. For example, the

ocular window has been shown to suffer less surface temperature

variation than areas such as the back, where solar radiation,

humidity, or dirt can alter the reading (107).

In this regard, IRT could aid in the early identification of sick

animals that present clinical signs of fever (163). The presence

of fever, and the vasomotor responses at the peripheral level t

it generates, constitute an area of opportunity for applying IRT

in farming systems since it can identify pathological processes

based on changes in surface temperature (128). For example,

Islam et al. (129) used IRT with piglets’ head, body, and

tail regions to detect signs of gastrointestinal infection caused

by Salmonella typhimurium and Escherichia coli. They found

increases in body surface temperatures at 24 h with a peak at

72 h (41◦ and 37.4◦C, respectively; p<0.005). In relation to the

respiratory disease caused by Actinobacillus pleuropneuomoniae

in pigs, thermography detected changes in ocular and auricular

temperatures (an increase of up to 1.8◦ and 8.1◦C, respectively,

in sick pigs) 4-6 h before the appearance of the first clinical

signs (142), while at the thoracic level, IRT achieved 100%

specificity and sensitivity (Cl 95%: 69–100%) as a method for

orienting lung biopsies (110). Determining such temperature

increases could also be applied in pigs sent for slaughter

to identify those with systemic infections and then program

quarantine measures for them (164). However, it is important

to emphasize that its use is recommended in conjunction

with other innovative methods, such as accelerometers, to

evaluate the activity of animals (165). Other diagnostic tools are

computerized tomography (166), radio-frequency identification,

and machine-learning technologies that can estimate animals’

productive parameters (161).

Likewise, IRT monitoring may help reduce economic

losses for producers while simultaneously procuring animal

welfare by allowing early detection of diseased individuals

(162) or recognizing injured animals during transport and the

association that this might have on meat quality due to acute

stress or dehydration (8, 162). Applying IRT prior to slaughter,

for example, makes it possible to estimate levels of well-being

(118). In that period, pigs are susceptible to increases in body

temperature due to transport and environmental temperatures

inside the vehicle (167). IRT could be applied during transport

to identify states of fatigue or hyperemia caused by travel, as

Warriss et al. (168) demonstrated in their study of 28 pigs in

which increases in ear temperatures (from 27.3 to 35.0◦C) had a

strong-to-moderate correlation with higher blood temperatures

(r = 0.71, p<0.001) and creatine kinase (r = 0.55) and serum

cortisol concentrations (r = 0.50). Because increases in body

temperature and the activation of metabolic pathways can

impact meat quality, IRT has been suggested as a way to

determine animal welfare and predict pork quality (118), given

that pre-slaughter stress involves a physiological response that

alters thermoregulation and affects meat quality, as has been

shown in cattle (169). In the case of pigs, an IRT study of the

dorsal region from neck to rump of 500 pre-stunning animals

successfully detected animals with defective carcasses. In pigs

with skin surface temperatures above 32.2◦C, 71% of 49 animals

showed such defects as pale, soft, exudative meat (PSE, 6%) and

dark, firm, dry meat (DFD, 22%) (130).

IRT may also make it possible to evaluate other key

parameters, such as respiratory rates, based on changes in local

thermal patterns in the nasal region. Indeed, this has been

suggested to assess states of health continuously and non-

invasively, and has been tested in cattle (24). The reproductive

efficiency and fertility of breeding boars are affected by heat

stress and its effects on spermatogenesis (170), a process that

requires scrotal temperatures 4–6◦C below the boar’s body

temperature to maintain semen quality and prevent infertility

(171). Stravogianni et al. (172) evaluated this in five boars,

reporting a strong, significant negative correlation (r2 > 0.5)

between increases in scrotal temperature measured by IRT

and a rapid, progressive reduction of sperm motility and

velocity. These applications suggest that IRT could help detect

thermal changes that alter fertility in boars. However, additional

information is required on the sensitivity of this tool in

such assessments.

The mammary window of sows is another region that could

yieldmore sensitive information on states of health, as Rosengart

et al. (173) argued in their study of 513 postpartum hybrid

Viktoria sows. After birth, the piglets produced were divided

into three groups: healthy, sick, and suspicious, by measuring

the surface temperature of the sows’ mammary glands. The

authors found that the temperature of this window increased by

1.1◦C in sick animals compared to healthy ones (P < 0.05). This

could indicate a discrepancy in the sensitivity of other windows

compared to the mammary region, which might mean that this

anatomical region is ideal for determining pathological states

due to its particular characteristics (108). This same window

might also be useful for complementing diagnoses of conditions

like postpartumdysgalactia, which causes a temperature increase

in the mammary gland. Studies have proven that IRT can detect

this pathology with a sensitivity of 94.4% and a specificity of

89.5%, so it may be able to corroborate that the anatomo-

morphological characteristics of this window make it effective

for evaluating states of health (174).
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Finally, the vulvar region of sows has been studied due to the

possibility that certain circulatory changes in those animals may

indicate of their physiological condition; that is, IRT could help

identify the estrus cycle and support assisted reproduction (175).

Some authors suggest that a temperature increase of 2◦C in this

region can be indicative of estrus, which can be associated with

the number of navicular cells (176). However, no reports have

yet determined the sensitivity and specificity that would lead to

validating this window in sows.

IRT has promising applications for the continuous

monitoring of animal health. However, it is necessary to

recognize that future research must consider some parameters

that still need to be discovered„ such as the cut-off points for

identifying when an animal is outside its thermo neutrality

zone, a field that has only been studied in large ruminants

(24). Likewise, improving a sensitive automatic technique

that can reduce the influence of intrinsic and extrinsic factors

that alter heat radiation must be considered to reduce the

underestimation of thermal changes at critical points during the

pig production process.

Conclusions

Scientific evidence for the anatomical-physiological

differences between piglets and adult hogs is clear. Because

neonate piglets have immature thermoregulation systems

and limited energy resources to compensate for ambient

temperatures, their most important challenge is to prevent

hypothermia during the drastic change from intrauterine to

extrauterine conditions. In contrast, the adipose tissue deposits

in adults can aid heat retention, though their scarce sweat glands

impede dissipation. Hence, their greatest challenge is to avoid

thermal stress. In light of this evidence, continuously evaluating

these animals’ thermal state is imperative.

Up to now, thermal windows like the armpit, back, shoulder,

and snout are considered to have the greatest similarity to

average rectal temperatures values, though the sites with reports

of the best reliability and accessibility are the base of the ear,

shoulder, and udder. The ocular and auricular thermal windows

have emerged as viable options for evaluating thermal states in

pigs and also for identifying stressful conditions since specific

characteristics of this species make it possible to validate their

effectiveness. The structure of the nasal window allows non-

invasive evaluations of physiological parameters like respiratory

rates, an obvious clinical application. On the other hand, the

results obtained after evaluating the temperature of the dorsal,

scrotal, mammary, and vulvar regions, suggest its efficacy in

detecting defective carcasses and changes that alter fertility in

boars, postpartum dysgalactia, and estrus, respectively. Scientific

evidence for pigs, then, has demonstrated that the thermal

windows analyzed herein aid in obtaining information on this

species’s general state of health.
Most studies have sought to validate thermal windows

to ensure greater objectivity when using IRT with this

species. However, to obtain accurate evaluations of the surface

temperature, it must be considered that factors such as

environmental temperature, the thickness of the hair or fur of

each individual, and perfusion in the zones considered thermal

windows cause considerable variations in the results.
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