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Clostridium perfringens (C. perfringens) is an opportunistic pathogen that

cause necrotic enteritis, food poisoning and even death in animals. In this

study, we explored the prevalence, antibiotic resistance and genetic diversity of

Clostridium perfringens isolated from yak in the Qinghai-Tibet plateau, China.

A total of 744 yak fecal samples were collected and assessed for toxin genes,

antimicrobial susceptibility and multilocus sequence typing (MLST). Results

indicated that 144 out of 744 (19.35%) yak fecal samples were tested to be

positive for C. perfringens, 75% (n = 108, 108/144) were C. perfringens type

A, 17.36% (n = 25, 25/144) were C. perfringens type C, 2.78% (n = 4, 4/144)

were C. perfringens type D, and 4.86% (n = 7, 7/144) were C. perfringens

type F. In addition, 2.78% (n = 4, 4/144) of the isolates were positive for

cpb2 toxin gene. Antimicrobial susceptibility testing revealed that 98.61%

(142/144) of the isolates showed multiple-antibiotic resistance. According to

MLST and phylogenetic tree, 144 yak-derived C. perfringens isolates had an

average of 12.95 alleles and could be divided into 89 sequence types (STs)

and clustered in 11 clonal complexes (CCs). The most of isolates belong

to type A with a considerable genetic diversity, having Simpson index up to

0.9754. MLST and phylogenetic analysis showed that the isolates under the

same clade came from multiple regions. Cross-transmission among isolates

and interconnectedness were observed in the genetic evolution. According

to the study, the most of the isolates exhibited broad-spectrum antibacterial

resistance, diverse alleles, and multiple lethal toxin genes of C. perfringens.
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Introduction

Clostridium perfringens is an anaerobic and ubiquitous

gram-positive pathogen, which normally inhabit the intestines

of animals and humans, as well as in the natural environment

such as forage grass, soil, excrement and decaying vegetation (1).

It is not only cause severe enterotoxaemia and high mortality

in ruminants but also contaminates slaughtering and processing

chain, which poses a great threat to food safety (2). The

pathogenicity of C. perfringens can induce acute/sudden death

by producing different lethal toxins and enzymes, resulting in

multiple diseases, i.e., diarrhea, necrosis, bacteremia and food

poisoning (3, 4). Based on the different secreted toxins, C.

perfringens toxins, mainly categorized into 7 subtypes: CpA

(α), CpB (α, β, ε), CpC (α, β), CpD (α, ε), CpE (α, ι), CpF

(α, CPE) and CpG (α, NetB) (5). Among them, type A is

the most common type. Additionally, lethal toxin β2 (cpb2)

is secreted by various types of C. perfringens and cause many

diseases (6).

Antibiotics have been widely used to treat necrotizing

enteritis caused by C. perfringens and promote the growth

of livestock (7). However, the abuse of antibiotics which

causes a serious threat for public health due to multidrug-

resistant bacteria and antibiotic-residues in food. It has been

reported that the multidrug resistance of C. perfringens showed

different prevalence in various types of animals around the

world, such as in Thailand (8), Korea (9), Pakistan (10),

Bangladesh (11), and China (12). However, little is known

about the prevalence and antibiotic resistance of C. perfringens

in yak. Therefore, it is of great significance to investigate

the antibiotic susceptibility of C. perfringens of yak products

in China for effectively controlling the dissemination of

C. perfringens.

With the development of molecular biology and genomics,

many molecular typing techniques are extensively applied

to assess bacterial diversity and the prevalence rate of C.

perfringens (13). According to sequence analysis, Multilocus

sequence typing (MLST) is a molecular typing method that

combines bioinformatics and high-throughput sequencing. It

is a biological method which often used for characterizing

bacteria and is considered the gold standard way for bacterial

typing (14). As an effective method to solve bacterial

population genetics, MLST was performed based on PCR-

amplified housekeeping genes (typically 7–10) for generating

different sequence types following the permutation and

combination of different alleles (15, 16). Hence, MLST is

increasingly be used as a tool for strain comparisons and has

become a crucial method for molecular epidemiological studies

of bacteria.

Yak (Bos grunniens) plays a vital role in the country’s

economy and are a common source of meat, milk, fur and

leather for local herders (17). However, yaks are mainly

grazed, resulting in various infectious and non-infectious

diseases. Among various bacteria, C. perfringens is regarded

as one of the main reason for morbidity and mortality. Also,

it is an emerging challenge for the yak industry. However,

research regarding the prevalence, antibiotic resistance

and molecular typing of C. perfringens of yaks remains

scarce to date. Here, we investigated the prevalence, toxin

genes, antimicrobial resistance and genetic diversity of C.

perfringens isolated from yak fecal in Qinghai-Tibet Plateau

of China. This article provides epidemiological evidence of

C. perfringens in Qinghai-Tibet Plateau of China for the

prevention and treatment of yak-related diseases caused by

this bacterium.

Materials and methods

Sample collection

From July 2018 to July 2021, 744 fresh yak fecal samples

were collected from the main grazing areas in Qinghai-Tibet

Plateau, China. As shown in Figure 1 the information of samples

was collected from 13 different cities. Fresh yak feces were

collected using sterile fecal swabs, placed at 4◦C in an in-vehicle

refrigerator, and sent to the Laboratory of Preventive Veterinary

of Tibet Agriculture and Animal Husbandry University.

Isolation and culture of C. Perfringens

1 g of content was collected into a tube containing

9ml of sterile phosphate-buffered saline (PBS, pH 7.4), and

subsequently they were inoculated onto fluid thioglycollate

medium (FTG) (Hopebio, Qingdao, China). Inoculatedmedium

was cultured under anaerobic condition at 41◦C for 18∼24 h.

After purification culture, the colonies were inoculated onto

blood agar medium with 5% defibrinated sheep blood (Hopebio,

Qingdao, China) and cultured in the anaerobic pack (Mitsubishi,

Tokyo, Japan) at 37◦C for 18–24 h under anaerobic condition.

Then, single colonies with a hemolytic zone were analyzed

according to the bacterial shape, color, gram staining smears

and growth features as described by previous study (18). The

isolates of C. perfringens were selected from each positive

sample for toxin gene detection, susceptibility test, MLST and

phylogenetic analysis.

DNA extraction

The single purified colonies were inoculated in RCM, sealed

with paraffin, and incubated at 41◦C till D600nm = 0.6∼0.8.

Then DNA was extracted by TIAN amp Bacteria DNA Kit

(TIANGEN, Beijing, China) and stored at−20◦C.
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FIGURE 1

Geographical locations from where samples were collected (Marked as: N).

Detection of C. Perfringens toxin gene by
PCR amplification

Relevant primers were synthesized according to the previous

literature (19, 20). The 16S rRNA gene, common lethal toxin

genes (cpa, cpb, etx, iap, cpe, netB) and beita2 toxin gene (cpb2)

were examined for each C. perfringens isolate using PCR or

multiplex PCR techniques (Table 1). Each PCR amplification

was conducted in a reaction volume of 50 µL, including 1

µL of upstream primer, 1 µL of downstream primer, 25 µL

of 2× Tap-T DNA Polymerase (TIANGEN, Beijing, China),

2 µL of DNA template, and 21 µL of ddH2O. Subsequently,

the PCR products were electrophoresed on a 1.5% agarose gel,

photographed and analyzed by a gel documentation system

(Tanon, Shanghai, China). The products were purified by TIAN

gelMidi Purification Kit (TIANGEN, Beijing, China), sequenced

by Tsingke Biotechnology Co., Ltd. (Chengdu) and further

identified by NCBI website (https://www.ncbi.nlm.nih.gov/).

Finally, each isolate was divided into seven (A∼G) toxin types.

Antimicrobial susceptibility test

The susceptibility of the isolates to 26 antimicrobials was

determined based on the Kirby-Bauer disc diffusion method

suggested by the CLSI (21). Single colonies were inoculated

in RCM with paraffin liquid seal and kept at 41◦C. When

D600nm = 0.6∼0.8, 300 µL of supernatant bacterial solution

was drawn and spread evenly on Mueller-Hinton agar (MHA)

(Hopebio, Qingdao, China), and 26 antibiotic susceptibility

discs (Microbial Reagent, Hangzhou, China) were placed in

the medium (4 discs in each medium), cultured anaerobically

TABLE 1 PCR primer information.

Gene name Primer sequence Fragment

(5′–3′) size(bp)

16S rDNA F AGAGTTTGATCCTGGCTCAG 1465

R GGTTACCTTGTTACGACTT

cpa F GCTAATGTTACTGCCGTTGA 325

R CCTCTGATACATCGTGTAAG

cpb F GCGAATATGCTGAATCATCTA 196

R GCAGGAACATTAGTATATCTTC

etx F GCGGTGATATCCATCTATTC 656

R CCACTTACTTGTCCTACTAAC

iap F ACTACTCTCAGACAAGACAG 443

R CTTTCCTTCTATTACTATACG

cpe F GGAACCCTCAGTAGTTTCAAGT 461

R CTGTAGCAGCAGCTAAATCAAG

netB F GGAAGGCAACTTTAAGTGGAAC 680

R GTTTGTTCCTCGCCATTGAGT

cpb2 F ATGAAAAAAATTATTTCAAAGTTTAC 798

R CTATGCACAATACCCTTCACCAAA

at 41 ◦C for 24 h. The antimicrobials used were all drugs

commonly used in livestock and humans, including penicillin

(10 UI), oxacillin (10 µg), ampicillin (10 µg), cephalexin (30

µg), cefazolin (30 µg), cefotaxime (30 µg), cefuroxime (30

µg), ceftazidime (30 µg), gentamicin (10 µg), kanamycin (30

µg), streptomycin (10 µg), tetracycline (30 µg), doxycycline

(30 µg), minocycline (30 µg) erythromycin (15 µg), madicin

(30 µg), ofloxacin (5 µg), ciprofloxacin (5 µg), bacitracin (10

UI), polymyxin B (300µg), florfenicol (30µg), chloramphenicol
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TABLE 2 Multilocus sequence typing primer information.

Gene name Primer sequence Fragment

(5′–3′) size/bp

plc F ATATGAATGGCAAAGAGGAAAC 544

R AGTTTTTCCATCCTTTGTTTTG

ddlA F ATAATGGGGGATCATCAGTTGC 429

R TTATTCCTGCTGCACTTTTAGG

dut F TTAAGTATTTTGATAACGCAAC 441

R CTGTAGTACCAAATCCACCACG

glpK F TGGGTTGAGCATGATCCAATGG 574

R CACCTTTTGCTCCAAGGTTTGC

gmk F TAAGGGAACTATTTGTAAAGCC 475

R TACTGCATCTTCTACATTATCG

recA F GCTATAGATGTTTTAGTTGAGG 475

R CTCCATATGAGAACCAAGCTCC

sod F GATGCTTTAGAGCCATCAATAG 478

R AATAATAAGCATGTTCCCAAAC

tpiA F AAATGTGAAGTTGTTGTTTGCC 451

R CATTAGCTTGGTCTGAAGTAGC

(30 µg), chloramphenicol (30 µg), sulfamethoxazole (300 µg),

clindamycin (2µg), furazolidone (300µg), vancomycin (30µg).

The types of antibacterial drugs and determination criteria for

drug resistance were shown in Supplementary Table 1. Finally,

the diameter of the inhibition circle was measured, and the

resistance of the isolates was determined according to the

Performance Standards for Antimicrobial Susceptibility Testing

by CLSI and themanufacturer’s instructions (Microbial Reagent,

Hangzhou, China).

Housekeeping gene PCR amplification

According to Jost et al. (22), eight housekeeping genes (plc,

ddlA, dut, glpK, gmk, recA, sod and tpi) of C. perfringens were

selected to amplify the DNA of the isolates by PCR (Table 2).

The PCR products were electrophoresed on a 1.5% agarose gel,

recovered by the TIAN gel Midi Purification Kit. A nucleic

acid protein detector measured the DNA concentration and

purity. The recovered DNA fragments were ligated into the

pMDTM18-T vector overnight at 4◦C using the pMDTM18-T

Vector Kit (TaKaRa, Tokyo, Japan) and transformed into DH5α

competent cells (TaKaRa, Tokyo, Japan) and screened using LB

medium containing Amp+. For the bacterial solution identified

as positive by PCR, the plasmid was extracted following the

instructions of the High Pure Maxi Plasmid Kit (TIANGEN,

Beijing, China) and sequenced by Tsingke Biotechnology Co.,

Ltd. (Chengdu).

Multilocus sequence typing and
phylogenetic analysis

The raw sequencing of 8 housekeeping genes (ddlA,

dut, glpK, gmk, plc, recA, sod, tpiA) of 144 strains of C.

perfringens was proofread spliced and cut. The processed

housekeeping gene sequences were then assigned allele numbers

using BIONUMERICS 8.1 (Applied Maths, Keistraat, Belgium)

software, and sequence type (ST) was given to each strain. The

eight allele numbers of the isolates were formed into profiles,

and the similarity coefficients were calculated by the categorical

method to construct a minimum spanning tree (MST). In

addition, strains with 7 or more identical loci out of 8 loci were

defined as the same Clonal Complex (CC). Similarity coefficients

were calculated by the definite method, and clustering trees were

built by the Unweighted Pair Group Method Arithmetic means

(UPGMA) method for evolutionary genetic analysis. Finally,

the polymorphism of allelic loci of each housekeeping gene

and strains in different regions were quantified using Simpson

Diversity Index (Ds).

Results

Prevalence of C. perfringens

The results showed that 144 samples (19.35%) were positive

for C. perfringens. Different regions’ positive rates of C.

perfringenswere shown in Table 3, including 61 (23.12%, 61/264)

positive samples in Qinghai province and 83 (17.29%, 83/480)

positive samples in Tibet. 144 isolates were totally acquired in all

samples for subsequent experiments.

Toxin gene screening

All isolates (n = 144) belonging to different virulence types

of C perfringens are shown in Table 4. The total 108 (75%,

108/144) isolates were assessed to be positive for C. perfringens

type A, 25 (17.36%, 25/144) were C. perfringens type C, 4 (2.78%,

4/144) were C. perfringens type D, and 7 (4.86%, 7/144) were

C. perfringens type F. In addition, 4 isolates (2.78%, 4/144)

contained the cpb2 toxin gene. The iap and netB genes were not

detected in none of the isolates (Supplementary Table 2).

Antibiotic resistance

The isolated strains in this study displayed broad antibiotic

resistance. The differences in the similarities of antibiotic

resistance of isolates from various regions were observed by the

heat map (Figure 2). The antibiotics with the highest amount

of resistance were streptomycin (93.75%, 135/144), followed
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TABLE 3 Isolation rates of Clostridium perfringens in samples from di�erent regions.

Province Sampling Sampling No. of No. of Separation

time location samples isolates rate

Qinghai 2018.10 Qilian County 18 7 38.89%(7/18)

2018.07 Chengduo County 19 3 15.79%(3/19)

2018.10 Qingshuihe Town 45 9 20%(9/45)

2019.07 Datong County 82 18 21.95%(18/82)

2020.10 Zhiduo County 52 12 23.08%(12/52)

2020.10 Zaduo County 48 12 25%(12/48)

Total 1 264 61 23.12%(61/264)

Tibet 2020.07 Baingoin County 120 22 17.69%(22/120)

2020.09 Lhasa 76 12 15.79%(12/76)

2020.09 Shigatse 20 7 35%(7/20)

2021.05 Nyingchi 60 13 21.67%(13/60)

2021.07 Qusong County 66 10 15.15%(10/66)

2021.07 Sangri County 62 10 16.13%(10/62)

2021.07 Lhari County 76 9 11.76%(9/76)

Total 2 480 83 17.29%(83/480)

Total 3 744 144 19.35%(144/744)

TABLE 4 Distribution of di�erent virulence types of Clostridium

perfringens isolated from Yaks.

Toxino Toxic/virulent No. of positive strains in

types genes different regions (%)

Qinghai Tibet Total

(n = 61) (n = 83) (n = 144)

A cpa 48 (78.69%) 56 (67.47%) 104 (72.22%)

cpa+ cpb2 2 (3.28%) 2 (2.41%) 4 (2.78%)

C cpa+ cpb 5 (8.20%) 20 (24.10%) 25 (17.36%)

D cpa+ etx 4 (6.56%) 0 4 (2.78%)

F cpa+ cpe 2 (3.28%) 5 (6.02%) 7 (4.86%)

by sulfamethoxazole (86.81%, 125/144), kanamycin (81.25%,

117/144), erythromycin (81.25%, 117/144), polymyxin B (75%,

108/ 144), and gentamicin (69.44%, 100/144). The most of

the isolates exhibited susceptivity to vancomycin, minocycline,

cefotaxime, florfenicol, and doxycycline (Figure 3).

There is a difference in the antibiotics against C

perfringens isolates in different regions (Figure 4). Resistance

against aminoglycoside antibiotics (gentamicin, kanamycin,

streptomycin) and sulfonamide antibiotics (sulfamethoxazole)

were more than 65% in both Tibet and Qinghai. Moreover,

the percentage of strains isolates from Tibet displayed the

highest resistance to aminoglycoside streptomycin (96%),

while isolates from Qinghai showed the highest resistance to

sulfamethoxazole antibiotics (98%). Among the macrolide

antibiotics, the resistance against erythromycin was higher

(82% in Qinghai and 81% in Tibet) and lowered against

midecamycin (10% in Qinghai and 14% in Tibet). Besides,

the isolates from Tibet and Qinghai showed low resistance

to β-lactam, tetracycline, chloramphenicol, quinolone and

nitrofuran antibiotics.

The percentage of multidrug-resistant isolates was

98.61% (142/144; Supplementary Table 3). Most C.

perfringens were resistant to four types of antibiotics,

accounting for 29.17% (42/144) of the isolated strains. Of

which 77 isolates (53.47%, 77/144) were resistant to 5–7

antibiotics. Two isolates showed resistance to nine types

of antibiotics.

ST and minimum spanning tree analysis

The polymorphism of gmk gene was the highest (n =

50), and the lowest was the glpK gene (n = 15). The average

number of alleles for all loci was 12.95. According to the

analysis, the allelic genetic diversity of the isolates showed

0.5068 ≤ Ds ≤ 0.9560, and the proportion of polymorphism

for gmk gene was the highest, while tpi gene was the lowest. In

addition, according to the sequence types (STs) of C. perfringens

and eight different housekeeping genes and the allelic profiles

of the corresponding strains, 144 strains of C. perfringens

were classified into 89 STs. Among that the most prolific ST

was ST76 (9.72%, 14/144), followed by ST10 (6.25%, 9/144),

ST3 (3.47%, 5/144), ST33 (2.78%, 4/144) (Table 5). All other
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FIGURE 2

Heat map of antibiotic resistance of 144 Clostridium perfringens isolates from the Qinghai-Tibet Plateau. The di�erent regions are listed on the

left vertical axis and antibiotics (A–Z) are marked on the horizontal axis. Colored scale bars represent the zone of inhibition ranges between 0

and 40mm. (A) Vancomycin; (B) Minocycline; (C) Doxycycline; (D) Ofloxacin; (E) Cefotaxime; (F) Cefazolin; (G) Ampicillin; (H) Cefuroxime; (I)

Chloramphenicol; (J) Ceftazidime; (K) Florfenicol; (L) Penicillin; (M) Cephalexin; (N) Oxacillin; (O) Tetracycline; (P) Ciprofloxacin; (Q) Mideamycin;

(R) Clindamycin; (S) Furazolidone; (T) Bacitracin; (U) Gentamicin; (V) Polymyxin B; (W) Erythromycin; (X) Kanamycin; (Y) Sulfamethoxazole; (Z)

Streptomycin.

STs (ST4, ST8, ST15, ST17, ST25, ST56, ST63, ST81) and

(ST12, ST16, ST22, ST36 ST12, ST16, ST22, ST36, ST38, ST41,

ST45, ST47, ST73, ST80, ST89) contained 3 (2.08%, 3/144)

and 2 (1.39%, 2/144) strains; respectively. The other STs only

contain a single strain (0.69%, 1/144). All ST76 contained

isolates from Tibet (Nyingchi, n = 1; Qusong County, n =

7; Sangri County, n = 6). ST10 contained five strains from

Qinghai Province (Qingshuihe Tow, n = 2; Datong County,

n = 3) and four from Tibet (Lhasa, n = 1; Shigatse, n =

3). All ST3 contains strains from Qilian County, Qinghai

Province. All ST33 contains strains from Zaduo County,

Qinghai Province.

Phylogenetic and genetic diversity
analysis

The minimum spanning tree mainly consisted of 11

clonal complexes (CC1–CC11), accounting for 35.42%

(51/144) of all isolates. As shown in Figures 5A,B,

CC1 contained 3 (2.08%, 3/144) strains (ST13, ST61

and ST79), CC6 contained 13 (9.03%, 13/144) strains

(ST10, ST81 and ST66), and CC10 contained 8 (5.56%,

8/144) strains (ST3, ST34 and ST41). The other CCs

contained only 2 strains (5.56%, 8/144). As per the

differences in alleles, the evolutionary relationship

Frontiers in Veterinary Science 06 frontiersin.org

https://doi.org/10.3389/fvets.2022.1022215
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wu et al. 10.3389/fvets.2022.1022215

FIGURE 3

Drug resistance of 144 yak-derived Clostridium perfringens in Qinghai-Tibet Plateau. The left side is the number of resistant strains of the

corresponding antibiotics; the right side are the Isolates in corresponding antibiotic resistance profiles showing resistance to this antibiotic, the

top is the number of isolates resistant to multiple antibiotics and the bottom is the main yak-derived isolates in antibiotic resistance spectrum.

among CC1, CC2, and CC3 was genetically close, and

CC7, CC8, and CC10 was genetically belonging to the

same clade. However, CC4, CC6, and CC9 were the

furthest.

In general, the isolates of CC were clustered together,

which demonstrated the significant cluster of the tree,

and the same was noticed with the minimum spanning

tree. The phylogenetic tree reflected the differences between

different isolates. As shown in Figure 6, the isolates under

the same clade were from multiple regions. They were

evenly distributed in toxin typing but not related, which

indicated that yak-derived C. perfringens on the Tibetan

plateau had cross-transmission and connection in its genetic

evolution. The evolutionary relationship between ST-50, ST-

54, ST-55, and other STs was the farthest for ST type.

The results in the phylogenetic tree and the minimum

spanning tree were consistent. There is a difference that

the isolates from the same branch were from different

regions, whereas the evolution in some areas (Qusong and

Sangri Counties) was relatively close and clustered to the

same clade.

To better understand the genetic diversity of the isolates,

the Simpson index (Ds) was employed to calculate the genetic

diversity. A total of 114 isolates were divided into 89 STs

with Ds = 0.9754. The genetic diversity of Qinghai and Tibet

was close, 61 isolates in Qinghai were divided into 36 STs

(Ds = 0.9594) and 83 isolates in Tibet were divided into

54 STs (Ds = 0.9551). The highest genetic diversity was

found in Baingoin County (22 isolates were divided into 19

STs, Ds = 0.9421), followed by Nyingchi (13 isolates were

classified into 12 STs, Ds = 0.9112), Datong County (18

isolates were classified into 10 STs, Ds = 0.8765). The least
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FIGURE 4

Resistance of yak-derived Clostridium perfringens to di�erent antibiotics in di�erent regions.

genetic diversity was observed in Qilian County (7 isolates

were divided into 3 STs, Ds = 0.4490), followed by Qusong

County (10 isolates were divided into 4 STs, Ds = 0.4800),

Sangri County (10 isolates were divided into 3 STs, Ds =

0.5400). The remaining areas in order of genetic diversity

richness were Lhari County (Ds = 0.8642), Lhasa (Ds =

0.8611), Zhiduo County (Ds = 0.8611), Zaduo County (Ds

= 0.8056), Shigatse (Ds = 0.7347), and Chengdu County

(Ds = 0.6667), Qingshuihe Tow (Ds = 0.5926). The area

with the highest genetic diversity was Baingoin County (22

isolates were divided into 19 STs, Ds = 0.9421), followed

by Nyingchi (13 isolates into 12 STs, Ds = 0.9112), Datong

County (18 isolates into 10 STs, Ds = 0.8765). The area

with the lowest genetic diversity was Qilian County (7 isolates

were divided into 3 STs, Ds = 0.4490), followed by Qusong

County (10 isolates into 4 STs, Ds = 0.4800), Sangri County

(10 isolates into 3 STs, Ds = 0.5400). The remaining areas

are Lhari County (Ds = 0.8642), Lhasa (Ds = 0.8611),

Zhiduo County (Ds = 0.8611), Zaduo County (Ds = 0.8056),

Shigatse (Ds = 0.7347), Chengduo County (Ds = 0.6667),

Qingshuihe Tow (Ds = 0.5926), in descending order of

genetic diversity.

TABLE 5 Genes, fragment size, number of alleles, average number of

alleles and simpson diversity index (Ds) of yak-derived Clostridium

perfringens strains.

Genes plc ddlA dut glpK gmk recA sod tpi

Fragment size/bp 544 429 441 574 475 475 478 451

Number of alleles 38 43 41 15 50 26 46 16

Average number of

alleles

15.12 15.78 16.89 3.72 23.14 8.21 18.11 2.60

Simpson Diversity

index (Ds)

0.9255 0.9344 0.9338 0.7542 0.9560 0.8867 0.9424 0.5068

Discussion

In this study, the positive rate of C. perfringens was 19.35%

(144/744), which is lower than that of 45% of Tibetan sheep in

Gansu and Qinghai regions of China (23), 65.42% of cattle in

Pakistan (24), 69.7% cattle and 61.5% in Egypt (25), closing to

the cattle (20.8%) and goats (18.3%) in northeast India (26).

Moreover, several studies have shown the varying prevalence

of C. perfringens in chickens, pigs, poultry, buffalo, and sheep
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FIGURE 5

(A) Minimal evolutionary tree generated with di�erent Source characteristics. (B) Minimal evolutionary tree generated with di�erent Toxin types

as features. A circle represents a sequence type, the size of the circle represents the number of strains, the number on the circle represents the

name of the ST type. The di�erent connecting lines between the two circles represent the di�erence between the two ST types, the thick solid

line indicates that there is one locus di�erence between the two ST types, the thin solid line indicates that there are two or three di�erent loci,

the thin dotted line indicates that there are four di�erent loci, and the remaining lines indicates more than four di�erent loci. Strains in the same

shade represent the same Clonal complex (CC).

(27, 28). Although C. perfringens mainly colonize the intestine,

its positive rate is subject to the living environment of the host

animal. In the current study, the positive rate of C. perfringens

from yak was lower than that of animals from other regions. The

reason may be the long been living on the Tibetan plateau with

high altitude, low temperature, low humidity, strong UV light,

few airborne particulates and bacterial vectors, that prohibit

bacteria from reproduction and transmission (29). This is in line

with the microbial diversity and physicochemical characteristics

of soil at high altitudes, where gram negative bacteria proliferate

more as compare to gram positive bacteria (30).

In this study, genotyping results showed that the isolated

sample were identified as C. perfringens types A, C, D and F,

which suggesting the genotypic diversity of yak C. perfringens.

The cpa, cpb, etx, cpe and cpb2 toxin genes were observed

from yak feces, while iap and netB genes were not detected in

samples. A number of researches showed that C. perfringens type

A is a major category associated with food poisoning (31, 32).

Consistent with previous reports, 108 (75%, 108/144) isolated

strains were identified as C. perfringens type A with a relatively

high positive rate, indicating that C. perfringens type A come

as a potential source of infection for humans and animals. C.

perfringens type C contained cpa and cpb toxin genes, of which

cpb is the key pathogenic factor for this bacterium with cytotoxic

and lethal activity (33). A total of 25 (17.36%, 25/144) isolates

were identified as C. perfringens type C, which often causes

diarrhea, necrotizing enterocolitis, enterotoxemic and sudden

death in yaks. In addition, the study detected C. perfringens

types D and F for the first time in the yak fecal samples. A

total of 4 (2.78%) of C. perfringens isolates were type D, with

cpa and etx toxins. It is reported that C. perfringens type D can

cause enterotoxemic in cattle, sheep, and goats, which may cause

sudden death in sheep and goats (34). Previous studies indicated

that the Enterotoxin gene (cpe) is related to intestinal diseases and

food poisoning (35). We found that 7 isolates of C. perfringens

type F carries the cpe gene, rating 4.86%, which is in line with

the previous study (36). It was worth noting that 2.78% (n =

4, 4/144) of the isolates were positive for cpb2 toxin gene in C.

perfringens type A. The Beta-2 toxin was encoded by the cpb2

gene, which is associated with gastrointestinal disease in humans

and animals (37) and has been found in many animal species

such as neonatal calves (38), chickens (39), and piglets (40).

Infectious diseases are important due to their production

losses in animals which is a major economic issue (41).

In recent years, the misuse of antibiotics may increase gut

microbial resistance, especially in some zoonotic pathogens.

Numerous studies showed that multi-resistant C. perfringens

exist in various animals and animal foods, posing a significant

concern to public health (42). In this study, we found

that the isolates from yak were extensively resistant to

26 antibiotics in Qinghai-Tibet Plateau. The resistance rate

of the isolates were as follows: streptomycin (93.75%),

sulfamethoxazole (86.81%), kanamycin (81.25%), erythromycin

(81.25%), polymyxin B (75%), and gentamicin (69.44%) with

susceptibly to vancomycin, minocycline, cefotaxime, florfenicol,

and doxycycline. In addition, the isolates showed high multi-

resistance rate (98.61%), and 53.47% of the isolates were

resistant to at least 5 classes antibiotics. This phenomenon

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2022.1022215
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wu et al. 10.3389/fvets.2022.1022215

FIGURE 6

Phylogenetic tree and allelic profiles of 144 yak-derived Clostridium perfringens sequence types (STs).
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might be due to the antimicrobial resistance of strain from

environment. It has been proved that the resistance of C.

perfringens to macrolides, and the variability in the resistance

of different macrolides is primarily due to different resistance

mechanisms (43). The related study had shown that Clostridium

can carry tetracycline resistance genes encoding ribosomes

that protect cytoplasmic proteins (44), while bacitracin can

effectively treat necrotizing enteritis and reduce morbidity

and mortality (45). Moreover, antibiotics of β-lactam have

been proven to be effective against C. perfringens (46). In

the present study, most of the isolates were susceptible to β-

lactam, tetracycline, chloramphenicol, quinolone and nitrofuran

antibiotics. The misuse of antibiotics may be a predominant

cause of the increase in multidrug resistance to antibiotics

(47). Hence, considering the rising rate of antimicrobial

resistance, it is necessary to constantlymonitor the antimicrobial

susceptibility of C. perfringens from yaks to reduce the

trend of resistance for effective prevention and treatment of

relevant diseases.

MLST is usually used for classifying population diversity and

comparing the genetic evolution of C. perfringens in animals,

environment and humans. This research examined 15–50

(average 12.95) loci alleles 0.89 STs and 11 CCs were recognized

among C. perfringens strains. In comparison, Liu et al. (48)

examined an average of 13.5 alleles and 41 STs and 4 CCs

C perfringens strains from animal and the environment. It is

identified that an average of 5.9 alleles, 22 STs and 6 CCs among

61 isolates from necrotic enteritis (NE) and healthy chickens

(49). Previous study (50) analyzed 139 isolates from poultry

affected by NE, and identified an average of 12.2 alleles, 41 STs

and 6 CCs. Xu et al. (41) analyzed 39 isolates from retail chicken

products and diseased chickens and identified an average of

12.13 alleles, 29 STs and 3 CCs. In another study (51), 110

isolates were analyzed and identified an average of 16.25 alleles,

74 STs and 7 CCs. In this study, the average number of alleles is

not the highest as compared to the previous studies. According

to the results, the STs cluster showed the highest number, as

determined by the Simpson diversity index i.e., 0.9754 (0.9594

in Qinghai Province and 0.9551 in Tibet), which indicates the

considerable genetic diversity of yak-derived C. perfringens.

In addition, among all STs, ST76 (9.72%, 14/144) had the

largest number of isolates, which were all from Tibet, Qusong

and Sangri Counties. This may due to the close geographical

location, that led to cross-transmission. The CCs with the

highest number of strains were CC6, which contains three STs

(ST10, ST81 and ST66) with 13 strains (9.03%, 13/144). The

strains CC6 was mainly fromQingshuihe Town, Datong County

of Qinghai Province and Lhasa, Shigatse, and Sangri County

of Tibet, which are widely distributed geographically and the

main population area in the Qinghai-Tibet Plateau. Moreover,

some strains of CCs were not clustered and were found only

in one region, such as CC4 strains in Zaduo County, CC7

strains in Datong County, CC9 strains in Lhasa and CC11 strains

in Zhiduo. These strains represent the dominant populations

in region. In addition, according to the genetic relationship

of the isolates, the isolates came from different regions under

the same clade and were evenly distributed in all toxin types

without specific relatedness. The above results indicated that

there is cross-transmission of C. perfringens from Qinghai-

Tibetan Plateau, having some link in genetic evolution. In the

future, more methods can be adopted to verify this conclusion

to find correlations between phylogenetic and biological traits of

yak-derived C. perfringens.

Conclusion

In summary, this is the first study that reported the

prevalence, characterization of antimicrobial resistance and

genetic diversity of yak C. perfringens in the Qinghai-Tibet

plateau, China. This research showed a relatively high positive

rate of C. perfringens with broad-spectrum antimicrobial

resistance. Genotyping results indicated the presence of

different type of C. perfringens (types A, C, D, and F),

suggesting considerable genetic diversity. Moreover, MLST

indicated the cross-transmission among different regions and

found evenly distributed toxins without specific relatedness.

This demonstrated that antimicrobial-resistance strains of yak

origin pose a potential risk toward public health. Therefore,

it is necessary to constantly monitor the antimicrobial

susceptibility of C. perfringens from yaks to reduce and identify

the trend of resistance for effective strategies to prevent

such issues.
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