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The oviduct consists of three parts: the infundibulum (In), ampulla (Am),

and isthmus (Is). These have the same histological structure, but di�erent

physiological functions. In this study, transcriptomics was used to analyze

mRNA in these three parts of yak oviduct. The results showed that there were

325 up-regulated genes and 282 down-regulated genes in the infundibulum

and ampulla. Moreover, there were 234 up-regulated genes and 776

down-regulated genes in the isthmus and ampulla, as well as 873 up-

regulated genes and 297 down-regulated genes in the infundibulum and

isthmus. The expression of C3 in the infundibulum was significantly higher

than that in the ampulla and isthmus. The expression of FAU in the isthmus

was significantly lower than that in the ampulla and infundibulum, and the

expression of EEF1A1 in the ampulla was significantly higher than that in

the ampulla and infundibulum. When the infundibulum was compared with

the ampulla and isthmus, it was found that the up-regulated genes were

enriched in the lysosome, phagosome, staphylococcus aureus infection, and

leishmaniasis pathway. When the isthmus was compared with the ampulla

and infundibulum, the up-regulated genes were present in the apoptosis

pathway, oxidative phosphorylation, and viral myocarditis pathway. When

the isthmus was compared with the infundibulum and ampulla, the down-

regulated pathways were protein processing in the endoplasmic reticulum and

the endocytosis. The Epstein–Barr virus infection pathway was up-regulated

according to a comparison of the isthmus and infundibulum and was down-

regulated based on a comparison of the isthmus and ampulla. Transcriptional

misregulation in the Middle East pathway was up-regulated based on a

comparison of the isthmus and ampulla and was down-regulated based on

a comparison of the isthmus and infundibulum. ERBB2, JUP, CTNND1, and

KRT7 were defined as the hub genes of the yak oviduct. The results of this

study provide su�cient omics data for yak fertilization, which is also of great

significance to altitude medicine.
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Introduction

The oviduct is a pair of thin, curved muscular tubes

comprising smooth muscle. It is the primary location where

oocytes and spermmeet. The oviduct is composed of three parts:

the infundibulum, ampulla, and isthmus. These have similar

histological structures, but different physiological functions

in vivo. The expression of oviduct-specific mRNAs varies in

different regions (1); VEGF, FGF1, FGF2, and their receptors

are expressed in all three parts of the equine oviduct (2).

Hormones also have important effects on oviduct movement,

particularly in the follicular phase; OTR and oxytocin exhibit

significant stimulatory effects on cow oviduct movement (3).

There have been many studies on the oviduct; however, research

on different parts of the oviduct in yaks remains unexplored.

As such, our study is the first to analyze mRNA in different

parts of the yak oviduct using transcriptomic analysis. This

study provides an opportunity to discuss the physiological

functions of different parts of the oviduct from the perspective

of mRNA.

Oviduct epithelial cells are composed of ciliated and

secretory cells; the ratio of ciliated to secretory cells is different

in the three distinct parts of the oviduct (4). Epithelial cells

can change periodically upon regulation by estradiol and

progesterone (5, 6); estradiol can regulate the expressions of

SBD-1 (7), S100A8 (8), prostaglandin E2 (PGE2), prostaglandin

F2α (PGF2α) (9), and the melatonin receptors MT1 and MT2

(10) in oviduct epithelial cells. The innermost layer of the

oviduct is made up of epithelial cells, and the middle layer is

muscle. The thickness of the muscular layer is different in the

three parts of the oviduct. The muscular layer is thickest in the

isthmus, particularly during estrus, and the contraction of the

muscular layer makes the oviduct lumen significantly smaller

(11). The muscular layer plays an important role in oviduct

peristalsis; it can extend peristalsis from the infundibulum to

the isthmus and vice versa. Most importantly, the oviduct

isthmus is curved and folded which could provide a location

for sperm storage, and its epithelial cells contribute to sperm

motility (12, 13). The apex of the isthmus cilia and the sperm

flagellum initiate special activity reactions to regulate sperm

motility (14).

At present, there are many studies on the oviduct, sperm,

oocytes, and zygotes, including the regulation of bovine oviduct

epithelial cells by E2 (15), and the regulation of porcine oviduct

by hCG and eCG (16). However, studies on the three parts

of the oviduct itself are lacking. In this study, transcriptomics

was used to explore the hub genes and key pathways, which

regulate different physiological functions of the oviduct, from

the perspective of mRNA. This study presents sufficient omics

data for the analysis of mRNA in yak oviducts, providing

new views on the study of the fertilization mechanism in

plateau animals.

Materials and methods

Animal materials

All experiments were approved by the Animal Ethics

Committee of Gansu Agricultural University. Clinically

healthy adult yaks were selected from the grasslands of

Xining, China, at an altitude of 3,800m; the yaks were

euthanized by administering pentobarbital sodium (200

mg/kg) via intravenous injection. One oviduct was collected

from each yak and two adult female yaks were selected

for single-cell experiments. The oviduct tissue was washed

with sterile saline, placed in a tissue-protection fluid,

and transported to the laboratory for subsequent RNA

sequencing. The oviduct tissue was cut into 1 mm3 cubes

and digested with collagenase (GIBCO) and trypsin (GIBCO)

for 25min (containing 2 mmol EDTA). Digestion was

then stopped and the oviduct tissue was filtered. Cells

were washed twice with 10% BSA to obtain a single-

cell suspension and RNA sequencing was performed on

a Chromium.

Identification of di�erentially expressed
genes

We integrated RNA sequencing data and compiled a

gene expression matrix for each of the three parts of the

oviduct. The mRNA of the infundibulum (In), ampulla (Am),

and isthmus (Is) were compared to explore the potential

differentially expressed genes (DEGs). Furthermore, the up-

regulated DEGs and down-regulated DEGs were distinguished.

To demonstrate the good repeatability and usability of the data,

the DEGs were visualized as volcano plots and heatmaps by

using the R package, which were drawn for the infundibulum

and ampulla group, the isthmus and ampulla group, and

the infundibulum and isthmus group. |Log2FC| > 2 and an

FDR significance score of <0.05 were used for the DEGs and

subsequent analysis.

GO-KEGG enrichment analysis

In order to show the physiological pathways of up-

regulated and down-regulated DEGs, we enriched the biological

functions. GO and KEGG are databases mainly for gene function

and enrichment, respectively. GO analysis covers molecular

function (MF), biological process (BP), and cellular component

(CC). KEGG focuses on the pathway. DEGs were mapped

to the KEGG database (Kyoto Encyclopedia of Genes and

Genomes) for Bos mutus (wild yak, database ID: T02919

at https://www.genome.jp) (17). The enrichment of DEGs
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FIGURE 1

Flow chart for this study.

was performed using GO-KEGG analyses with a value of

P < 0.05.

PPI network and hub genes analysis

To illustrate the protein-protein interaction, we used a

string database (https://string-db.org/) to retrieve the potential

interaction of the encoded protein and built the protein-

protein interaction network. In the regulatory network, nodes

represent proteins, and the node labels were the names of

these proteins. The pattern in the node represents the three-

dimensional structure of the protein, which is unknown if

empty. Protein-protein interaction networks helped us to

understand the interactions between proteins, explore the hub

genes of regulatory networks, and identify the physiological

function. Using the cytoHubba plugin in Cytoscape 3.7.1, we

screened the top 10 hub genes and ranked them based on

the scores.

Results

Identification of DEGs

Figure 1 shows a flow chart of the entire experimental

process. The three parts of the oviduct were compared.

It was found that there were 325 up-regulated genes and

282 down-regulated genes based on a comparison of the

infundibulum and ampulla (Figure 2A). There were 234 up-

regulated genes and 776 down-regulated genes according to a

comparison of the isthmus and ampulla (Figure 2B), and 873

up-regulated genes and 297 down-regulated genes based on a

comparison of the infundibulum and isthmus (Figure 2C).

We compared the infundibulum with the ampulla

and constructed volcano plots (Figure 3A) and heat maps

(Figure 3B). After comparison, it was found that C3, CD74,

HLA-DRA, and CFD were the up-regulated genes exhibiting

significant differences, and EEF1A1 was the down-regulated

gene displaying significant differences. The isthmus was

compared with the ampulla, and the volcano plot (Figure 3C)

and heat map (Figure 3D) were drawn. FAU was the up-

regulated gene presenting significant differences, while EEF1A1,

AZGP1, and PRELP were the down-regulated genes showing

significant differences. The infundibulum was compared

with the isthmus, the results are shown in the volcano plot

(Figure 3E) and heatmap (Figure 3F). RARRES1, C3, MFAP5

HSPA8, DNAJB1, and NR4A1 were the up-regulated genes

displaying significant differences. FAU was a significantly

different down-regulated gene.

Based on the above results, C3 was an up-regulated gene

exhibiting significant differences when the infundibulum was

compared with the ampulla and isthmus. FAU was a down-

regulated gene presenting significant differences when the

isthmus was compared with the ampulla and infundibulum.
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FIGURE 2

The number of DEGs determined by transcriptome analysis. (A) Number of DEGs between the infundibulum and ampulla. (B) Number of DEGs

between the isthmus and ampulla. (C) Number of DEGs between the infundibulum and isthmus.

Enrichment of DEGs

Up-regulated DEGs were obtained by functional enrichment

analysis after comparison of the infundibulum and ampulla.

The biological processes included the cellular process,

biological regulation, metabolic process, regulation of

the biological process, response to stimulus, localization,

cellular component organization or biogenesis, multicellular

organismal process, positive regulation of the biological process,

signaling, developmental process, negative regulation of the

biological process, and the immune system process. The cellular

components were mainly rich in cells, cell component, organelle,

membrane, membrane component, organelle component,

protein-containing complex, and membrane-enclosed lumen.

The molecular functions were binding, catalytic activity, and the

molecular function regulator (Figure 4A). These up-regulated

differential genes reflected the lysosome pathway, phagosome

pathway, staphylococcus aureus infection pathway, fc gamma

R-mediated phagocytosis pathway, leishmaniasis pathway,

tuberculosis pathway, and the hematopoietic cell lineage

pathway (Figure 4B).

Down-regulated DEGs were obtained after comparison

of the infundibulum and ampulla, with biological processes

covering the cellular process, biological regulation, regulation

of the biological process, metabolic process, response to

stimulus, positive regulation of the biological process, cellular

component organization or biogenesis, negative regulation

of the biological process, signaling, localization, multicellular

organismal process, and the developmental process. The

cellular component covered the cell, cell component, organelle,

organelle component, membrane, membrane-enclosed lumen,

protein-containing complex, and the membrane component.

The molecular functions were binding, catalytic activity,

transcription regulator activity, and the molecular function

regulator (Figure 4C). These down-regulated DEGs included the

estrogen signaling pathway, hepatitis B, viral carcinogenesis,

parathyroid hormone synthesis, and the secretion and action

pathway (Figure 4D).

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.1016191
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhang et al. 10.3389/fvets.2022.1016191

FIGURE 3

Volcano plots and heatmaps in the yak oviduct. (A) Volcano plot of the infundibulum and ampulla. (B) Heatmap of the infundibulum and

ampulla. (C) Volcano plot of the isthmus and ampulla. (D) Heatmap of the isthmus and ampulla. (E) Volcano plot of the infundibulum and

isthmus. (F) Heatmap of the infundibulum and isthmus.

We compared the isthmus with the ampulla, the up-

regulated DEGs were obtained. GO-KEGG analysis was

then performed on up-regulated DEGs. The biological

processes covered the cellular process, biological regulation,

metabolic process, regulation of the biological process, response

to stimulus, positive regulation of the biological process,

localization, cellular component organization or biogenesis,

negative regulation of the biological process, signaling,

multicellular organismal process, immune system process,

and the developmental process. The cellular components

were the cell, cell component, organelle, membrane, protein-

containing complex, organelle component, membrane

component, and membrane-enclosed lumen. The molecular

function included binding, catalytic activity, and the molecular

function regulator (Figure 5A). These up-regulated DEGs

included staphylococcus aureus infection, rheumatoid arthritis,

transcriptional misregulation in cancers, complement and

coagulation cascades, oxidative phosphorylation, pancreatic

cancer, viral myocarditis, and the apoptosis pathway (Figure 5B).

We obtained down-regulated DEGs after comparison of

the isthmus and ampulla. The biological processes included

the cellular process, metabolic process, biological regulation,

regulation of the biological process, response to stimulus,

cellular component organization or biogenesis, negative

regulation of the biological process, positive regulation of

the biological process, localization, multicellular organismal

process, developmental process, and signaling. The cellular

components included the cell, cell component, organelle,
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FIGURE 4

Function of enrichment in the infundibulum and ampulla. (A) GO analysis of the up-regulated DEGs. (B) Pathways analysis of the up-regulated

DEGs. (C) GO analysis of the down-regulated DEGs. (D) Pathways analysis of the down-regulated DEGs.

organelle component, membrane-enclosed lumen, protein-

containing complex, membrane, and themembrane component.

The molecular functions were mainly binding, catalytic activity,

transcription regulator activity, and the molecular function

regulator (Figure 5C). These down-regulated DEGs included

protein processing in the endoplasmic reticulum, endocytosis,

platinum drug resistance, adherens junction, Epstein–

Barr virus infection, hedgehog signaling pathway, and the

signaling pathways regulating the pluripotency of stem cells

(Figure 5D).

We compared the infundibulum and isthmus, and the

up-regulated DEGs were obtained. The biological processes

covered the cellular process, metabolic process, biological

regulation, regulation of the biological process, response to

stimulus, cellular component organization or biogenesis,

localization, positive regulation of the biological process,

multicellular organismal process, negative regulation of the

biological process, developmental process, and signaling. The

cellular components were the cell, cell component, organelle,

organelle component, membrane, protein-containing complex,

membrane-enclosed lumen, and themembrane component. The

molecular function was mainly enriched in binding, catalytic

activity, molecular function regulator, and transcription

regulator activity (Figure 6A). These up-regulated DEGs

included the lysosome, phagosome, staphylococcus aureus

infection, leishmaniasis, protein processing in endoplasmic

reticulum, transcriptional misregulation in cancers, th17

cell differentiation, endocytosis, antigen processing and

presentation, tuberculosis, and the influenza A pathway

(Figure 6B).

The down-regulated DEGs were obtained by comparing

the infundibulum with the isthmus, and subsequently, GO-

KEGG analysis was performed on these genes. The biological

processes were closely related to the cellular process, metabolic
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FIGURE 5

Function of enrichment in the isthmus and ampulla. (A) GO functional enrichment of the up-regulated DEGs. (B) Pathways enrichment of the

up-regulated DEGs. (C) GO functional enrichment of the down-regulated DEGs. (D) Pathways enrichment of the down-regulated DEGs.

process, biological regulation, regulation of the biological

process, response to stimulus, positive regulation of the

biological process, negative regulation of the biological process,

cellular component organization or biogenesis, signaling,

localization, multicellular organismal process, developmental

process, immune system process, multi-organism process,

and cell proliferation. The cellular components covered the

cell, cell component, organelle, organelle component, protein-

containing complex, membrane, membrane-enclosed lumen,

and the membrane component. The molecular functions

were mainly enriched in binding, catalytic activity, molecular

function regulator, transcription regulator activity, structural

molecule activity, transporter activity, and the molecular

transducer activity (Figure 6C). These down-regulated DEGs

were closely related to non-alcoholic fatty liver disease

(NAFLD), apoptosis, oxidative phosphorylation, natural

killer cell-mediated cytotoxicity, human cytomegalovirus

infection, Epstein–Barr virus infection, Huntington’s

disease, TNF signaling pathway, Chagas disease (American

trypanosomiasis), aldosterone synthesis and secretion, and viral

myocarditis (Figure 6D).

Analysis of PPI regulation

When the infundibulum was compared with the ampulla

(Figure 7A), C3, CD74, RGS10, C1QB, C1QA, C1QC, CST3,

AIF1, TIMD4, GM2A, TYROBP, XDH, and so on, were the

up-regulated DEGs, while CLEC3B, ENAH, WFDC2, MYBL1,

ENKUR, RIBC2, AQP5, AQP9, RSAD2, and IFIT3 were the

down-regulated DEGs. AIF1 regulated MRC1, CTSS, TREM2,

IL18, PLD4, C1QB, TYROBP, and C1QA. APOE regulated

MSR1, MRC1, CLEC3B, TREM2, PLTP, CLDN1, CLEC7A, and

C1QA. C1QA regulated C3, MRC1, CTSS, FGL2, TREM2,
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FIGURE 6

Function of enrichment in the infundibulum and isthmus. (A) GO enrichment of the up-regulated DEGs. (B) Biological pathways of the

up-regulated DEGs. (C) GO enrichment of the down-regulated DEGs. (D) Biological pathways enrichment of the down-regulated DEGs.

SPI1, CD74, C1QB, CFD, TYROBP, and C1QC. CD74 regulated

CD74, ZEB2, CTSS, SPI1, TYROBP, and CTSC. C3 regulated

CST3, SCIN, and CFD.

When the isthmus was compared with the ampulla

(Figure 7B), AEBP1, WFDC2, CSRP2, ANK3, WDFY3, RNPC3,

MFAP5, PRPF40B, RIMKL, and so on, were the down-regulated

DEGs. C1QB, C1QC, C1QA, CFD, ITGB7, and SNAI1 were

the up-regulatedDEGs. ARHGAP5 regulated RHOC, CTNND1,

and CDC42BPA. C1QA regulated WDFY3, C1QB, CFD,

and C1QC. CTNND1 regulated RHOC, FGFR2, RAB11FIP2,

MYO6, OGT, DSP, ENAH, JUP, and ERBB2. ERBB2 regulated

RHOC, MAPK15, FGFR2, ITGB7, KRT18, PTPN13, SNAI1,

KRT7, and JUP. ITGB7 regulated RHOC, ITGB7, PDLIM4,

ITGB7, and JUP.

When the infundibulum was compared with the isthmus

(Figure 7C), SMARCA1, ARHGAP29, BAZ2B, FNBP1L,

IFNGR2, IFNGR1, FCHO2, PTPN13, TIAM1, and so on, were

the up-regulated DEGs. TNFRSF9, LGALS1, EMP3, CDKN1A,

and VIM were the down-regulated DEGs. APLP2 regulated

CD74, S100B, CST3, and PLTP. ALCAM regulated APLP2,

ROCK2, and S100B. CTNND1 regulated RAB11FIP2, DSP,

LIMA1, JUP, and ERBB2. ERBB2 regulated ROCK2, TNFRSF9,

ITSN1, KRT18, PTPN13, KRT7, IL6R, and JUP. DSP regulated

TLN2, KRT18, and KRT7. JUP regulated LIMA1 and NECTIN2.

IFNGR1 regulated NCF4 and IFNGR2.

Identification of hub genes

The infundibulum and ampulla were compared to

identify the top 10 hub genes in the regulatory network

(Figure 8A), and the rank was as follows: C1QA, C1QB,

C1QC, TYROBP, CTSS, SPI1, TREM2, AIF1, CD74, and

FGL2 (Figure 8B). The isthmus and ampulla were compared

to determine the hub genes in the regulatory network

(Figure 8C), and the rank was as follows: ERBB2, RHOC,
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FIGURE 7

Analysis of the regulatory network. (A) Regulatory network in the infundibulum and ampulla group. (B) Regulatory network in the isthmus and

ampulla group. (C) Regulatory network in the infundibulum and isthmus group.

JUP, CTNND1, MYO6, ITGB7, EPCAM, KRT7, KRT18, and

PTPN13 (Figure 8D). The hub genes were screened in the

regulatory network by comparing the infundibulum and

isthmus (Figure 8E), and the rank was as follows: ERBB2,

CTNND1, JUP, PTPN13, DSP, ITSN1, APLP2, KRT7, KRT18,

and TIAM1 (Figure 8F).

Discussion

The oviduct is an important site for fertilization in yaks

and previous studies focused on its morphology (18), POxia-

inducible factor-1 alpha (19), ERK1/2 (20), estrogen receptor

genes (21), follicle-stimulating hormone receptor (FSHR) gene

(22), DNA damage induced transcript 3 (23), and apoptosis-

related genes in the yak oviduct (24). There are currently no

transcriptomic studies on the different parts of the yak oviduct,

and there is a lack of research on the fertilization mechanism

from the perspective of mRNA. Therefore, transcriptomic

studies on the infundibulum, ampulla, and isthmus were

completed to explore the hub genes and pathways in

yak oviducts.

The infundibulum, ampulla, and isthmus have similar

histological structures, but their physiological functions are

quite different. C3 was an up-regulated gene that was more

significantly expressed in the infundibulum than in the ampulla

and isthmus. C3 was also highly expressed before sperm

or embryo implantation (25), which may be related to the

regulation of E2 before embryo implantation (26). In human

oviduct epithelial cell cultures, the oviduct epithelial cells

produced C3, and C3 immunoreactivity was present (27), and

in this study, the most obvious high expression was that

of C3 in the infundibulum region. It was speculated that

C3 immunoreactivity in the infundibulum component of the
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FIGURE 8

Hub genes in the yak oviduct. (A) Hub genes of the infundibulum and ampulla. (B) The rank of hub genes between the infundibulum and

ampulla. (C) Hub genes of the isthmus and ampulla. (D) The rank of hub genes between the isthmus and ampulla. (E) Hub genes of the

infundibulum and isthmus. (F) The rank of hub genes between the infundibulum and isthmus.

oviduct may be the most significant. The NR4A1 gene could be

a molecular marker linked to increased litter sizes in pigs (28).

In this study, NR4A1 was significantly down-regulated in the

infundibulum region compared with the ampulla region. In the

study of yak productivity, whether the NR4A1 gene can be used

as a marker gene for productivity improvement requires further

investigation. HSPA8 was an active component in the oviduct

of ewes (29) and could interact with gametes (30). HSPA8

regulated polyspermy modulation and embryonic development

(31), and after spermatozoa-oviduct co-culture, the expressions

of ADM, HSPA8, and PGES decreased significantly in oviductal

epithelial cells (32). These results suggest that HSPA8 was useful

in aiding the survival of sperm in the oviduct (33); the addition

of HSPA8 could prolong the in vitro storage of ram sperm (34).

In this study, HSPA8 was significantly higher in the isthmus

than in the infundibulum, suggesting that it was related to

sperm storage and movement in the isthmus, consistent with

previous findings.

Mitochondrial oxidative phosphorylation plays an

important role in the migration of sperm from the uterus

to the oviduct (35). In this study, the isthmus exhibited

higher expressions than the other two sites; the isthmus is

the location where sperm transport and storage occur. It

was inferred that the isthmus of yaks is also important for

sperm transport, similar to other animals. Female parent-

bound embryo development occurs by inducing apoptosis

of oviductal cells (36), and a growth hormone regulates

the apoptosis of oviduct cells and the expression of certain

oviduct-specific proteins (37). Moreover, ceramide induces

apoptosis in oviduct-derived primary cells via a caspase-3–

and bcl-2–dependent pathway (38). Apoptosis is particularly

important in the study of the yak oviduct; therefore, the
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specific mechanism of apoptosis requires further study. In

the examination of hub genes, ERBB2, JUP, CTNND1, and

KRT7 were regarded as hub regulatory genes. MUC4/SMC

and ErbB2 were associated with different tissues of the female

reproductive tract. Interestingly, phosphorylated ErbB2 was

mainly present on the apical surface of the oviduct (39). KRT7

played an important role in the differentiation of oviduct

cells (40), and the specific differentiation mechanism requires

further study.

In summary, this study is the first time to analyze

hub genes and key pathways in three parts of the oviduct

using transcriptomics methods. We also analyzed the

regulatory network in the oviduct from the perspective

of mRNA. This work provides a new view on the study

of plateau animals, and a new method for the study of

fertilization mechanisms.
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