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ITRAQ-based quantitative
proteomics analysis of forest
musk deer with pneumonia

Jie Tang*, Lijuan Suo, Feiran Li, Chao Yang, Kun Bian and

Yan Wang

Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an, China

Pneumonia can seriously threaten the life of forest musk deer (FMD, an

endangered species). To gain a comprehensive understanding of pneumonia

pathogenesis in FMD, iTRAQ-based proteomics analysis was performed in

diseased (Pne group) lung tissues of FMD that died of pneumonia and

normal lung tissues (Ctrl group) of FMD that died from fighting against

each other. Results showed that 355 proteins were di�erentially expressed

(fold change ≥ 1.2 and adjusted P-value< 0.05) in Pne vs. Ctrl. GO/KEGG

annotation and enrichment analyses showed that dysregulated proteins might

play vital roles in bacterial infection and immunity. Given the close association

between bacterial infection and pneumonia, 32 dysregulated proteins related

to Staphylococcus aureus infection, bacterial invasion of epithelial cells, and

pathogenic Escherichia coli infection were screened out. Among these 32

proteins, 13 proteins were mapped to the bovine genome. Given the close

phylogenetic relationships of FMD and bovine, the protein-protein interaction

networks of the above-mentioned 13 proteins were constructed by the String

database. Based on the node degree analysis, 5 potential key proteins related to

pneumonia-related bacterial infection in FMD were filtered out. Moreover, 85

dysregulated proteins related to the immune system process were identified

given the tight connection between immune dysregulation and pneumonia

pathogenesis. Additionally, 12 proteins that might function as crucial players

in pneumonia-related immune response in FMD were screened out using

the same experimental strategies described above. In conclusion, some vital

proteins, biological processes, and pathways in pneumonia development were

identified in FMD.
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Introduction

Forest musk deer (FMD,Moschus berezovskii) is a type of mammal that mainly lives

in the alpine forests in China and Vietnam (1, 2). The populations of FMD are sharply

declined since the 1950s due to habitat destruction/degradation and massive hunting

for their musk (Moschus) (3, 4). Musk is the dried secretion from the musk sac gland

of male musk deer, such as Moschus berezovskii Flerov, Moschus moschiferus Linnaeus,

and Moschus sifanicus Przewalski (5, 6). Musk is a superior component in perfume and
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is believed to have potential therapeutic values for multiple

diseases such as cancers, strokes, and heart diseases in the

traditional Asian medicine industry (6, 7). This species has been

listed in the First-Class National Protected Animal List of China

and is protected under the Chinese Wild Animal Protection

Law (4, 8). Moreover, FMD is the major species of musk deer

that can be reared artificially in special farms under the support

of the Chinese government, which contributes to the growth

of the population, reduction of poaching behaviors, and better

utilization of FMD resources (9, 10).

The increase in the population of FMD is also limited

by some fatal diseases including pneumonia (11–13).

Pneumonia can be caused by multiple pathogens including

bacteria (14–16). However, previous research on pneumonia

mainly focused on the isolation, identification, and genome

analysis of pathogens in FMD (12, 17, 18). To reduce

the risk and harm of pneumonia for the health and life

of FMD, it is imperative to have an in-depth insight

into the molecular mechanisms underlying pneumonia

development and identify key molecules or pathways related to

pneumonia pathogenesis.

Recently, mass spectrometry (MS)-based proteomics has

attracted much attention from researchers because proteins

are responsible for most biological functions and proteomics

can simultaneously capture and quantify thousands of proteins

rather than RNAs in a cost-effective manner (19, 20). Isobaric

tag for relative and absolute quantification (iTRAQ), an

isotope labeling strategy, has been widely used in proteomics

studies needing relative quantification due to the multiple

advantages such as multiplexing capacity, reproducibility, easy

operation, and flexibility (21–23). The combination of iTRAQ

and MS-based proteomics technologies and bioinformatics

analytical methods have emerged as a powerful strategy for

identifying vital proteins related to disease pathogenesis,

comprehensively understanding protein roles and basic

biological functions, and deciphering complicated molecular

mechanisms underlying disease development in multiple

animals (24–26).

However, to our knowledge, there is no proteomics data

to explore the pathogenesis of pneumonia in FMD to date.

To build up a general and comprehensive understanding

of pneumonia pathogenesis, the iTRAQ-based LC-MS/MS

technique was used to explore the proteomics alterations

in diseased lung tissues of FMD that died of pneumonia

than in normal lung tissues of FMD died from fighting

against each other. Moreover, some genes/proteins, biological

processes, and signaling pathways that might play vital

roles in pneumonia progression were screened out based on

differential expression, annotation, enrichment, and protein-

protein interaction analysis.

Materials and methods

Animal samples

Forest musk deer are reared in the Shaanxi Institute of

Zoology (China). The Animal breeding area (34.210832◦N,

106.902117◦E) is located in Fengxian, Southwest of BaoJi City,

Shaanxi Province, China, a region of Qinling mountain at an

altitude of 1,500m. Diseased lung tissues were obtained from

3 adult FMD (2♂1♀, 4.5 years old) that died of pneumonia.

Normal lung tissues were obtained from 3 adult FMD (♂, 3.5

years old) that died from fighting against each other. Tissue

samples with a weight of no <200mg were stored at −80◦C.

The study was approved by the Academic Committee of Shaanxi

Institute of Zoology with Ethical Approval No.: 20210327001.

Histological analysis

The tissues mentioned above were fixed in a PBS buffered

formaldehyde solution for 48 h. After routine dehydration

and transparency, sectioned at a thickness of 4µm and

stained with Eosin Staining Kit (Beyotime, Shanghai, China)

following the protocols of the manufacturer, and examined by

light microscopy.

ITRAQ-based proteomics analysis

ITRAQ-based proteomics analysis was performed as

previously described (27, 28). The detailed experimental

procedures of proteomics analysis including sample preparation,

iTRAQ labeling and fractionation, LC-MS/MS analysis, and

data analysis were shown in Supplementary file 1. Briefly, tissue

samples were ground to a fine powder in liquid nitrogen and

then lysed using the protein lysis buffer [7M Urea/4% SDS/2M

Thiourea/40mM Tris-HCl (pH 8.5)] supplemented with 2mM

EDTA and 1mM phenylmethylsulfonyl fluoride. Samples were

labeled using the iTRAQ Reagent-8 plex Multiplex Kit (SCIEX,

Framingham, MA, USA) according to the protocols of the

manufacturer, in which only 6 channels were used in our

project. The information of sample-corresponding channels was

shown in Table 1. Pne and Ctrl groups represented diseased and

normal lung tissue groups, respectively. LC-MS/MS analysis

was carried out on TripleTOF 5600+ mass spectrometry

(SCIEX) coupled with an EksigentnanoLC system (SCIEX).

Raw data analysis was performed using the Protein Pilot

Software (version 4.5, SCIEX). The raw MS/MS file data were

searched against the PR1-19060015_pep. fasta (containing

24,352 sequences). Proteins were regarded to be significantly
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TABLE 1 Sample-corresponding iTRAQ channels.

Sample groups Sample label Channel

Disease-1 Pne_1 113

Disease-2 Pne_2 114

Disease-3 Pne_3 117

Normal-1 Ctrl_1 118

Normal-2 Ctrl_2 119

Normal-3 Ctrl_3 121

differentially expressed when fold-change ≥ 1.2 and adjusted

P-value < 0.05.

Bioinformatics and annotations

To determine the biological and functional properties of all

the identified proteins, the identified protein sequences were

mapped with those in the Swiss-Prot database using BLASTP. In

addition, a homology search was performed for the differentially

expressed protein sequences using a localized NCBI blastp

program against the NCBI non-redundant protein (NR) animal

database. Moreover, the GO and KEGG annotation information

of matched proteins was extracted. GO and KEGG pathway

enrichment analysis was performed using the hypergeometric

test. GO and KEGG pathway terms were considered to be

significantly enriched at a P-value < 0.05. Protein-protein

interaction (PPI) networks were constructed using the STRING

database (version: 11.5) (https://cn.string-db.org/).

qRT-PCR analysis for gene expression

Ten mRNAs were randomly selected for expression analysis

by qRT-PCR to validate the data. The primer sequences are

listed in Table 2. The GAPDH gene was used as the internal

control. The total RNA was extracted from the Lung tissues

with the RNAiso plus reagent (Takara, Dalian, China) following

the manufacturer’s protocols. The qRT-PCR was performed

using SYBR Premix ExTaq (TaKaRa, Dalian, China) and a

Thermal Cycler CFX96 Real Time-PCR detection system (Bio-

Rad, Hercules, CA, USA) with the following parameters: 95 ◦C

for 60 s; 40 cycles at 95 ◦C for 15 s; 60 ◦C for 30 s; and 72 ◦C

10 s. The concentration and purity of total RNA were measured

using a GE NanovueTM Spectrophotometer (GE Health care

Biosciences, Pittsburgh, USA). cDNA was synthesized using

the SYBR Prime ScriptTM RT Master Mix (Perfect Real Time)

Kit (Takara, Dalian, China). The relative expression of each

gene was calculated with the 2–11Ct method. There were

three biological sample replicates, and each biological sample

replicates included three technical replicates.

Results

Histological observation of lung tissue

Histological analysis showed that the alveolar cavity has

inflammatory cell exudates and the alveolar wall capillary

hyperemia in the pneumonia group (Figures 1C,D). Numerous

broken neutrophils were exuded from the alveolar cavity

and obvious bleeding was noticed in the pneumonia group

(Figures 1E,F). And, the most notable pathological changes

were interstitial pneumonia and hemorrhagic pneumonia in

the pneumonia group (Figures 1G,H). Moreover, red blood

cell, inflammatory cell, and fibrin exudate were present in the

alveolar lumen, and the lung interstitium was widened in the

pneumonia group (Figures 1G,H).

Identification of di�erentially expressed
proteins

In our proteomics analysis, 355 proteins (169 down-

regulated and 186 up-regulated) were found to be differentially

expressed (up-regulated ratio ≥ 1.2 or down-regulated ratio ≤

0.83; adjusted P-value < 0.05) in the diseased lung tissues of

FMDs who died of pneumonia compared to the normal lung

tissue group (Figure 2; Supplementary Table 1). The volcano

plot of differentially expressed proteins was shown in Figure 2.

Among these differentially expressed proteins, 158 proteins were

annotated in the bovine Swiss-Prot database.

GO and KEGG annotation analysis of
di�erentially expressed proteins

To screen out key proteins related to the pathogenesis of

pneumonia, the sequences of differentially expressed proteins

were compared against the NCBI NR database using the

NCBI-BLAST. These differentially expressed proteins were

also annotated by comparisons against the GO and KEGG

databases. Based on the principle of sequence similarity,

proteins with similar sequences have similar functions. GO

annotation analysis revealed that most of the down-regulated

and up-regulated proteins were involved in the regulation

of biological processes such as cellular process, metabolic

process, biological regulation, response to stimulus, and

cellular component organization or biogenesis (Figure 3A;

Supplementary Table 2). Also, many differentially expressed

proteins were implicated in the immune system process,

death, locomotion, cell proliferation, biological adhesion, and

growth (Figure 3A; Supplementary Table 2). Moreover, KEGG

pathway annotation analysis showed that most up-regulated and

down-regulated proteins played crucial roles in the pathways

related to focal adhesion, phagosome, microbial metabolism
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TABLE 2 Primers used in quantitative real-time PCR analysis.

Target gene Primer Sequence (5’to3’)

GAPDH GAPDH-F GGCACAGTCAAGGCAGAGAAC

GAPDH-R TACTCCGCACCAGCATCACC

Galectin-9 Galectin-9 F CGGTTTGAAGAAGGCGGGTATG

Galectin-9 R AGATGGCGTTGAATTGGTAGAAGG

Coronin-1A CORO1A-F CACTTTGGATGAGGAGCAGAA

CORO1A-R TGGCTGGCTGTCCAAATAC

Annexin A6 ANXA6-F AATGACACCTCTGGCGAATAC

ANXA6-R ACTGCACTAAGTTCCCACATC

Protein S100-A10 S100A10-F TGCCGTCTCAAATGGAACA

S100A10-R TCCATGAGTACTCTCAGGTCTT

Moesin MSN -F AGAAGAGGTGGCAAGAATACAC

MSN -R TTCCAGGATGTCTGGCTCTA

Envoplakin EVPL -F TTCCAGGATGTCTGGCTCTA

EVPL -R GTAGGTTCTTGCACTCCCTATG

Platelet endothelialcell adhesion molecule PECAM1-F GAGTATGAGGTGTGGGTGAAAG

PECAM1-R CTGGGACAGAACAGTTGACTAC

Integrin beta-1 ITGB1-F AGGCCACTGTTCATGTTGTAG

ITGB1-R CAGCAATGCAAGGCCAATAAG

CD177 CD177-F CTACTGAACCTACCCAAGACAAG

CD177-R GCAGAGGTGATGTTGATGAGTA

Collectin-12 COLEC12-F CAACTCAGAACTCTCCACCTTC

COLEC12-R TGGCCAAAGCGGAGTTATT

in diverse environments, leukocyte transendothelial migration,

bacterial invasion of epithelial cells, endocytosis, Staphylococcus

aureus infection, and pathogenic Escherichia coli infection

(Supplementary Tables 3, 4). The statistics of the top 20 KEGG

pathways of up-regulated and down-regulated proteins were

shown in Figure 3B.

GO and KEGG enrichment analysis of
di�erentially expressed proteins

GO enrichment analysis showed that differentially expressed

proteins were significantly enriched in biological processes such

as acute-phase response, leukocyte adhesion, leukocyte

migration, phagocytosis, regulation of tumor necrosis factor

biosynthetic process, defense response to Gram-negative

bacterium, regulation of locomotion, receptor-mediated

endocytosis, cell structure disassembly during apoptosis,

defense response to fungus (Supplementary Table 5). The

top 20 GO biological process terms that were significantly

enriched by differentially expressed genes were displayed

in Figure 4A. KEGG enrichment analysis disclosed that

differentially expressed proteins were significantly enriched

in pathways related to Staphylococcus aureus infection, focal

adhesion, complement and coagulation cascades, phagosome,

antigen processing and presentation, bacterial invasion of

epithelial cells, and pathogenic Escherichia coli infection

(Supplementary Table 6). The top 20 KEGG pathways that were

significantly enriched by the differentially expressed proteins

were shown in Figure 4B.

Screening and PPI network construction
of dysregulated proteins related to
bacterial infection

Both KEGG annotation and enrichment outcomes

suggested that pathways related to Staphylococcus aureus

infection, bacterial invasion of epithelial cells, and pathogenic

Escherichia coli infection might play vital roles in pneumonia

progression. Given the close association between bacterial

infection and pneumonia pathogenesis, dysregulated proteins

in the above-mentioned pathways were filtered out based

on KEGG annotation analysis. The information on these

proteins was shown in Supplementary Table 7. As presented

in Supplementary Table 7, 13 (9 down-regulated and 4 up-

regulated), 14 (7 down-regulated and 7 up-regulated), or 12

(4 down-regulated and 8 up-regulated) differentially expressed

proteins were identified to be implicated in Staphylococcus
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FIGURE 1

Histopathological changes in lungs of forest musk deer. (A,B) normal lung tissue in the control group, HE staining of normal tissues was

performed (5×). The black arrow indicates the alveolar cavity, the red arrow points to the alveolar wall. (C,D) Inflammatory cells (black arrow)

and exudate can be seen in the alveolar cavity (red arrow), and the capillaries in the alveolar wall are hyperemic (yellow arrow). (E,F) Numerous

broken neutrophils (yellow arrow) exuded from the alveolar cavity, bleeding obvious (black arrow). (G,H) Red blood cell (yellow arrow),

inflammatory cell (black arrow) and fibrin exudates (red arrow) present in alveolar lumen, and lung interstitium is widened (blue arrow). Bars:

(B,D,F,H) 50µm, Bars: (A,C,E,G) 200µm, (magnification, 5.0×, 20.0×).

aureus infection, bacterial invasion of epithelial cells, or

pathogenic Escherichia coli infection, respectively. The

above-mentioned differentially expressed proteins related

to bacterial infection (total number: 32) were integrated

into Supplementary Table 8. The STRING database has been

widely used to construct the PPI network and identify hub

proteins in previous studies (29, 30). Prior phylogenetic tree

analysis showed that FMD was a member of the suborder

Ruminantia and order Artiodactyla with close phylogenetic

relationships with four members of the family Bovidae (sheep,

yak, cattle, and Tibetan antelope) (31). Also, a recent study

showed that most FMD unigenes that were identified by

de novo assembly of heart and musk gland transcriptomes

were homologous with bovine genes (32). Given the close

phylogenetic relationships of FMD and bovine, the PPI

networks of filtered proteins were constructed based on the

information of the organism species Bos taurus (bovine).

Among filtered 32 differentially expressed proteins related

to bacterial infection, 13 proteins were annotated in the

bovine Swiss-Prot database (Supplementary Table 8). The PPI

networks of the 13 proteins were constructed and displayed

in Figure 4 (organism: Bos taurus, combined interaction

score ≥ 0.4) (the solitary proteins had been removed from

the network). The detailed interaction information of these

13 proteins was shown in Supplementary Table 9. The node

degrees (number of interacted proteins) of proteins in the PPI

networks (Figure 5) were exhibited in Supplementary Table 10.

The node degree can be used to identify hub proteins in the PPI

networks (33, 34). Results suggested that 5 proteins with greater

node degrees [i.e. catenin beta-1 (CTNNB1), integrin beta-1

(ITGB1), catenin alpha-1 (CTNNA1), dynamin-2 (DNM2),

Keratin, type I cytoskeletal 19 (KRT19)] might function

as crucial players in pneumonia-related bacterial infection

in FMD.
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FIGURE 2

The volcano plot of di�erentially expressed and unchanged

proteins. Red dots represent the up-regulated proteins and

green dots denote the down-regulated proteins.

Screening and PPI network construction
of dysregulated proteins related to
immunity

It has been reported that the pathogenesis of pneumonia

is closely linked with the dysfunction of the immune system

(35, 36). In this project, 53 down-regulated and 32 up-regulated

proteins that were implicated in the immune system process

were screened out based on the GO annotation analysis.

These 85 proteins related to the immune system process were

shown in Supplementary Table 11. Among these 85 proteins,

49 proteins that were mapped to the bovine genome were

screened out (Supplementary Table 11). Next, the PPI networks

of these 49 proteins were established and presented in Figure 6

(organism: Bos taurus, combined interaction score ≥ 0.4)

(the solitary proteins have been removed from the network).

The detailed protein-protein interaction information and node

degrees of the above-mentioned 49 proteins in the PPI networks

were displayed in Supplementary Tables 12, 13, respectively.

The outcomes suggested that CTNNB1, ITGB1, Annexin

A5 (ANXA5), calreticulin (CALR), prothrombin (F2), matrix

metalloproteinase-9 (MMP9), platelet endothelial cell adhesion

molecule (PECAM1), thrombospondin-1 (THBS1), heat shock

protein HSP 90-beta (HSP90AB1), endoplasmin (HSP90B1),

integrin alpha-3 (ITGA3), and moesin (MSN) might be the hub

proteins in the PPI networks because they had greater node

degrees. In other words, these proteins might play vital roles in

the immune response related to pneumonia in FMD.

Validation of di�erentially expressed
proteins by qRT-PCR analysis

The expression patterns determined by qRT-PCR were

consistent with those obtained by iTRAQ, with 90% agreement

between the qRT-PCR and iTRAQ results (Figure 7). This result

indicated that the differential proteomic analysis outcomes in

this study were reliable.

Discussion

In this project, a total of 355 differentially expressed (up-

regulated ratio ≥ 1.2 or down-regulated ratio ≤ 0.83; adjusted

P-value < 0.05) proteins were identified in the diseased lung

tissues of FMDs who died of pneumonia vs. the normal group.

Among these dysregulated proteins, 158 proteins were mapped

to the bovine genome.

Moreover, KEGG pathway annotation analysis showed

that 9 pathways (i.e., metabolic pathways, focal adhesion,

pathways in cancer, regulation of actin cytoskeleton, amoebiasis,

microbial metabolism in diverse environments, tight junction,

leukocyte transendothelial migration, bacterial invasion of

epithelial cells) were shared in the top 20 KEGG pathways

of up-regulated and down-regulated proteins. Among the 46

metabolic pathways-related proteins (28 up-regulated and 18

down-regulated), alpha-enolase (ENO1), neutrophil gelatinase-

associated lipocalin (LCN2), and Acetyl-CoA acetyltransferase

(ACAT1) have been found to be related to pathogens-induced

pneumonia. For instance, ENO1 facilitated lipopolysaccharide

(LPS)-driven monocyte recruitment to the acutely inflamed

lung, and ENO1 was highly expressed in blood monocyte

cell surface and alveolar mononuclear cells of patients with

pneumonia (37). LCN2 had a potential protective effect against

Escherichia coli-induced pneumonia (38). LCN2 knockout

notably improved the susceptibility of mice to Acinetobacter

baumannii pneumonia (39). LCN2 hindered the clearance

of pneumococcal pneumonia and exacerbated pneumococcal

pneumonia in mice and humans (40). ACAT1 expression was

notably increased in THP-1-derived macrophages following

the infection of Chlamydia pneumonia (41). The inhibition

of ACAT1 weakened pulmonary inflammation and inhibited

macrophage activation in bleomycin-induced acute lung injury

(42). Among the 27 focal adhesion-related dysregulated proteins

(18 up-regulated and 9 down-regulated), thrombospondin-

1 (THBS1) and caveolin-1 (CAV1) have been reported to

be associated with pneumonia. For example, THBS1 loss

promoted the clearance of lung Klebsiella pneumonia, decreased

lung inflammation burden, and enhanced the innate immune

responses against Klebsiella pneumonia infection (43). CAV1

depletion reduced mouse survival rate, enhanced bacterial

burdens, facilitated bacterial dissemination, and potentiated

pro-inflammatory responses in mice infected with Klebsiella
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FIGURE 3

GO and KEGG annotation analysis of up-regulated and down-regulated proteins. (A) The percentage of up-regulated and down-regulated

proteins in each GO term. (B) The percentage of up-regulated and down-regulated proteins in the top 20 annotated KEGG pathway terms.
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FIGURE 4

GO and KEGG enrichment analysis of di�erentially expressed proteins. (A) The top 20 GO biological process terms that were significantly

enriched by the di�erentially expressed proteins. (B) The top 20 KEGG pathways that were significantly enriched by the di�erentially expressed

proteins.

FIGURE 5

The PPI networks of di�erentially expressed proteins (species: bovine) related to bacterial infection. The darkturquoise and pink lines

represented the interactions that were identified from curated databases and experimentally determined, respectively. The green, red, and blue

lines represented the predicted interactions based on gene neighborhood, gene fusions, and gene co-occurrence relationships, respectively.

The yellow-green, black, and purple lines denoted the potential interactions that were identified by textmining, co-expression, and protein

homology. The full names of proteins in this figure were shown as follows: C3, complement C3; CFH, complement factor H, KRT19, keratin,

type I cytoskeletal 19; KRT25, keratin, type I cytoskeletal 25; DNM2: dynamin-2; ILK: integrin-linked protein kinase; CLTC, clathrin heavy chain 1;

CTNNA1, catenin alpha-1; ITGB1, integrin beta-1; CTNNB1, catenin beta-1; BCAM, basal cell adhesion molecule; TUBA4A, tubulin alpha-4A

chain; EZR, ezrin.
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FIGURE 6

The PPI networks of di�erentially expressed proteins (species: bovine) related to immunity. The full names of the proteins in this figure were

presented as below: CALR, calreticulin; LGALS9, galectin-9; C3, complement C3; EPB42, protein 4.2; HSP90B1, endoplasmin; CORO1A,

coronin-1A; ANXA1, annexin A1; MMP9, matrix metalloproteinase-9; AP3B1,AP-3 complex subunit beta-1; BPI, bactericidal

permeability-increasing protein; THBS1, thrombospondin-1; ANG1, angiogenin-1; S100A12, protein S100-A12; LBP, lipopolysaccharide-binding

protein; ANXA5, annexin A5; S100A8, protein S100-A8; S100A9, protein S100-A9; HSP90AB1, heat shock protein HSP 90-beta;

DHX9,ATP-dependent RNA helicase A; CAPZA1, f-actin-capping protein subunit alpha-1; GPI, glucose-6-phosphate isomerase; CLTC, clathrin

heavy chain 1; DNM2,dynamin-2;F2, prothrombin; THBD, thrombomodulin (fragment); CFH, complement factor H; EEF2, elongation factor 2;

BPIFB1, BPI fold-containing family B member 1; PDIA3, protein disulfide-isomerase A3; FLOT2, flotillin-2; UBA52, ubiquitin-60S ribosomal

protein L40; MSN, moesin; PIGR, polymeric immunoglobulin receptor; ITGB1, integrin beta-1; LGMN, legumain; COLEC12, collectin-12;

CTNNB1, catenin beta-1; SFXN1, sideroflexin-1; BCAM, basal cell adhesion molecule; HMOX1, heme oxygenase 1; ANXA3, annexin A3; MYO1C,

unconventional myosin-Ic; CTSD, cathepsin D; APOA1, apolipoprotein A-I; DPP4, dipeptidyl peptidase 4; ITGA3, integrin alpha-3; EZR, ezrin;

PECAM1, platelet endothelial cell adhesion molecule; FTH1, ferritin heavy chain.

pneumonia (44). In other words, CAV1 enhanced the resistance

of mice to Klebsiella pneumonia infection (44). Among

20 proteins related to the regulation of actin cytoskeleton,

Rho guanine nucleotide exchange factor 1 (Arhgef1) and

myosin light chain kinase (MYLK) have been demonstrated

to be related to lung inflammation. For instance, Brown

et al. demonstrated that Arhgef1 knockout mice presented

decreased airway hyperreactivity and lung inflammation (45).

The intravenous injection of MYLK peptide inhibitor reduced

lipopolysaccharide-induced lung inflammation in mice (46).

Also, 19 (9 down-regulated and 10 up-regulated) and 23 (9

down-regulated and 14 up-regulated) dysregulated proteins in

the pneumonia group vs. the control group were identified to be

implicated in the amoebiasis and cancer pathways, respectively.
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FIGURE 7

Quantitative RT-PCR analyses of gene expression in normal and diseased tissues. Quantitative expression patterns of genes, which was

calculated based on Ct value normalized against the housekeeping GAPDH gene. The *, **, and *** symbols indicate the P-value < 0.05, P-value

< 0.01, and P-value < 0.001 respectively.

As mentioned above, the amoebiasis and cancer pathways

were shared in the top 10 KEGG pathways of up-regulated

and down-regulated proteins. Although amoebiasis and cancer

might be irrelevant or not the study’s subject, we supposed

that the immunology activity for pneumonia had the same

or like response activity in amoebiasis and cancer due to the

central roles of pneumonia-induced dysregulated proteins in

amoebiasis and cancer. Also, prior studies of some proteins

related to amoebiasis and cancer preliminarily validated our

speculation. For example, among amoebiasis pathway-related

proteins, integrin beta-2 (ITGB2), heat shock protein beta-

1 (HSPB1), LCN2, leukocyte elastase inhibitor (SERPINB1),

laminin subunit alpha-4 (LAMA4), and fibronectin (FN1)

have been found to be correlated with immunity. Wang

et al. demonstrated that ITGB2 depletion in combination

with CXCR7 and PDGFB knockdown markedly suppressed

Chlamydia pneumonia entry into human cells (47). Also,

ITGB2 has been identified as an immune-related gene (48,

49). HSPB1 inhibitor J2 reduced lung inflammation (50).

Epinephelus coioides HSPB1 was a negative regulator in

Singapore grouper iridovirus (SGIV)-induced innate immune

response and apoptosis (51). LCN2 not only plays a vital

role in antibacterial infection but also functions as a crucial

player in the immune response to pathogenic inflammatory

stimuli (52, 53). SERPINB1 loss increased the susceptibility

of mice to pulmonary bacterial and viral infections (54, 55).

Also, SERPINB1 controlled neutrophil survival and homeostatic

expansion of IL-17+ γδ and CD4+ Th17 cells (56, 57). LAMA4

deficient mice presented impaired recruitment of neutrophils,

monocytes, and lymphocytes to inflammatory loci relative to

wild-type mice (58). FN1 also has been found to be involved in

the regulation of innate immune response and to be correlated

with immune infiltrates in cancers (59–61). Among the cancer-

related proteins, signal transducer and activator of transcription

3 (STAT3) has been well documented to be inflammation

and immunity (62–64). Also, STAT3 served as a positive

regulator of pneumonia induced by influenza virus H1N1 (65),

Agiostrongylus cantonensis (66), and Mycoplasma pneumonia

(67). Combined with these data, we supposed that dysregulated

proteins related to amoebiasis and cancer might also function
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as crucial players in pneumonia, immune, and inflammation,

suggesting the same or like immune response activity between

pneumonia and amoebiasis or cancer.

Both KEGG pathway annotation and enrichment analyses

showed that dysregulated proteins played vital roles in pathways

related to bacterial infection (e.g., bacterial invasion of

epithelial cells, Staphylococcus aureus infection, and pathogenic

Escherichia coli infection) and immunity (focal adhesion,

phagosome, and complement and coagulation cascades),

suggesting that pathways related to bacterial infection and

immunity might be closely linked with the development

of pneumonia in FMD. Moreover, it has been reported

that bacteria including Staphylococcus aureus and Escherichia

coli are common risk factors for pneumonia in FMD (11,

12, 17, 68). Moreover, multiple bacterial pathogens, such

as Leclercia spp., Stenotrophononas maltophila, Staphylococcus

aureus, and Staphylococcus sciur, have been identified in bovine

pneumonia (69, 70). Thus, differentially expressed proteins

in the pathways of Staphylococcus aureus infection, bacterial

invasion of epithelial cells, and pathogenic Escherichia coli

infection were screened out. After integration, a total of

32 dysregulated proteins were identified to be implicated in

bacterial infection. Among these 32 proteins, 13 proteins,

whose sequences were aligned onto the bovine genome, were

screened out for further exploration given the close genetic

relationships between FMD and bovine. Based on the PPI and

node degree analyses of these 13 proteins, we supposed that

5 proteins (CTNNB1, ITGB1, CTNNA1, DNM2, and KRT19)

might play crucial roles in bacteria-related pneumonia in FMD.

CTNNB1 (protein name: β-catenin) and CTNNA1 are two vital

players in the Wnt signaling pathway (71, 72). Wnt/β-catenin

signaling has been reported to be a target of bacterial virulence

factors (73) and a vital player in lung development and lung

diseases (74–77). Additionally, Chen et al. demonstrated that

morusin could mitigate mycoplasma pneumonia by inhibiting

the Wnt/β-catenin signaling pathway in mice lung tissues (78).

ITGB1, also named β1-integrin, hindered bacterial clearance

and facilitated bacterial infection in cystic fibrosis airway cells

and cystic fibrosis mice (79).

Given the close correlation between immune system

dysfunction and pneumonia development, 85 differentially

expressed proteins (53 down-regulated and 32 up-regulated)

that were implicated in the immune system process were

filtered out based on GO annotation analysis. Among these

85 proteins, the sequences of 49 proteins were mapped to

the bovine genome. PPI and node degree analysis of these

49 proteins suggested that CTNNB1, ITGB1, ANXA5, CALR,

F2, MMP9, PECAM1, THBS1, HSP90AB1, HSP90B1, ITGA3,

and MSN might be the hub proteins in the pneumonia-

related immune responses in FMD. Some of these proteins

have been found to be implicated in pneumonia, lung

inflammation, and lung injury. For instance, CALR blockade

alleviated acute lung injury (ALI), reduced pro-inflammatory

cytokine expression, and inhibited neutrophil and T cell

infiltration in bronchoalveolar lavage and lung tissues in

lipopolysaccharide (LPS)-induced ALI mouse model (80).

MMP9 loss facilitated pulmonary cell death and aggravated

lung injury in an interleukin-1β (IL-1β)-induced lung injury

mouse model (81). MMP9 acted as a potentially protective

factor against Streptococcus pneumonia infection (82, 83).

PECAM1, an endothelial cell adhesion molecule, played a

potentially protective role in lung injury and acute respiratory

distress syndrome (84, 85). THBS1 also has been found to

be implicated in the pathogenesis of gram-positive bacteria

and the development of lung injury (86, 87). For instance,

THBS1 loss reduced mouse survival rate, increased lung

bacterial burden and lung microvascular permeability, impaired

host defense against Pseudomonas aeruginosa (P. aeruginosa),

and potentiated inflammatory injury during P. aeruginosa

acute intrapulmonary infection (87), while P. aeruginosa is

a common pathogen of pneumonia in FMD (17). HSP90B1

depletion reduced the phagocytic capacity of macrophages

against Klebsiella pneumonia (K. pneumonia) (a common gram-

negative bacteria that can cause pneumonia) and inhibited

pro-inflammatory mediator release in alveolar and peritoneal

macrophages treated with LPS derived from K. pneumonia

or heat-killed K. pneumonia (88). Moreover, HSP90B1 loss in

macrophages led to the increase of mouse lung K. pneumonia

loads and are duction in mouse survival rate during K.

pneumonia (88). CTNNA1 and CTNNB1 are two members of

the catenin family (89). Multiple members of catenin family

including CTNNA1 and CTNNB1 have been identified to

be implicated in immune responses (90–92). For example,

CTNNB1 activation enhanced the inflammatory activity of

alveolar macrophages and facilitated acute host morbidity

in a murine influenza pneumonia model (93). Integrins are

crucial players in cell development, cell adhesion, pathogen

clearance, inflammation, and immune responses (35, 36). ITGB1

and ITGA3 are two integrin family subunits (94, 95). It has

been reported that ITGB1 mediated the entry of coronavirus

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-

2) (96) and the conditional depletion of ITGB1 in type 2

alveolar epithelial cells could trigger emphysema, epithelial

dysfunction, increased efferocytosis and pulmonarymacrophage

infiltration, and widespread lung inflammation in mice (97).

Also, Li et al. suggested that ITGA3 was implicated in the

infiltration of 6 immune cells (i.e., B cells, CD8T cells, CD4T

cells, macrophages, neutrophils, and dendritic cells) in breast

cancer (98).

Conclusions

Taken together, our proteomics analysis revealed that 355

proteins were differentially expressed in diseased lung tissues

of FMD that died of pneumonia compared to the normal
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control group. KEGG annotation and enrichment analysis

showed that these dysregulated proteins mainly be associated

with bacterial infection and immunity. Moreover, we further

screened out the dysregulated proteins related to bacterial

infection (n = 32) and immunity (n = 85). Some key proteins

in pneumonia-related bacterial infection and immunity were

identified based on PPI and node degree analyses in the

FMD. This is the first study to investigate the lung proteomics

alterations caused by pneumonia in FMD, which can deepen

our understanding of the molecular mechanisms of pneumonia

in this rare species. Additionally, the identification of some

pathways and proteins that might play vital roles in pneumonia

development might contribute to the better management of

pneumonia and reduction of mortality rate in FMD. However,

only 6 FMD with 3 FMD in each group were used due to the

rareness of this species and the difficulty in the acquisition of

their organs.
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