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A pilot study to demonstrate the
paracrine e�ect of equine, adult
allogenic mesenchymal stem
cells in vitro, with a potential for
healing of
experimentally-created, equine
thoracic wounds in vivo

Michael Caruso1†, Shannon Shuttle1, Lisa Amelse1,

Hoda Elkhenany1,2, James Schumacher1† and Madhu S. Dhar1,2*

1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of

Tennessee, Knoxville, Knoxville, TN, United States, 2Department of Surgery, Faculty of Veterinary

Medicine, Alexandria University, Alexandria, Egypt

Regenerative biological therapies using mesenchymal stem cells (MSCs) are

being studied and used extensively in equine veterinary medicine. One

of the important properties of MSCs is the cells’ reparative e�ect, which

is brought about by paracrine signaling, which results in the release of

biologically active molecules, which in turn, can a�ect cellular migration

and proliferation, thus a huge potential in wound healing. The objective of

the current study was to demonstrate the in vitro and in vivo potentials

of equine allogenic bone marrow-derived MSCs for wound healing. Equine

bone marrow-derived MSCs from one allogenic donor horse were used.

Equine MSCs were previously characterized for their in vitro proliferation,

expression of cluster-of-di�erentiation markers, and trilineage di�erentiation.

MSCs were first evaluated for their migration using an in vitro wound healing

scratch assay, and subsequently, the conditioned medium was evaluated for

their e�ect on human fibroblast proliferation. Subsequently, allogenic cells

were intradermally injected into full-thickness, cutaneous thoracic wounds

of 4 horses. Wound healing was assessed by using 3-D digital imaging and

by measuring mRNA expression of pro-and anti-inflammatory markers for

30 days. Using human fibroblasts in an in vitro wound healing assay, we

demonstrate a significantly higher healing in the presence of conditioned

medium collected from proliferating MSCs than in the presence of medium

containing fetal bovine serum. The in vitro e�ect of MSCs did not translate

into a detectable e�ect in vivo. Nonetheless, we proved that molecularly

characterized equine allogenic MSCs do not illicit an immunologic response.

Investigations usingMSCs derived fromother sources (adipose tissue, umbilical

cord), or a higher number of MSCs or a compromised animal model may be

required to prove the e�cacy of equine MSCs in wound healing in vivo.
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Introduction

Regenerative biological therapies using mesenchymal stem

cells are being used extensively to treat horses for injuries.

Bone marrow-derived mesenchymal stem cells or mesenchymal

stromal cells (BM-MSCs) are self-renewing, expandable in vitro,

and able to differentiate into cellular lineages, each capable

of producing various types of cells, including adipocytes,

osteoblasts, chondrocytes, and skin cells (1–5).

Wound healing is a dynamic process involving complex

interactions between many cellular and biochemical events.

Paracrine signaling results in the release of soluble factors,

including growth factors, cytokines, and chemokines that

promote the many biological events required for healing, such as

cellular migration and proliferation, deposition of extracellular

matrix, angiogenesis, and remodeling (5–8). The release of these

factors from fibroblasts, inflammatory cells, skin progenitor

cells, and fat- and bone marrow-derived MSCs, are crucial to

these biological events (4, 6, 8–11). Several mechanisms by

which MSCs exert a positive effect on wound healing have

been identified. These include the enhancement of angiogenesis

by secretion of pro-angiogenic factors and the differentiation

into endothelial cells and/or pericytes, M2 macrophages

polarization, the recruitment of endogenous stem/progenitor

cells, extracellular matrix production and remodeling, and

immunosuppressive effects. (12).

Studies of the effects of MSCs transplanted into wounds

of human patients and experimentally created wounds of

other species, including rodents, rabbits, goats, and dogs, have

demonstrated the therapeutic effects of MSCs in improving

dermal regeneration and healing (4, 6, 8, 9, 13–16). The

reparative effect of MSCs is brought about by paracrine

signaling, which results in release of biologically active

molecules that affect cellular migration and proliferation, and

in survival of cells surrounding the injured area (8, 11).

Javazon et al. demonstrated that directly applying BM-MSCs

to cutaneous wounds of diabetic mice resulted in significantly

improved epithelialization, angiogenesis, and formation of

granulation tissue (10). Kim et al. documented that MSC-

treated wounds of dogs healed more rapidly with increased

cellular proliferation, collagen synthesis, and angiogenesis than

did control wounds (15). Arno et al. showed that MSCs

derived from human Warton’s Jelly promoted wound healing

in mice by up-regulating the expression of genes involved in

neovascularization, re-epithelialization, and fibroproliferation

in MSC-treated fibroblasts (8).

Even though the pathophysiological mechanisms of equine

wound repair, and the effects of platelet-rich plasma on

equine wound healing have been reported (17, 18), reports

demonstrating the effect of equine BM-MSCs on experimentally

created wounds of horses are lacking. We hypothesized that

eBM-MSCs have the potential to speed healing of wounds

of horses, and that we could demonstrate this potential in

vitro and in vivo. We hypothesized that injecting molecularly-

tested, allogenic, eBM-MSCs into the periphery of a cutaneous

wound would not trigger an adverse effect and would enhance

epithelialization and wound contraction primarily through

paracrine signaling. To prove our hypotheses, eBM-MSCs

cultured from a 4-year-old, mixed-breed gelding and previously

characterized with respect to their proliferation, expression

of stem-cell markers, and in vitro capacity for tri-lineage

differentiation were used (19, 20). In vitro scratch assays were

performed to assess the effect of conditioned medium (CM)

collected from eBM-MSCs on the migration and proliferation

of human skin primary fibroblasts. Finally, eBM-MSCs were

applied to experimentally-created, full-thickness, cutaneous

thoracic wounds of 4 adult horses to evaluate the wound healing

response in vivo.

Materials and methods

Animals

All experiments were carried out using institution approved

protocols. Three female American Quarter horses and one,

mixed-breed female horse, 12–23 years old, were used as

recipients of the eBM-MSCs. All had no current or past health

problems. All were housed and maintained under the same

conditions, and each was confined to an individual stall.

Allogenic eBM-MSCs

All procedures were performed as described previously

(19, 20). Allogenic eBM-MSCs from one 4-year-old, mixed

breed horse, which was negative for Equine infectious

anemia, equine parvovirus, equine pegivirus, non-primate

hepacivirus, and Theiler’s diseases associated virus, were

used. Cryobanked MSCs, previously characterized by their

proliferation, expression of mesenchymal stem cell surface

markers and in vitro trilineage differentiation potential were

used. Cryopreserved cells were thawed rapidly in a 37◦C

water bath and were washed with prewarmed phenol red-free,

antibiotic - free, and FBS-free media. Cells were collected by

centrifugation at 200 g at room temperature for 10min. Cells

were suspended in Dulbecco’s Modified Eagle Medium (DMEM

F12), and incubated at 37◦C in presence of DMEM F12 + 10%

fetal bovine serum + 1% penicillin/streptomycin mixture. The

incubator was maintained at 5% CO2 and 95% atmospheric air.

Equine BM-MSCs were expanded and cells from passages 4–

5 were used in the in vitro scratch assays and for implantation

into the wounds in vivo.

Total RNA was extracted from biopsy samples from each

horse at 3, 7, 15, and 30 days after treatment. using an RNeasy
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Mini RNA kit1 according to the manufacturer’s instructions

and as described earlier (19). Messenger RNA expressions

of pro- and anti-inflammatory targets, including, TGFβ , IGF,

IL1β , TNFα, and IL8, were measured using quantitative

PCR. SYBR green-based absolute blue qPCR mix2 with100-

pM concentrations of commercially synthesized, forward and

reverse primers2 were used. PCR conditions and the primer

sequences were as described earlier (21, 22).

All qPCRs were run on the Agilent Mx3005P, and data

were analyzed using MxPro analysis software3. Delta Ct was

calculated for each sample after it was normalized with the Ct

value of equine 18S RNA. Using a cDNA blank, samples with a

Ct value of ≥30 were given an arbitrary expression of zero.

Preparation of conditioned medium (cm)

Equine BM-MSCs from the allogenic donor were seeded

at a cellular density of about 5000 cells/cm2, and the CM was

collected after 48 h.

Human foreskin fibroblasts (HFF-1)

Commercially obtained, normal human fibroblasts (HFF-1)4

were grown in DMEM high glucose medium5 containing 10%

fetal bovine serum and 1% penicillin/streptomycin at 37◦C, with

5% CO2. Passage 7–8 HFF cells were seeded at a cellular density

of about 5000 cells/cm2, and the CM was collected after 48 h.

Proliferation and migration of HFF

Migration of HFFs was demonstrated in vitro using a wound

healing assay. Human fibroblasts were seeded at density of

20,000 cells/cm2 to form a monolayer of cells of about 80%

confluency. One scratch/sample/well was made with a 200 µL

pipette tip, to ensure that a gap of 400–500µM was created

in each well. Cellular debris was washed with Hank’s Balanced

Salt Solution2. Cells were then maintained in the presence of

eBMMSC-CM, HFF-CM, or FBS-containing growth medium.

Cells incubated in the presence of 0% eBMMSC-CM (100%

FBS), 10, 25, 50, and 75% eBMMSC-CM (90–25% FBS), and

100% eBMMSC-CM (0% FBS), and HFF-CM were tested.

In vitro migration in the presence of freshly collected CM

was also compared to the migration in the presence of a thawed

1 Qiagen, Valencia, California, USA.

2 Fisher Scientific, Pittsburgh, Pennsylvania, USA.

3 Agilent Technologies, Santa Clara, California, USA.

4 ATCC, Manassas, VA, USA.

5 Carl Zeiss Inc., Thornwood, New York, New York, USA microscope.

sample that had been frozen at −80◦C. Each assay was repeated

in triplicate in two independent experiments.

For gap/wound closure or healing, two randomly selected

points along each wound were identified, and the horizontal

distance between the two wound edges was measured using

black and white phase-contrast microscopy. Measurements were

made at 16, 20, 24, 40, and 44 h, post-wounding.

The HFF proliferation rate in presence of eBMMSC-CMwas

assessed at 2, 4, and 7 days using the CellTiter 96
R©

Aqueous

Non-Radioactive (MTS) assay6 according to the manufacturer’s

instructions. The optical density of the complex formed between

cells and the MTS reagent was measured on a microplate

fluorescence reader7 at 490 nm. Medium without cells was used

as a blank. A graph of sample absorbance corrected with the

blank vs. days of proliferation was generated, and data were

analyzed. HFF growth medium and 100% FBS-containing MSC

growth medium were used as controls.

In vivo equine cutaneous wound healing
model

Under sedation, two, 4-cm diameter and two, 2-cm diameter

wounds were created aseptically on each side of the thorax of

each recipient horse. The 4-cm diameter wounds were created

at the 14th and 10th intercostal spaces on a line parallel to

the ground at the level of the ventral aspect of the tuber

coxae. The 2-cm diameter wounds were created at the 14th and

10th intercostal spaces, 4–6 cm ventral to the 4-cm diameter

wounds. Skin at the site of wounding was desensitized with 2%

mepivacaine HCl2. A shallow, circular cutaneous skin incision

was created using a stainless steel, 4-cm or 2-cm punch. The

incision was extended to subcutaneous tissue with a scalpel

blade, and skin within each incision was sharply excised and

designated as the day 0 sample. Sterile gauze pads were applied

to each wound, and the wounds were covered with a sterile,

combine bandage, which was secured to the thorax with a

commercially available abdominal bandage8.

Subcutaneous implantation of allogenic
eBM-MSCs

Two days post-wounding, 2 × 106 eBM-MSCs suspended

in 1mL sterile, isotonic saline solution were injected

subcutaneously at 4 equidistant sites on each wound. The

untreated wounds served as controls and were injected with

6 Promega Inc., Madison, Wisconsin, USA.

7 BioTeck, Winooski, Vermont, USA.

8 Wire 2 Wire Vet Products, LLC, Lexington, KY, USA.
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the vehicle only. Wounds were dressed and bandaged as

described above.

3-D imaging for wound measurements

All 4-cm diameter wounds were photographed immediately

after wound creation (time 0), and at each bandage change.

Images were imported into a computer software program linked

to the 3-D camera9, and data were analyzed as described

earlier (23). The percentage wound healing was calculated by

measuring the wound area at days 3, 7, 15 and 30 post treatment.

Changes in areas at each time point were compared to the areas

measured at day 0, and are finally reported as the % change.

Skin biopsies

The 2-cm diameter wounds were biopsied to collect samples

for RNA isolation and qPCR. Each biopsy was obtained from a

different site on each wound.

Statistical analyses

All qPCR data were analyzed using mixed model analysis,

with the gene expression ratios as the dependent variables,

treatment as the between-subject fixed independent factor, time

as the within-subject independent factor, and horse nested

within treatment as the random factor. SAS procedure, PROC

MIXED in SAS/STAT10 was used to conduct the analyses.

Similarly, all measurements for the in vitrowound healing assays

and the in vivo wound images were compared using 2-way

ANOVA. Statistical significance was set to P < 0.05. All graphs

are generated using GraphPad Prism 9.

Results

Equine BMMSC-CM promotes wound
healing in vitro

To assess the effect of eBM-MSCs on wound healing, an

in vitro wound healing assay was performed, wherein the HFF

migration was assessed in the presence of eBMMSC-CM for 16–

44 h. In the first experiment, the effect of wound closure was

evaluated using a range of concentrations of the conditioned

media, and wound healing was assessed in presence of 0, 10,

25, 50, 75, and 100% eBMMSC-CM (Figures 1A,B). Significant

HFF migration treated with 100% eBMMSC-CM resulted in gap

closure as early as 16 h (P < 0.05), whereas no gap closure was

9 Eykona Technologies Ltd., Fuel3D Inc., Greenville, NC, USA.

10 SAS Institute Inc., Cary, NC, USA.

observed in HFFs treated with growth medium containing 10%

FBS even after 44 h post-wounding (Figure 1A).

Even though all doses of eBMMSC-CM showed healing,

significant effects were consistently observed at all time-

points with 100% eBMMSC-CM. Figure 1B represents

microscopic images comparing the wound healing in presence

of medium containing 10% FBS with 100% eBMMSC-CM. All

measurements were compared to measurements at time 0 and

then expressed as percentage healing relative to the wound’s

original size.

Next, wound healing in presence of 100% freshly isolated

eBMMSC-CM was compared with that in the presence of

eBMMSC-CM stored in −80◦C. This experiment was carried

out to mimic a clinical condition in which freshly expanded or

cryopreserved allogenic MSCs could be provided for immediate

use. As demonstrated in Figure 1C, significant gap closure was

observed at all time-points in presence of both fresh and frozen

CM. Note that freshly collected CM provided a relatively higher

healing percentage, which was not statistically significant.

Equine BMMSC-CM promote the
proliferation of HFF in vitro

Because proliferation of fibroblasts is an important aspect

of wound healing, we next determined whether the increased

incidence of wound closure in HFFs is also accompanied by

an increase in enhanced proliferation of fibroblasts treated with

eBMMSC-CM. As illustrated in Figure 2, HFFs were cultured

for 7 days in presence of freshly isolated 100% eBMMSCs-CM,

and the HFF proliferation was measured using the MTS assay.

Cell proliferation linearly increased 3-fold within 7 days. No cell

death was observed during this time.

Lack of immunologic response to
allogenic eBM-MSCs

As determined by visible and subjective clinical analyses, all

horses remained clinically normal throughout the study period.

Appetite, body weight, activity, body temperature, and heart

and respiratory rates were always within normal limits. Healing

in all wounds progressed without visible signs of infection or

immunogenic reaction suggesting that the allogenic MSCs could

be used safely in vivo.

E�ect of equine BMMSC-CM on wound
healing in vivo

Next, we assessed if the in vitro effects observed with

eBMMSC-CM could be translated to an in vivo wound model.

All 4-cm diameter wound images were analyzed using a
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FIGURE 1

(A) E�ect of varying eBMMSC-CM concentrations. 400–500µm gaps were created in a monolayer of HFFs, and were treated with varying

concentrations of eBMMSC-CM for 16–44h. Gap closure was measured at each time point and data is reported as the percentage healing at a

(Continued)
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FIGURE 1 (Continued)

specific point relative to time 0. Results are shown as the mean ± SD of quadruplicates within a representative of two independent experiments.

*P < 0.05 is considered significant. (B) E�ect of eBMMSC-CM on HFF migration. 400–500µm gaps were created in a monolayer of HFFs, and

were treated with growth medium containing 10% FBS (Top) or 100% eBMMSC-CM (Bottom), and gap closure was evaluated using phase

contrast microscopy. Representative images of quadruplicates within a representative of two independent experiments are shown. (C) In vitro

wound healing assay to compare frozen and freshly isolated eBMMSC-CM. 400–500µm gaps were created in a monolayer of HFFs, and were

treated with either freshly isolated 100% eBMMSC-CM or 100% eBMMSC-CM stored in −800C. Wound Gap closure was measured at each time

point and data is reported as the percentage healing at a specific point relative to time 0. Results are shown as the mean ± SD of quadruplicates

within a representative of two independent experiments. *P < 0.05 is considered significant.

FIGURE 2

Measurement of proliferation rate of HFFs. MTS assay was used

to demonstrate the proliferation of HFFs in presence of 100%

eBMMSC-CM over a period of 7 days. The results represent the

mean ± SD with n = 3 for each bar. ****p < 0.0001.

trace-area function in the software. All measurements were

recorded in mm2 (23). Using the digital images, we measured

the Healing rate (mm2/day)= (previous total area – subsequent

inner area) ÷ number of days between the two time-points

(Figure 3A). The healing rate was used to assess the combined

effect of epithelialization and contraction because these two

processes occur simultaneously and could not be segregated.

Epithelialization was observed subjectively in all groups only

after day 15.

As seen in the representative pictures from one recipient

horse, subjectively, eBMMSC-treated wounds appeared to show

a faster healing rate with increased epithelialization compared

to controls (Figure 3B). These changes were observed in 2 out

of 4 recipients indicating horse-to-horse variation. As a result,

when data from all the horses were taken together, none of

the measurements obtained above were significantly different

between control and stem cell-treated wounds.

In vivo mRNA expression of pro– and
anti–inflammatory markers

Different phases of wound healing are accompanied by

changes in cytokines, and therefore, we assessed whether

FIGURE 3

Wound healing in recipient horses. (A) Graph showing

percentage changes in wound healing in all horses as a function

of time. The wound area is measured in mm2 at time 0, and

subsequently at days 3, 7, 15 and 30. The area at each time point

is then compared to the area at time 0. Finally, the % wound

healing is expressed and plotted graphically. (B) Representative

digital images of the 4 cm diameter wounds in the recipients 2

and 3 at various time points are shown. The black tag above

each wound is the marker and is recognized by the camera to

ensure a consistent and reproducible angle when the image is

taken. Note the significant amount of epithelialized region of the

wound in the Recipient 2 treated panel.

there were any eBM-MSC-mediated modulations of mRNA

expression of TGFβ , IGF, IL1β , TNFα, and IL8, pre- and post-

treatment. Real-time PCR profiles of each of the markers were

assessed at days 3, 7, 15, and 30 post-treatment. Samples of
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FIGURE 4

Real time PCR of the pro- and anti-inflammatory markers. The expression profiles of ILβ (A), IGF (B), IL8 (C), TNFα (D) and TGFβ (E) were

generated at days 3, 7, 15 and 30 post therapy. Changes in expression for each mRNA was normalized with the Ct values obtained for 18S RNA

and are plotted as Delta Ct in arbitrary units (AU). P < 0.05 was set as significant.

skin collected when the wounds were created (day 0) were

used as pretreated samples. Normalized delta Ct values of each

mRNA obtained at days 3,7,15, and 30 were compared day

0 to assess these changes (Figure 4). Results demonstrated no

significant changes in expression between control and treated

groups during the entire study.

Discussion

Bone-marrow-derived MSCs are multipotent cells that

have the potential to differentiate into multiple lineages,

including lineages capable of producing adipocytes, osteocytes,

chondrocytes, neurons, skeletal muscle, and endothelial cells

(1–5). Adult MSCs are ideal to use in cellular-based therapies

because of the relative ease of techniques for isolation and

expansion and because of their low immunogenicity.

Using the minimal set of standard criteria (24, 25), we

have identified an allogenic donor from which MSCs were

generated and cryopreserved and used in this study. Because

BM-MSCs obtained from different organisms, including horses,

are immunomodulatory and lack the MHC II, they should not

illicit an immunologic response when implanted into the tissues

of another animal. With this knowledge, we were confident that

we could safely implant eBM-MSCs from the allogenic donor

into the experimentally created wounds of the 4 horses used

in this study. As expected, none of the recipient horses showed

signs of immunological response to the allogenic cells.

Cutaneous wound healing is a complex process primarily

involving the migration and proliferation of fibroblalsts. We

used an immortalized, commercially available HFF-cell line, and

fibroblasts cultured served to assess dermal fibroblastic response

to injury in vitro. We assessed the effect of CM derived from

healthy, proliferating eBM-MSCs on proliferation of HFFs and

subsequently cultured the human HFFs and created a “wound”

on the monolayer and assessed the paracrine effect that the

eBM-MSCs had on closure of that wound.

The in vitro analyses revealed that eBMMSC-CM enhances

both the migration and proliferation of human fibroblasts,

suggesting that eBM-MSCs may secrete a factor or factors

necessary for healing, thus supporting their paracrine function.

This agrees with other studies (26, 27). For instance, in vitro

studies have shown that conditioned medium from fat-derived

MSCs alone accelerates wound healing in mice due to the

paracrine effect of the medium. Pro-angiogenic factors, such as

vascular endothelial growth factor (VEGF), are secreted from

MSCs, and these factors have been suggested to be one of

the pro-angiogenic mechanisms by which fat-derived MSCs

accelerate healing in vivo (26, 27). Similarly, promotion of

proliferation and migration of mouse keratinocytes in vivo by

conditioned medium of BM-MSCs has been demonstrated (28).

In our study, the significant effect of eBM-MSCs on wound

healing observed in vitro did not translate consistently in vivo,
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even though digital imaging showed an increased healing in

the BMMSC-treated wounds in 2 out of 4 recipients. We have

several hypotheses to explain this discrepancy. One important

factor to consider is the source of MSCs. Fat-derived equine

MSCs might prove to be better than eBM-MSCs at healing

of equine wounds. Liu et al. demonstrated that human, fat-

derived MSCs had a more substantial effect on the cutaneous

wound healing of mice than did MSCs derived from the amnion

and bone marrow. Histological evaluation showed enhanced

epithelialization only in the group treated with fat-derived

MSCs (29).

Secondly, using MSCs to speed wound healing may be

beneficial only when healing is impaired or compromised.

Mesenchymal stem cells might prove beneficial when applied

to non-healing and chronic wounds, such as those of elderly

human patients, diabetic patients, patients with large injuries,

and patients receiving glucocorticosteroid therapy. Wounds

of these patients have impaired production of cytokines and

reduced angiogenesis (30–33). The experimentally created

wounds on the horses’ thorax in this study were acute, and the

horses were systemically normal. Furthermore, in this model,

since the wounds were not chronic, the paracrine effect of the

eBM-MSCs may have been inconsequential, because the growth

factors involved in wound healing may have been abundant

and functional, making those supplied by the MSCs redundant.

MSCs might prove useful when applied to chronic wounds

depleted of functional or containing non-functional growth

factors. Because wounds on the distal portion of the limb of

horses heal more slowly than those on the thorax (34), a limb

wound model might be considered compromised and may

be more likely to demonstrate positive effects of exogenous

MSCs. The disadvantage of using an equine limb wound model,

however, is exuberant granulation tissue formation which may

confound the results. In a pilot study using 2 horses, we found

that control wounds and eBMMSC-treated wounds on the distal

portion of the limb filled with exuberant granulation tissue.

The results were difficult to interpret when measures to control

exuberant granulation tissue formation were instituted (data

not shown).

Finally, the viability and the sustained presence of eBM-

MSCs at the site of implantation also raise some doubt about

the efficacy of MSCs in wound healing in this model.

Latest tissue engineering approaches emphasize the

application of scaffolds in wound healing (35–37). Even though

a variety of natural and synthetic material-based scaffolds are

being fabricated, appropriate knowledge of the physicochemical

properties of the biomaterials and scaffolds is needed. At

the same time, one has to evaluate the interaction between

endogenous progenitor and exogenously delivered stem cells

with the scaffolds and hence, even though there is potential,

practical skin scaffold materials remain to be developed.

Challenges exist that we have to circumvent before translating

this technology to skin tissue engineering.

The in vivo portion of this study was a pilot experiment to

assess whether the paracrine effect of eBM-MSCs observed in

vitro could be translated in a relatively simple wound model,

and hence, a small sample number of horses were used. As

demonstrated in Figure 3, objective measurements showed that

the wounds of 2 of the 4 treated horses had improved healing,

but, this positive effect was not significant when data from all 4

horses was analyzed collectively. Nonetheless, our data clearly

supports the use of molecularly–tested equine allogenic eBM-

MSCs to be a potential source of cells for the treatment of

cutaneous wounds without any adverse effects. Even though

there are published reports that demonstrate that mesenchymal

stem cells do have the potential to heal equine cutaneous

wounds (38–40), finding an optimal source of MSCs, finding an

optimal number of cells to use, time and the route at which the

therapy should be applied, and priming MSCs by exposing them

to bioactive scaffolds are some of the aspects of regenerative

medicine, which should be considered for a consistent and

reproducible response.

In summary, we present data showing that eBM-MSCs

enhance the proliferation and paracrine function of cutaneous

fibroblasts. This in vitro effect induced by BM-MSCs, however,

could not be replicated consistently, in vivo using our model.

The influence of the source of equine MSCs for in vivo

application to wounds requires more investigation, and the

model used for in vivo assessment and delivery of MSCs may

need to be improved.

The concentration and the quality of RNA was evaluated

using the RNA 6000 Nano Kit and the 2100 Bioanalyzer

system as per the manufacturer’s recommendations (Agilent

Technologies, Santa Clara, CA). An electropherogram showed

intact 28S and 18S RNA bands and confirmed high quality RNA

with RIN values > 9.0.
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