AUTHOR=Ji Yewon , Cho Hyunwoo , Seon Seungyeob , Lee Kichang , Yoon Hakyoung TITLE=A deep learning model for CT-based kidney volume determination in dogs and normal reference definition JOURNAL=Frontiers in Veterinary Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2022.1011804 DOI=10.3389/fvets.2022.1011804 ISSN=2297-1769 ABSTRACT=
Kidney volume is associated with renal function and the severity of renal diseases, thus accurate assessment of the kidney is important. Although the voxel count method is reported to be more accurate than several methods, its laborious and time-consuming process is considered as a main limitation. In need of a new technology that is fast and as accurate as the manual voxel count method, the aim of this study was to develop the first deep learning model for automatic kidney detection and volume estimation from computed tomography (CT) images of dogs. A total of 182,974 image slices from 386 CT scans of 211 dogs were used to develop this deep learning model. Owing to the variance of kidney size and location in dogs compared to humans, several processing methods and an architecture based on UNEt Transformers which is known to show promising results for various medical image segmentation tasks including this study. Combined loss function and data augmentation were applied to elevate the performance of the model. The Dice similarity coefficient (DSC) which shows the similarity between manual segmentation and automated segmentation by deep-learning model was 0.915 ± 0.054 (mean ± SD) with post-processing. Kidney volume agreement analysis assessing the similarity between the kidney volume estimated by manual voxel count method and the deep-learning model was r = 0.960 (