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A deep learning model for
CT-based kidney volume
determination in dogs and
normal reference definition
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Kidney volume is associated with renal function and the severity of renal

diseases, thus accurate assessment of the kidney is important. Although the

voxel count method is reported to be more accurate than several methods,

its laborious and time-consuming process is considered as a main limitation.

In need of a new technology that is fast and as accurate as the manual

voxel count method, the aim of this study was to develop the first deep

learning model for automatic kidney detection and volume estimation from

computed tomography (CT) images of dogs. A total of 182,974 image slices

from 386 CT scans of 211 dogs were used to develop this deep learning

model. Owing to the variance of kidney size and location in dogs compared

to humans, several processing methods and an architecture based on UNEt

Transformers which is known to show promising results for various medical

image segmentation tasks including this study. Combined loss function and

data augmentation were applied to elevate the performance of the model. The

Dice similarity coe�cient (DSC) which shows the similarity between manual

segmentation and automated segmentation by deep-learning model was

0.915 ± 0.054 (mean ± SD) with post-processing. Kidney volume agreement

analysis assessing the similarity between the kidney volume estimated by

manual voxel count method and the deep-learning model was r = 0.960

(p < 0.001), 0.95 from Lin’s concordance correlation coe�cient (CCC), and

0.975 from the intraclass correlation coe�cient (ICC). Kidney volume was

positively correlated with body weight (BW), and insignificantly correlated with

body conditions score (BCS), age, and sex. The correlations between BW, BCS,

and kidney volume were as follows: kidney volume = 3.701 × BW + 11.962

(R2 = 0.74, p < 0.001) and kidney volume = 19.823 × BW/BCS index + 10.705

(R2 = 0.72, p <0.001). The deep learning model developed in this study is

useful for the automatic estimation of kidney volume. Furthermore, a reference

range established in this study for CT-based normal kidney volume considering

BW and BCS can be helpful in assessment of kidney in dogs.
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Introduction

Many studies have shown that kidney volume is an

important parameter in the evaluation of renal diseases, as it

is associated with renal function and disease severity (1, 2).

Kidney volume is reported to be helpful as a biomarker of

severity and progression in diseases, for example, decreasing

volume in chronic kidney disease (3) and the increasing volume

in polycystic kidney disease (4, 5) and acute kidney diseases such

as acute proliferative glomerulonephritis, acute tubular necrosis

and acute interstitial nephritis (6). Glomerular filtration rate

(GFR) is also reported to correlate well with kidney volume (1).

Owing to its importance in the assessment of renal

function and diseases, several methods have been proposed to

predict kidney volume based on diagnostic imaging. One study

proposed ultrasonographic determination of kidney volume

in dogs using prolate ellipsoid geometric formulae (7), but

several studies have reported that measuring kidney size using

ultrasound causes errors and can be inaccurate or have poor

reproducibility (8–11). The voxel count method based on

computed tomography (CT) has been reported to be an accurate

method for evaluating kidney volume (12–14). However, this

method has limitations in the clinical field because it is time

consuming, as it is performed by drawing a region of interest

(ROI) on every cross-sectional image of kidney in the CT images.

The number of images needed to be hand-drawn was ∼40–70

per CT scan, though it varies with the size of the dog and the

slice thickness.

Many studies in human medicine have proposed deep

learning methods, such as convolutional neural networks, for

renal segmentation and automatic volume estimation (15–

20). As a recent advance of deep learning based analysis

methods, convolutional neural networks (CNNs) have shown

promising performance in medical imaging tasks such as

image classification, detection, and segmentation (21). U-

Net is a modified architecture “fully convolutional network

(22)”, which works with high resolution images and yields

precise segmentations compared to previous architectures

showing good results on various biomedical segmentation

applications (23–25). Recently, a novel architecture called UNEt

Transformers (UNETR) was introduced which demonstrated

superior performance over both CNNs and other transformer-

based models (26).

There have been several studies on texture analysis and

the development of machine learning algorithms for canine

radiographs (27–29) and CT images (30) in veterinary medicine,

but there is no published method to detect the kidney and

Abbreviations: DSC, dice similarity coe�cient; CT, computed

tomography; CNN, convolutional neural networks; BW, body weight;

BCS, body condition score; UNETR, u-net transformer.

determine its volume in dogs from CT images using deep

learning models.

In human medicine, several studies have used CT images to

demonstrate correlations between kidney volume, body weight

(BW), and age (2, 12). In veterinary medicine, previous studies

have examined the relationship between kidney length and

BW using CT images (31) and the relationship between renal

cortical thickness and BW using ultrasound (32), but none have

evaluated the relationships between kidney volume, BW, and age

using CT images. In addition, there is no established reference

range for kidney volume measured from CT images in dogs. In

spite of the importance of kidney volume assessment in clinical

perspective, the lack of reference range for kidney volume

estimated in CT images in normal dogs and the time-consuming

nature of conventional voxel count method to evaluate kidney

volume in CT images have been the impediments for clinicians

to apply it.

In this study, we developed an automated volume estimation

method for the veterinary field. The primary objective was to

develop a deep learning model to detect the kidney and quantify

its volume from CT scans of dogs. The second objective was to

establish reference range values for kidney volume in normal

dogs considering BW, body condition score (BCS), and age.

Materials and methods

Pilot cadaver experiment

To ensure the accuracy of the manual voxel count method,

CT scans were performed on six ex vivo formalin-fixed cadaveric

kidneys (Alexion, TSX-034A, Canon medical system Europe

B.V., Zoetermeer, Netherlands). Imaging protocols were 120

kVp, 150 mAs, 512 × 512 matrix, and 1 rotation time with a

1mm slice thickness. In total, 367 axial slices from 6 ex vivo

kidneys were collected. The numbers of image slices segmented

in each kidney are 66, 63, 46, 47, 85, and 60. The kidney volumes

were calculated using the manual voxel count method from

the CT images and compared with the actual volume which

was measured using the water displacement method. The values

obtained using the two methods were compared.

Dataset

CT image acquisition and dataset for model
development

A total of 386 CT scans (Alexion, TSX-034A, Canonmedical

system Europe B.V. and Zoetermeer, Netherlands, Revolution

ACT, GE Healthcare, Milwaukee, WI, USA and Brivo CT385,

GE Healthcare, Milwaukee, WI, USA) from 211 dogs randomly

collected from multiple centers, for model development and

performance testing. Imaging protocols were as follows; 120
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kVp, 150 mAs, 512 × 512 matrix and 0.75 rotation time

(Alexion),120 kVp, 84 mAs, 512 × 512 matrix and 1 rotation

time (Revolution ACT) and 120 kVp, 69 mAs, 512 × 512

matrix and 1 rotation time (Brivo CT385). CT images with slice

thickness of 1–2.5mm were used. Iohexol (Omnipaque 300, GE

Healthcare, Shanghai, China) at 750mg iodine/kg, at a flow rate

of 2.5–3.5 ml/s was injected.

Pre- and post-contrast CT images were included in the

training and validation data for the performance tests. Dataset

for training data and validation data was split as ratio of 80 to

20 considering the distribution of original dataset. Therefore, a

total of 309 CT scans (179 pre-contrast and 130 post-contrast)

were randomly chosen for the training data, and the remaining

77 CT scans (44 pre-contrast and 33 post-contrast) were used

for validation. Thus, 182,974 image slices (107,340 axial slices,

36,818 coronal slices, and 38,816 sagittal slices) were used

to develop the model. Dogs with both clinically normal and

abnormal kidneys were included since the purpose of this model

is focused on kidney detection and volume estimation. CT scans

with motion artifacts, those without volume information, or that

had any axis less than a certain size were excluded from this

study because the model’s input and output required a certain

size and images less than this patch size could not be applied to

training. Post-contrast CT scans in which the kidneys were not

properly enhanced were also excluded. This study was approved

by the Institutional Animal Care and Use Committee of Jeonbuk

National University (approval no. JBNU 2021-0156).

CT image acquisition and dataset to
establish a normal reference range for
kidney volume

CT scans of 159 normal dogs were used to establish a

normal reference range for the kidney volume of dogs. The

medical records of the dogs, including clinical data of sex, age,

BW, and laboratory examination results, were also collected.

The inclusion criteria for the normal group were normal blood

analysis results, no abnormal findings on diagnostic imaging, or

clinical signs associated with renal function.

Manual segmentation and
pre-processing

Manual segmentation

The CT scans included in the study were manually labeled

by 10 clinicians (Residents in the Veterinary Medical Imaging

Department of the Teaching Hospital of Jeonbuk National

University) using Medilabel software (Ingradient,Inc., Seoul,

South Korea), a 3D-segmentation tool. Both pre- and post-

contrast scans were used for segmentation. In pre-contrast

images, the renal parenchyma, renal pelvis, and the fat around it

were segmented separately to avoid false training results where

the model might recognize the fat around the renal pelvis as a

part of the kidney (Figures 1A,B). Since cortex and medulla can

be distinguished in post-contrast images, kidney was segmented

into following three classes: 1. cortex, 2. medulla, 3. renal pelvis

and the fat around it (Figures 1D,E). Then the sum of cortex and

medulla was considered as the renal parenchyma, as it was in

pre-contrast images. When the segmentation of each image is

done, 3D segmentation of the kidneys is shown (Figures 1C,F).

Pre-processing

The training data was pre-processed in the following

four steps: non-zero region crop, kidney localization, data

resampling, and pixel normalization in PyTorch using

TorchIO (33).

A non-zero region crop is the process of cropping out the

background to exclusively obtain the actual region of interest.

Voxels with certain values were considered as the background.

The images were then divided into background and foreground

images, and the image crop was performed so that the final

image included a non-zero region without loss. The non-zero

cropping can be performed by finding and cropping the largest

contour on the sagittal and dorsal plane of the CT images.

Kidney localization was conducted to allow the deep

learning model to train only the target region (kidney) without

interfering structures in the images. To perform this processing

automatically, we assumed that the kidney is located close to the

caudal margin of the lung. Then, the lung can be roughly found

by the average pixel intensity and histogram which is calculated

from axial slices tracked from the head-sided of each dog. After

detecting the caudal margin of the lung, the CT image could be

cropped with a sufficiently large window to include the kidney

in the cropped region. To avoid possible errors during these

sequences, enough margin is added to the calculated values.

One of the impediments to model training is that the pixel

spacing is different for each CT scan. Data resampling was

performed to fix all the different pixel spacings to the same size

(x = 1.5, y= 1.5, and z = 2.0).

Pixel normalization was performed to clip the minimum

(−1,024) and maximum (3,025) Hounsfield unit (HU) values to

minimum (−175), maximum (250).

Deep learning model architecture and
implementation details

Model architecture

Two recently proposed model architectures, i.e., nnUNet

(34) and UNETR are compared for our experiment. In this

study, an architecture based on UNETR (Figure 2) was used

to auto-segment the kidney since UNETR showed better
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FIGURE 1

Examples of manual segmentations. Kidneys of pre-contrast (A,B), post-contrast (D,E) images and the image showing final result of 3D

segmentation (C,F) using the 3D-segmentation tool (Medilabel software) were manually segmented. In the pre-contrast images, kidneys were

segmented into two classes: parenchyma (blue-green color in the labeled image) and fat around the renal pelvis (purple color in the labeled

image). The post-contrast images were classified into three classes: cortex (Class 1, light blue color in labeled image), medulla (Class 2, pink

color in labeled image), renal pelvis, and fat around the renal pelvis (Class 3, purple color in labeled image). When the segmentation for each

single image is done, the 3D-segmentation is shown as (C,F). The sum of the cortex and medulla was considered the parenchyma when the

volume was calculated.

FIGURE 2

Schematic illustration of the model architecture used in this study. The model is based on UNETR architecture and has a segmentation network

of encoder-decoder structure with 12 transformer blocks and three decoding stages. Each deconvolution module consists of repeating

deconvolution and convolution, batch normalization, and activation functions. Each decoding stage is an up-sampling stage which conducts

up-scaling after two rounds of 3D convolution, batch normalization, and activation function tasks.

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2022.1011804
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ji et al. 10.3389/fvets.2022.1011804

performance in the preliminary experiment. The model is a

segmentation network that has an encoder-decoder structure

with 12 transformer blocks and three decoding stages.

Implementation details

As the model predicts volume into 3 classes, the input

channel of 1 and the output channel of 3 utilizes. To keep the

features in the memory space of GPU, input volume size of (x=

96, y= 96, z= 96), hidden layer dimension of 768, feed-forward

layer dimension of 3,072 and attention head number of 12 are

used. For training, each randomdata augmentation is performed

in probability of 0.1 and AdamW optimizer with initial learning

rate of 0.00001 is used to minimize the loss function. For further

details, the decoding stage of the model is also illustrated in

Figure 2.

The PyTorch framework and Medical Open Network for AI

(MONAI) were used to construct our model. Previous studies

have shown that the combined loss function, i.e., weighted

addition of cross-entropy and dice loss function, can improve

the performance of the segmentation network (35–38). Due

to our network performing segmentation on binary class and

predicting various sizes of regions of interest, the combined loss

function is utilized as a combination of the disc loss function and

categorical cross-entropy (CE) loss function into the same scale.

Loss function is used to improve the performance of

deep-learning models in spite of the class imbalance owing

to the varying size of kidneys in the dataset. The Loss

function used in this study is as follows: Loss function F =

Lossdice + LossCE. Lossdice = 1 -
2 ∗

∑

Pixeltrue ∗ Pixelpred
∑

Pixeltrue
2
+

∑

Pixelpred
2
+ ǫ

,

LossCE = −
∑

Pixeltrue · log
(

Spred

)

, respectively (Pixeltrue, 0

for the background, 1 for the kidney; Spred, sigmoid output

(0∼1); Pixelpred, 0 for the background, 1 for the kidney;

pred, prediction).

Data augmentation was performed to elevate the

performance using random crop, random flip, random

rotation, and random intensity shift. Parameters for each

transformations are selected to be realistic on the given images.

The augmented images were also in distribution of original

images which means the mean DSC of the model increases with

the augmentation. Deep-learning model training was conducted

for 400 epochs using an RTX A5000 GPU. The weight of the

model showed the best validation DSC score during the training

is selected as the final result of the model. The loss curve is

monitored not to diverge during the training.

Post-processing and volume measuring

Post-processing

To exclude unnecessary parts in our results, each prediction

was divided into connected components, leaving four major

components. Then, re-ordering was conducted using the

voxel location data of each component and the Euclidean

distances among the components. The component with themost

information after the reordering process was selected for the

final prediction.

Volume measuring from CT images using the
voxel count method

The volume of the unit voxel in the CT images can be

calculated by x-spacing ∗ y-spacing ∗ z-spacing, and the final

volume prediction was performed using the counted number

of voxels in the ROI after post-processing (39), i.e., x-spacing ∗

y-spacing ∗ z-spacing ∗ number of voxels.

Model accuracy and statistical analysis

Statistical analysis using the t-test and absolute agreement

on intraclass correlation coefficient (ICC) were performed to

evaluate the accuracy of the manual voxel count method when

comparing the results between the water displacement method

and manual voxel count method. For the normal distribution

test, Kolmogorov-Smirnov test and Shapiro-Wilk test were

performed. Levene’s test for equality of variances was performed.

The Dice similarity coefficient (DSC) was used to evaluate

the performance of the auto-segmentation of kidneys by deep-

learning model (40, 41). DSCmeasures the relative voxel overlap

between segmentations performed by the automated model

and the manual segmentations so that it shows the similarity

between segmentations performed by automated model and the

manual segmentations. DSC close to 1 implies higher similarity

between two segmentations. The DSCs showing the similarity

between the automated model and the manual segmentations of

whole kidney, cortex and medulla are measured. The DSC was

measured using the following formula:

DSC=
2 TP

2 TP+FP+FN (TP, true positive; FP, false positive; FN,

false negative).

The total kidney volume measured by the deep learning

model and the manual voxel count method were compared

to evaluate the accuracy of the deep learning model. Seventy-

seven test sets randomly chosen for the validation data that

were not used as training data were used. Statistical analysis was

performed using Lin’s concordance correlation coefficient (Lin’s

CCC) and ICC.

One-way ANOVA was used to show the difference of

kidney volume/BW indices among the following four groups;

Intact males, neutered males, intact females, and neutered

females. Kolmogorov-Smirnov test and Shapiro-Wilk test were

performed for the normal distribution test. Mann-Whitney test

was used to show the difference of volume/BW indices and

kidney volume between intact vs. neutered dogs and male

vs. female dogs. The Pearson correlation coefficients, multiple

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2022.1011804
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ji et al. 10.3389/fvets.2022.1011804

regression analyses are used to show the correlations between

BW, BCS, age and kidney volume. The volume/BW index

was used to normalize kidney volume by BW. More detailed

information is given at the respective result sections.

Statistical significance was set at P < 0.05. Statistical analyses

were performed using SPSS version 27.7 (SPSS Inc., Chicago,

IL, USA).

Time measurement

The approximate time consumed for segmentation per dog

was counted from the start and to the end of labeling using the

Medilabel software (Ingradient Inc., Seoul, South Korea) and the

time consumed for auto-segmentation by deep-learning model

was recorded.

Results

Pilot cadaver experiment; good
agreement between manual voxel count
method and actual volume

Volumes measured by the manual voxel count method and

water displacement test showed good agreement, with an ICC

of 0.997 [95% CI:0.401–1.00, p < 0.001]. The Kolmogorov-

Smirnov test showed satisfaction of normality assumption of two

groups (p = 0.059, p = 0.128, manual voxel count method and

water displacement method, respectively), so did the Shapiro-

Wilk test of p = 0.104 and p = 0.210, respectively. Levene’s

test showed equality of variances (p = 0.990). The t-test

showed no statistically significant difference between the two

methods (p= 0.864).

DSC and the time consumed for
automatic estimation of kidney volume;
deep learning model shows high
similarity compared to manual
segmentation in a short time

Ninety eight neutered males, 12 intact males, 79 neutered

females, and 22 intact female dogs were included in the study.

The mean BW of the dogs was 6.83 kg (range: 1.48–41.5 kg),

mean age was 9.6 years (range: 0.3–20 years).

To evaluate the performance of the model, the DSC

comparing the result of manual segmentation and automated

segmentation was calculated for the 77 test sets. The overall

mean DSC values before post-processing and after post-

processing were 0.912 ± 0.057 and 0.915 ± 0.054 (mean ± SD),

respectively. Figure 3 shows the corresponding CNN-generated

probability maps in color.

FIGURE 3

Probability maps overlaid on ground truth computed

tomography (CT) images. The output of the deep-learning

model at each location is generated as a probability map and

expressed as a heat map. For example, image (A) shows light

blue to green color at the cranial border of right kidney and

image (B) also shows similar color at the cranial border of left

kidney. As the borderline between right kidney and liver is not

usually delineated well on pre-contrast CT images, the

probability is low, and it is expressed as blue to green color

rather than red.

When the cortex and medulla were predicted separately,

the overall mean DSC values were 0.772 ± 0.152 and 0.779

± 0.143 for the cortex and medulla, respectively. Moreover, to

evaluate the combined loss function, the network is trained with

three different loss function while the training strategy is fixed

equally. The network showed 0.886 of DSC with only cross-

entropy loss function and 0.869 of DSC with only dice loss

function. Therefore, the result from the combined loss function

mentioned above is used for volume prediction.

The mean time consumed for the automatic estimation of

kidney volume in the validation set was 17.69 s per dog, while

the manual segmentation method took∼30–45min per dog.

Total kidney volume agreement analysis;
high similarity between deep learning
model and manual voxel count method

The statistical results of the total kidney volume agreement

between the deep learning model and manual voxel count

method are summarized in Table 1, which shows that the results

from both methods were similar. There is a substantial strength

of correlation with Lin’s CCC of 0.95 [95% CI:0.93–0.97]. The

ICC of absolute agreement between the two methods was 0.975

(95% CI:0.961–0.984, p < 0.001). Figure 4 shows the high

correlation between the two methods. The mean difference

index (
∣

∣Ground truth volume− Automated volume
∣

∣ / Ground
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TABLE 1 Volume agreement analysis between the automatically

estimated volume and the volume measured by the manual voxel

count method.

Volume agreement analysis

Auto vs. Manual Lin’s CCC 95% CI ICC 95% CI

0.95 [0.93, 0.97] 0.975 [0.96,0.98]

Auto, automatically estimated volume; Manual, volume measured by the manual voxel

count method; CCC, concordance correlation coefficient; CI, confidence interval; ICC,

intraclass correlation coefficient (absolute agreement).

truth volume) between the two methods was 0.081 and the

estimated volumes measured from the pre- and post-contrast

images were similar.

Kidney volume in normal dogs; formula
established for the estimated kidney
volume in normal dogs considering BW
and BCS

Themean age of normal dogs included was 9.31± 4.07 years

(mean ± SD) and mean BW was 6.78 ± 5.40 kg (mean ± SD).

The sex distributions of the dogs included in this study were:

11 intact males, 69 neutered males, 15 intact females, and 64

neutered females. Mean age of male dogs and female dogs were

8.92 ± 3.99 years, 9.69 ± 4.05 years (mean ± SD), respectively.

Mean BW of male dogs and female dogs were 7.39 ± 6.48 kg,

6.16± 3.98 kg (mean± SD), respectively.

The mean kidney volume measured by manual voxel count

method was 37.05 ± 23.16 cm3 (mean ± SD). The Pearson

correlation coefficients (r) of the kidney volume between BW

and the BW/BCS index (BW/BCS) were 0.860 (p < 0.001)

and 0.849 (p < 0.001), respectively. Two multiple regression

analyses were conducted with the first multiple regression

analysis performed using BW and BCS as independent variables,

and kidney volume as the dependent variable. This analysis

found that kidney volume and BW were positively correlated,

while BCS was negatively correlated. However, the negative

correlation between kidney volume and BCS was not significant.

This relationship is expressed in a regression equation as follows:

kidney volume = 3.740 × BW – 1.071 × BCS + 17.181 (R2 =

0.74, p < 0.001 for BW and p = 0.300 for BCS) (Figure 5A).

The relationship between kidney volume and BW/BCS was

described as follows: kidney volume= 19.823× BW/BCS index

+ 10.705 (R2 = 0.72, p < 0.001) (Figure 5C). The second

multiple regression analysis was performed similarly to the first

analysis, but with BW and age used as independent variables.

The relationship is expressed by the following formula: kidney

volume = 3.697 × BW – 0.054 × age + 12.497 (R2 = 0.74,

p < 0.001 for BW and p = 0.818 for age) (Figure 5B). The

relationship between kidney volume and BW was expressed

FIGURE 4

Correlation for volume measurements by manual voxel count

method and deep-learning model. The volume estimated from

the manual voxel count method and the automatically

estimated volume by the deep learning model showed high

correlation (r = 0.960, R2 = 0.92, p < 0.001).

using the following formula: kidney volume = 3.701 × BW +

11.962 (R2 = 0.74) (Figure 5D).

The mean age, BW, kidney volume, and volume/BW indices

of the intact males, neutered males, intact females, and neutered

females are summarized (Table 2). The mean kidney volume and

volume/BW indices for each group are shown in a box plot

(Figure 6). One-way ANOVA showed no statistically significant

difference in volume/BW indices among the four groups (p

= 0.658). Mann-Whitney test of volume/BW indices between

intact dogs vs. neutered dogs (p = 0.379), and male dogs

vs. female dogs (p = 0.256) were not significantly different.

Meanwhile, the Mann-Whitney test showed significantly larger

mean kidney volumes of male dogs than that of and female

dogs (p = 0.042), 40.94 ± 26.43 and 33.10 ± 18.47 (mean ±

SD), respectively.

Discussion

This is the first study in the veterinary medical field which

presents an automatic method to segment kidneys using CT

images in dogs and investigates the accuracy and precision of its

segmentation and volume measurement using a deep-learning

algorithm. Up until now, manual segmentation methods

have been commonly used to measure kidney volume using

computed tomography (CT) images. Although this method is

accurate, it is time-consuming for clinicians and it is suggested

that this automated method will help clinicians measure kidney

volumes with significantly less work.
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FIGURE 5

Scatter plots of multiple regression analysis and regression lines. Scatter plots of multiple regression analysis and regression lines. Multiple

regression analysis of the relationship between BW, BCS, and kidney volume (A). The regression equation is as follows: Kidney volume =

3.740*BW – 1.071*BCS + 17.181. (R2 = 0.74, p < 0.001 for BW and p=0.300 for BCS). Multiple regression analysis of the relationship between

BW, age, and kidney volume (B). The regression equation is as follows: Kidney volume = 3.697*BW – 0.054*Age + 12.497 (R2 = 0.74, p < 0.001

for BW and p = 0.818 for age). Scatter plots of regression analysis between kidney volume and BW/BCS index (C). The regression equation is as

follow: Kidney volume = 19.823 * BW/BCS index + 10.705 (R2 = 0.72, p < 0.001), The regression analysis between kidney volume and BW (D).

The equation is as follows: Kidney volume = 3.701*BW + 11.962 (R2 = 0.74, p < 0.001). BW, body weight; BCS, body condition score.

TABLE 2 Data of the dogs in each group including number, mean age, mean BW, mean kidney volume, and mean volume/BW.

(Mean ± SD) Intact male Neutered male Intact female Neutered female

Number of dogs n= 11 n= 69 n= 15 n= 64

Age (years) 7.04± 6.61 9.50± 3.66 9.49± 4.06 10.11± 4.10

BW (kg) 6.90± 4.92 7.58± 6.53 5.68± 2.85 6.1± 3.98

Volume (cm3) 45.61± 35.77 40.20± 25.10 31.69± 16.34 33.43± 19.18

Volume / BW 6.51± 1.85 6.01± 1.72 6.06± 2.35 5.80± 1.79

BW, body weight.

The ex vivo cadaver kidney experiment showed excellent

agreement between the volume measured using the water

displacement method and the manual voxel count method.

Thus, the accuracy of the manual voxel count method

used in this study was confirmed, as in previous studies.

The volume measured by the manual voxel count method

was not significantly different to the volume measured by

the automated model, therefore it is assumed that the

actual volume was similar to the volume measured by the

automated model.

In this study, we developed a kidney detection model

that showed 0.912 ± 0.057 and 0.915 ± 0.054 (mean ±

SD) of DSC, pre-processing, and post-processing, respectively.

Previous attempts have been made to develop machine learning

methods to automatically segment kidneys in the clinical

medical imaging field. da Cruz et al. (19) reported 0.96 of
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FIGURE 6

Boxplot of mean kidney volume and mean volume/BW indices. Mean kidney volume (A) and mean volume/BW indices (B) of each group. In

both results, no statistically significant di�erence was found between the groups. All the data points are shown in the plot. The upper and lower

edges of the box represent 25th (Lower quartile, Q1) and 75th (Upper quartile, Q3) percentiles. The vertical line (whiskers) between lower and

upper extreme on each box represents the distribution range of data. The mild outliers (empty circles) are data points located outside of the

whiskers, below Q1 – 1.5 × Interquartile range (IQR) or above Q3 + 1.5 × IQR. The extreme outliers (asterisks) are data points more extreme

than Q1 – 3 × IQR or Q3 + 3 × IQR. IM, intact male; NM, neutered male; IF, intact female; NF, neutered female.

average DSC in final segmentation result, Daniel et al. (15)

reported 0.93, and Thong et al. (20) reported 0.95 (Left kidney),

0.93 (Right kidney) by ConvNet-Coarse, 0.94 (Left kidney), and

0.93 (Right kidney) by ConvNet-Fine. Despite these promising

results, this study has several limitations. Compared with the

results achieved in the clinical medical imaging field, the model

in our study showed slightly lower DSC results. Dogs have a

wide range of body sizes, with the various breeds and this was

an obstacle in the training process and a factor of the lower

DSC compared to other models developed for humans because

people have a relatively narrow body size range compared to

dogs. In addition, the mean DSC for predicting the cortex and

medulla was lower than that of the whole kidney. This could be

attributed to the fact that the degree of contrast enhancement

and its phase were not identical in each CT scan. In addition,

segmentation was performed using the hand-drawn method,

which could have subtle errors owing to the minimal pixel size

of the segmentation tool. Further studies training the CT scans

of the same enhancement phase can possibly increase the DSC

of the cortex and medulla.

The time consumed estimating the volume of kidneys from

CT images with the deep learning model in this study was

significantly faster than the manual voxel count method. It is

suggested that measuring kidney volume using this model is fast

and just as accurate as the manual voxel count method, which

can result in time saved for clinicians.

The model architecture in this study is a UNETR model

based on a vision transformer which shows good performance

in recognizing the anatomical structures of humans in a global

context (26, 42). In the first attempt to build an architecture

based on a 3D convolution-based model with the same data

used in this study, the mean DSC obtained from the test

sets was 0.84, which was unsuitable for the final result of

this study. Thus, an architecture based on the UNETR was

used to develop a better-performing model. Consequently, in

this study the mean DSC (0.91) was significantly higher than

the score obtained from the 3D convolution-based model.

Considering the better result achieved by applying the UNETR

model in veterinary medical imaging, further models developed

for other organs in the veterinary field using this method

are expected.

In this study, the BW and BW/BCS index were significantly

positively correlated with kidney volume, which is consistent

with the results of previous studies showing a significantly

positive linear relationship between BW, BW/BCS index, and

kidney size (32, 43, 44). In a previous study (32), the BW/BCS

index showed a stronger correlation with renal cortical thickness

than BW. However, our correlations between kidney volume

and BW/BCS index and BW were not significantly different,

even though BW had a positive correlation and BCS a negative

correlation. The BCS of the dogs included in this study was

mostly between four and six and dogs with extreme BCS were

not included. It is assumed that this could be the reason that the

BW/BCS index and BW showed similar correlations with kidney

volume. It is more accurate to use the BW/BCS index in dogs

with extreme BCS to calculate their normally expected volume;

however, using BW alone can also offer similarly accurate results

in dogs with normal BCS.

Our results showed that age was insignificantly correlated

with kidney volume, regardless of sex. This might be associated

with the inclusion criteria for dogs in this study. Dogs with

clinically abnormal kidneys were excluded; therefore, only dogs
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with clinically normal kidneys were used to establish a normal

volume range and investigate the relationships between kidney

volume and several factors. Previous studies have reported on

the relationship between age and kidney size in dogs, finding

aging to have no significant effect on kidney size (44, 45). Several

studies have shown that kidney parenchymal volume tends to

decrease with age (46, 47). Conversely, some studies have found

no significant evidence of a decline in kidney volume with age,

except in very elderly patients (48, 49). Previous clinical studies

have shown that imaging studies which exclude people with

comorbidities tend to show less of a decline in kidney volume

with age, whereas studies with less exclusion of comorbidity

report a decline. In particular, a study of potential kidney donors

did not show any evidence of decline (46). Considering these

results, large sample of abnormal dogs with less exclusion and

with an older age may show a greater decline in kidney volume

with aging.

In this study, normal dogs were sorted into groups

to determine whether sex and neutering were associated

with a difference in normal kidney volume. We found no

statistically significant influence of sex or neutering status on

the volume/BW index among all groups. This was consistent

with previous studies that found that sex had no significant

effect on kidney size on radiographs in dogs (44) and cats (50).

Meanwhile, when BW was not considered, the mean kidney

volume in the male group was significantly larger than that

in the female group, but there was no significant difference

between male and female dogs when BW was considered and

BW was strongly positively correlated with kidney volume. This

is assumed to be associated with the larger mean BW in the male

group compared with that of the female group.

Neutering status is known to be associated with the kidney

size in animals. Neutered cats have smaller kidneys than intact

cats (50). One study demonstrated hypertrophy of renal tissues

as one of the effects of exogenous testosterone injection in mice,

and hormonal influence is considered to be a reason for the

smaller kidneys in neutered animals (51).

One of the limitations of this study was that the data

used for the development of the deep learning model were

not controlled, due to the retrospective nature of the study.

A prospective study with controlled data could result in the

development of a model with better performance. In addition,

the model developed in this study was not capable of detecting

lesions and had low accuracy in the detection of the cortex and

medulla. Further studies are needed to develop a deep learning

model that can detect lesions and the more detailed anatomical

structures of the kidney. In addition, given that the wide range

of body sizes of dogs was considered the main obstacle to

model development in this study, adding more data for training

could probably increase the model’s accuracy and precision to

overcome this factor.

In conclusion, the deep learning model developed in this

study can potentially help clinicians easily estimate kidney

volume from CT images in dogs. Furthermore, this study

provides a reference range for kidney volume in normal dogs

measured from CT images considering BW and BCS which can

be applied to the clinical evaluation of kidneys.
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