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Introduction: Biological sample collection from wild and farms animals

is often associated with di�culties related to the handling and restraint

procedures, and most of the time it could induce stress, altering the welfare

and physiological homeostasis. The analysis of fecal T3 metabolites (FTMs)

allows to test samples collected in a non-invasive manner, providing several

information about the animal’s physiological conditions and the e�ects related

to environmental and nutritional variations. This procedure has found wide

application in wild species, but less in domestic ones.

Methods: The aim of this work was to validate the use of an immuno-

enzymatic competitive ELISA kit, designed for T3 quantification in humanblood

serum samples, for the assessment of FTMs in the sheep. For the analytical

validation, precision, recovery and parallelism were evaluated; for biological

validation the variations of FTMs in relation to age, sex and the physiological

status of the animal were determined.

Results: After a verification of the precision (RSD % < 15%), mean recovery

(75%) and parallelism (CV% < 10%), the kit was used to measure FTMs in cyclic,

pregnant, and early lactating ewes aswell as in rams and ewe lambs. The results

showed that FTMs concentrations in pregnant ewes were significantly lower

(p < 0.05) than in cyclic and early lactation ones. Furthermore, there were no

significant di�erences in FTMs levels between ewes and rams, while in lambs

FTMs levels were higher than in adults (p < 0.001).

Conclusion: In conclusion the present study demonstrates that FTMs can

be reliably and accurately determined in sheep feces, using an ELISA kit

formulated for human serum T3 assay. The application of this method in the

livestock sector could allow to improve our knowledge about the response

of animals to di�erent physiological and environmental conditions, and thus

assess their welfare.
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Introduction

Thyroid hormones (THs) are known to regulatemetabolism,

blood pressure, body temperature, and energy expenditure

(1–4). As such, they can be considered as indicators of

animal metabolic and nutritional status (5) by regulating and

stimulating proteins, fat, carbohydrate, and vitamin metabolism

(3, 6).

THs are released by the thyroid gland under the regulation of

the hypothalamus-pituitary-thyroid gland axis (7). Thyrotropin-

releasing hormone (TRH), produced and released by the

hypothalamus, stimulate the anterior pituitary gland to secrete

thyroid-stimulating hormone (TSH, or thyrotropin) into the

bloodstream. In the thyroid follicles gland, TSH stimulates the

production of tetraiodothyronine (T4) and triiodothyronine

(T3). The major form of THs in the blood is thyroxin (T4), but

triiodothyronine (T3) is more biologically active and potent than

T4 (8). Most of circulating T3 originates at peripheral levels from

T4 conversion, which has a longer blood half-life (9).

The secretion of different quantity of THs is an important

adaptive response to changes in physiological status, energy

balance and environmental conditions (10). For example, THs

concentrations change with age (11, 12), sex (13), and seasons (3,

4), and their secretion can also be affected by other factors such

as nutritional condition (11, 14), environmental temperature

(15, 16), and reproductive status (12, 17).

THs play a key role in animal’s metabolic responses to

adapt to changes of external conditions, variations in nutrient

requirements and availability, and to homeorhetic changes

during different physiological stages. In several ungulates,

including sheep (Ovis spp.), donkeys (Equus asinus) and llamas

(Lama glama), THs increase in response to cold ambient

temperatures (18–20), thus highlighting the critical role of this

hormones in the thermoregulation mechanism (2). The study

of THs fluctuations is also particularly useful to characterize

nutritional stress (3, 21, 22).

Moreover, thyroid activity increases throughout pregnancy
(23) and THs act as mediators in this process by directing
nutrients and energy to the maternal reproductive tissues and

the developing fetus (24). During lactation, adjustments of

THs levels are essential to establish the metabolic priority for

the lactating mammary gland (25). In human and non-human

primates, THs concentrations have indeed been reported to be

higher in pregnant and lactating females than in cyclic females

(26, 27) and conversely other studies have shown that reduced

reproductive success is associated with low THs levels (28).

In livestock, the evaluation of THs fluctuations can help to

obtain useful information about animal’s response to different

physiological and environmental conditions, and hence to assess

their welfare.

In both birds and mammals, THs are excreted in the bile

(29–31) and their concentrations can thus be determined in

feces. In feces THs are found as fecal thyroid metabolites

(FTMs), with T3 representing the major metabolite (3). The

main advantages of analyzing hormone metabolite levels in the

fecal matrix relies to their easy accessibility, to the reduction of

the stress related to handling and blood collection procedures,

and the variety of hormones that can be measured (3, 21, 32).

This practice, that has found a large use in wildlife species

(33–36), still has a minor use in domestic animals.

The validation of the analytical method in a given species

is essential to correctly interpret the results found (34, 37).

Given these premises, the aim of this work is to validate the

use of an immuno-enzymatic competitive ELISA kit, designed

for T3 quantification in human blood serum samples, for the

assessment of FTMs in the sheep. The samemethod was recently

validated for the measurement of FTMs in European mouflons

(Ovis aries musimon). This ELISA kit is based on polyclonal

antibodies group specific, capable of detecting the predominant

fecal metabolites of the parent hormone (35). In this work, we

performed both an analytical validation, in terms of parallelism,

recovery and precision, and a biological validation, investigating

the FTMs changes in relation to age, sex, and the physiological

status of the animal.

Materials and methods

Materials

Triiodothyronine (T3) standard, ethanol and Phosphate

Buffered Saline was obtained from Merck [cod. 642511,

51976, and 806552); T3 ELISA Kit was obtained from

Diametra (DiaMetra Srl Management and Coordination:

Immunodiagnostic Systems (IDS) Ltd., Boldon, UK, a

PerkinElmer Company catalog REF DKO044].

Animals

The experiment was carried out at Bonassai research station

of Agris Sardegna and the Department of VeterinaryMedicine at

the University of Sassari, located both in north-western Sardinia,

Italy. Sarda sheep, used for this study, were selected from the

same experimental flock, and they were not used in previous

experiments. Animals were fed with concentrate and hay with

freely available water and housed in semi-open pens.

Fecal samples were collected from both lambs (40–50 days

old; n= 10) and adult (3–5 years old) ewes (n= 30) and rams (n

= 10) in a good body condition and health status. The sampling

included ewes in different physiological conditions, i.e., cyclic

(n = 10), pregnant (n = 10), and during their early lactation

period (n = 10). At the Agris experimental farm, lambs, rams,

and ewes in different reproductive status are kept in separated

pens according to their productive status. Before sampling, the

reproductive status of cyclic and pregnant ewes was confirmed
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by ultrasound scanning of the ovaries, which was performed

with a real-time B-mode scanner (Aloka SSD 500; Aloka Co.,

Tokyo, Japan), as previously described (38). Ewes in their early

lactation period (15–20 days from parturition) were with their

lambs in the group of milked ewes. Before starting to collect

feces, animals from each experimental groups were moved in

deep cleaned pens. Each animal was crayon marked in rump

and head using different colors to allow individual identification

and avoid double sampling from the same animal. Fecal samples

were recovered after posting and observation of the animal’s

defecation, without causing animal stress.

Sampling was performed on the same day (December 20th,

2021) in all the animals to limit the variations in FTMs due to

the external environmental conditions.

The fecal samples were collected with latex gloves and were

put into sterile centrifuge tubes, sealed, marked, and transported

on ice to laboratory within 2 h from collection.

FTMs extraction and ELISA assay

0.2 g of fresh feces were individually homogenized and

freeze-dried in 15mL tubes. Then, FTMs were extracted

following a protocol previously described by Pasciu et al. (35).

Briefly, the freeze-dried samples were extracted with ethanol

70%, dried under a stream of compressed air and the residues

were reconstituted with 1ml of phosphate buffered saline.

FTMs were analyzed with T3 ELISA kit using a microplate

reader (POLARstar Omega; BMG Labtech), with BMG Labtech

software for data analysis. The assay is a competitive method

designed for human T3 in blood serum and recently validated

for mouflon FTMs (35). This kit is based on group-specific

polyclonal antibodies able to identify the parent compound

and its metabolites. The lower detection limit of the kit

(0.05 ng/mL) was suitable for our analytical purpose. The

specific cross-reactivity supplied by the manufacturer for

the T3 antibody to other compounds was: l-triiodothyronine

1.00%, d-triiodothyronine 0.015%, l-thyroxine 0.01%, d-

thyroxine 0.0025%, monoido-tyrosine n.d., diiodo-tyrosine

n.d., triiodothyroacetic acid n.d., and tetraiodothyroacetic acid

n.d. Quality controls provided by the manufacturer were used

to verify the performance of the assay. T3 concentration is

calculated through a calibration curve (0–7.5 ng/mL).

This assay kit has been validated analytically and biologically

for sheep fecal matrix.

Analytical validation

For analytical validation, precision, recovery and parallelism

were measured. 0.2 g of unfortified feces, obtained from 3 cyclic

ewes and 3 rams, were analyzed to determined basal FTMs

concentration. To assess recovery and precision parameters,

spiked samples were prepared fortifying 0.2 g of fresh feces

at two level concentrations (1 and 5 ng/mL of standard T3).

Then, all samples were freeze-dried and extracted with ethanol

70% using the method of Pasciu et al. (35). Dry residue was

reconstituted with 1ml of phosphate buffered saline (PBS).

The precision of the method, expressed as percent relative

standard deviation (RSD %), was calculated for three replicates

in the same day (intra-day repeatability) and over three

consecutive days (inter-day repeatability).

The accuracy, which represents the closeness of the test

results to the true values, was determined as recovery % for five

replicates using the following formula:

FF

STD
× 100

Where FF were feces fortified, and STD were corresponding

T3 standard solutions (1 or 5 ng/mL in PBS).

Parallelism, which allow to verify whether the assay

maintains linearity under dilution of unfortified samples (39),

was analyzed using serially diluted fecal extracts from 5 real

samples (no spiked) at high concentration. In the Elisa test, the

purpose of the parallelism study is to verify that the binding

of the endogenous analyte to antibodies is the same as the

calibrator. At least three serial dilutions were made for samples,

and the samples were analyzed in duplicates in the same run, by

compensating with the dilution factor. Parallelismwas expressed

as coefficient of variation (% CV). The % CV<20% indicates the

presence of parallelism (39).

Biological validation

To perform the biological validation of the method, we

compared differences in FTM levels between cyclic (n = 10),

pregnant (n = 10) and early lactating ewes (n = 10), rams (n

= 10), and lambs (n = 10) collected in the same day (December

20th, 2021): (Average Ambient Temperature= 14.0◦C T min=

7.0◦C T max = 11.0◦C). FTMs values were expressed as ng/g

fresh feces. The concentrations obtained ng/mL from the ELISA

assay were converted in ng/g wet feces, considering that 0.2 g wet

feces (freeze-dried, extracted, and dried) were re-suspended with

1mL of PBS, obtaining 0.2 g of wet feces in 1ml of solvent (ng

FTMs/g wet feces= FTMs ng/mL/0.2 g/ml).

Statistical analysis

Results are expressed as mean values (mean ± SE).

Variable normality of the studied groups was assessed by the
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Kolmogorov–Smirnov test. Differences were considered to be

statistically significant at p < 0.05.

Differences between lambs, rams, and ewes were analyzed

by Kruskal–Wallis, using groups as factor, in order to point out

statistical differences. Differences between cycling, pregnant and

early lactation ewes were analyzed by a One-way ANOVA, using

groups as factor, in order to point out statistical differences.

As post-hoc test, Fisher LSD test was used to highlight possible

differences within and between groups.

Analyses were performed using Minitab 17 Statistical

Software (2010, Minitab, Inc., State College, PA, USA).

Results and discussion

Previous researches demonstrated that T3 metabolites can

be measured successfully in fecal matrix of wild ungulates (32,

35, 36). This study aims to validate the use of an human serum

T3 ELISA kit in sheep feces, as previously described in mouflon

(35). The biological validation was performed evaluating FTMs

concentrations in sheep in different physiological stages.

The analytical validation on fecal sheep samples showed

a good accuracy with a mean recovery of 80.99 and 70.08%

at 1 and 5 ng/mL, respectively (Table 1). Recovery rates were

acceptable according to international guidelines (70–120%) (40).

The repeatability data were within 15%, as requested by the

guidelines for method validation (Table 1) (41).

Parallelism, evaluated by dilution of unfortified samples with

high endogenous concentrations of the analyte, showed % CV

lower than 10% (7.72 ± 2.30), perfectly in accordance with

requested values (% CV < 20%) (39). In Figure 1 reported

standard curve vs. parallelism graphs was reported (42).

These results confirmed that human serumT3 ELISA kit was

suitable for FTMs determination in sheep.

Considering these results, the method was applied for

biological validation in sheep feces, assaying FTM levels at

different reproductive status in ewes at first (Figure 2), and

then considering variations related to age and sex (Figure 3). As

shown in Figure 2, there were no significant differences between

FTMs concentration in cyclic (42.07 ± 2.59 ng/g wet feces) and

early lactation ewes (37.70 ± 1.61 ng/g wet feces). However,

in pregnant ewes, FTMs (28.84 ± 1.61 ng/g wet feces) were

significantly lower (p > 0.05) than in the other two groups.

In mammalian species, THs are essential for the maintenance

of the female reproductive behavior (e.g., sustain pregnancy

and raise offspring) (32). Late pregnancy and lactation are the

two reproductive periods with high energetic demand (43). Shi

et al. reported that, in antelope, fecal T3 concentration was

significantly higher in the postpartum period compared to late

pregnancy (25). In fact, during lactation, extra energy is needed

for milk production (31). Furthermore, several studies carried

out on Sudanese and Chinese women, showed that the T3 levels

were significantly lower in pregnant compared to non-pregnant

women and T3 levels decreased during pregnancy (44, 45).

These findings are in line with our results on FTMs differences

between pregnant, cyclic, and early lactation ewes (Figure 2).

Regarding sex and age, in this study there were no significant

differences in FTMs levels between ewes and rams (42.07± 2.59

and 25.03 ± 1.63 ng/g wet feces, respectively), but higher values

were found in lambs when compared to adults (168.50 ± 20.50

ng/g wet feces) (p < 0.001; Figure 3).

The lack of differences found between sexes confirms

the data reported in our previous work in mouflons (35),

notwithstanding other studies reported in literature have

controversial outcome: some authors reported that females

ungulate have higher THs values than males (32, 46), while

other reports opposite results (47, 48). Finally, other authors

described no difference between sexes (33, 34, 49). As well

as sex, also the age can affect THs levels, because of their

FIGURE 1

Comparison of standard curve vs. parallelism graphs.

TABLE 1 Repeatability and recovery in fecal samples of sheep.

Sample T3 concentration Repeatability (RSD%) Recovery (% ± SD)

Intra-Day Inter-Day

Feces 1.0 ng/mL 6.42 10.04 80.99± 8.93

5.0 ng/mL 7.89 14.37 70.08± 9.04

RSD%, relative standard deviation.
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FIGURE 2

FTMs levels in cyclic early lactation and pregnant sheep (42.07 ± 2.59; 37.70 ± 1.61; and 28.84 ± 1.61 ng/g wet feces, respectively). Upper case

letters indicated significant di�erences between groups (p < 0.05).

FIGURE 3

FTMs levels between ewes, rams and lambs (42.07 ± 2.59; 25.03 ± 1.63; and 168.50 ± 20.50 ng/g wet feces, respectively). Upper case letters

indicated significant di�erences between groups (p < 0.001).

involvement in the developmental processes, and levels are

higher after birth and during the growth period, declining

thereafter (50). In fact, in literature is described that young

animals have higher THs levels than adults (12, 32, 48, 51).

For wild ungulates (forest musk deer Moschus berezovskii), Hu

et al. (32) reported that fecal T3 concentrations differ among

age groups; in particular, younger individuals showed FTMs

concentrations higher than adults, and, among young, as they

grow up, the FTMs levels decreased. The main advantage of this

study is that it provides useful information about FTMs levels

in different life history stages (e.g., development or pregnancy),

suggesting how different energy requirement can vary according

to their respective needs. Furthermore, another advantage is

the possibility of using a non-invasive matrix, which is very

important for animal welfare. A limitation of this work is the

lack of repeated sampling for each experimental group, which
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would have strengthened the biological validation. This is partly

overcome by the number of animals used per experimental

group and by the fact that the reproductive status was known

and confirmed by ultrasound scanning of the reproductive tract.

In addition, having determined thyroid hormone concentrations

also in blood would have confirmed the difference found. This

will be a possible goal for future studies. Furthermore, future

studies could provide more information on energy expenditure

during the different production stages of farm animals by

considering the details on the fraction of calories introduced and

on energy expenditure. Moreover, it could be interesting to carry

out studies on fecal T3 variations depending on seasonality,

environmental temperature, type of alimentation, as well as

parasitic infections and alteration in intestinal microbiota. In

the livestock sector, it could allow to improve our knowledge

about the response of animals to different physiological and

environmental conditions, and thus assess their welfare.

Conclusion

In conclusion, in this study, we have established that FTMs

can be reliably and accurately determined in sheep feces, using

an ELISA kit formulated for human serum T3 assay. The

application of the validated method on feces of cyclic, pregnant,

and early lactating ewes as well as in rams and ewe lambs,

provides valuable information on the physiological state of

this specie.

The results found show how the use of a non-invasive

method for the animal and a readily available matrix such as

feces, can represent a useful tool not only for the study of the

physiological conditions in sheep, but also for future studies on

energy expenditure, seasonality, and disease conditions.
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