Check for updates

OPEN ACCESS

EDITED BY Nicola Pugliese, University of Bari Aldo Moro, Italy

REVIEWED BY

Sapto Andriyono, Airlangga University, Indonesia Olusesan Adeyemi Adelabu, University of the Free State, South Africa Arunee Ahantarig, Mahidol University, Thailand

*CORRESPONDENCE Yi-hao Fang

fangyh@eastern-himalaya.cn Chun-hong Du dch6890728@163.com Xing Yang yang08220013@163.com

[†]These authors have contributed equally to this work

SPECIALTY SECTION This article was submitted to Parasitology, a section of the journal Frontiers in Veterinary Science

RECEIVED 30 July 2022 ACCEPTED 01 September 2022 PUBLISHED 02 November 2022

CITATION

Lu X-y, Zhang Q-f, Jiang D-d, Liu Y-f, Chen B, Yang S-p, Shao Z-t, Jiang H, Wang J, Fang Y-h, Du C-h and Yang X (2022) Complete mitogenomes and phylogenetic relationships of *Haemaphysalis nepalensis* and *Haemaphysalis yeni*. *Front. Vet. Sci.* 9:1007631. doi: 10.3389/fvets.2022.1007631

COPYRIGHT

© 2022 Lu, Zhang, Jiang, Liu, Chen, Yang, Shao, Jiang, Wang, Fang, Du and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Complete mitogenomes and phylogenetic relationships of *Haemaphysalis nepalensis* and *Haemaphysalis yeni*

Xin-yan Lu^{1†}, Quan-fu Zhang^{2†}, Dan-dan Jiang³, Ya-fang Liu¹, Bin Chen¹, Shuang-ping Yang³, Zong-ti Shao⁴, Hang Jiang⁴, Jian Wang⁴, Yi-hao Fang^{5*}, Chun-hong Du^{4*} and Xing Yang^{1*}

¹Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, China, ²Department of Digestion, First Affiliated Hospital of Chengdu Medical College, Chengdu, China, ³School of Public Health, Dali University, Dali, China, ⁴Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Puer, China, ⁵Fu-gong Administration Bureau, Gaoligong Mountain National Nature Reserve, Yunnan, China

The mitochondrial genome may include crucial data for understanding phylogenetic and molecular evolution. We sequenced the complete mitogenome of Haemaphysalis nepalensis and Haemaphysalis yeni for the first time. H. nepalensis and H. yeni's complete mitogenomes were 14,720 and 14,895 bp in size, respectively, and both contained two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes (PCG). Haemaphysalis nepalensis have one control region (D-loop). The adenine + thymine concentration of the genomes of H. nepalensis and H. yeni was 77.75 and 78.41%, respectively. The codon use pattern and amino acid content of proteins were both observed to be affected by the AT bias. Genes in the mitogenome were organized and located in a comparable manner to previously known genes from Haemaphysalis ticks. Mitochondrial PCGs were used to perform phylogenetic relationships based on the Minimum Evolution (ME) approach using MEGA 7.0 software, the results reveal that H. nepalensis has tight links with H. tibetensis, H. yeni and H. kolonini share a sister group relationship, and that H. nepalensis and H. yeni belong to Haemaphysalis. The results of this study include the following: (i) discovered and supplied new tick records (H. nepalensis) for China, (ii) provided the first complete mitochondrial genome for *H. nepalensis* and *H.* yeni and revealed their phylogenetic relationships, and (iii) the features of the mitochondrial genome of *H. nepalensis* and *H. yeni* provided more genetic reference for Phylogeography, systematics, and population genetics of the Haemaphysalis species.

KEYWORDS

ticks, Haemaphysalis nepalensis, Haemaphysalis yeni, mitogenome, genome annotation

Introduction

Ticks are obligatory ectoparasites of all vertebrate species and are blood-sucking arachnids. They can spread the broadest spectrum of zoonotic pathogens that lead to animal and human diseases, causing substantial financial damage to animal productivity (1). Tick populations are also growing as a result of climate change (2). Recently, numerous major tick-borne pathogens have been identified in ticks, such as *Babesia ovata*, *Chlamydiaceae bacteria*, *Rickettsia japonica*, *Anaplasma bovis*, *and Severe Fever with Thrombocytopenia Syndrome Bunyavirus*, have sparked increased interest in the field of public health (3). Despite the medical importance of ticks in the spread of Lyme disease, spotted fever group rickettsiosis, and other human diseases, the details of the entire mitochondrial genome are not well recognized, and the phylogenetic links are not established (4).

Haemaphysalis nepalensis (5) (Ixodidae) is an important tick that belongs to the Ixodidae family, Metastriata group, Herpetobia Canestrini subgenus. H. nepalensis has previously been discovered in India and Nepal. H. nepalensis, a parasite that affects people, sheep, and dzo, is most widely distributed in Tibet in China (5). India, Japan, the Philippines, Indonesia, Ceylon, Borneo, and China are the main distribution areas for Haemaphysalis yeni (6) (Ixodidae). In China, Fujian, Guangdong, Hainan, Hunan, Hubei, Shanxi, and Yunnan account for the majority of the records (7). Although the morphological characteristics of H. nepalensis and H. yeni have been illustrated and documented, it is unknown what their complete mitochondrial genome looks like (8). In recent years, tick bite reports on people have increased. The quality of human health continues to decline as a result of relapsing and persistent illness, long-term effects linked to tick-borne diseases, and even fatalities brought on by delayed or incorrect diagnosis. It is crucial to verify tick classification in order to combat disease (9).

The mitochondrion, a vital organelle in eukaryotes, contains a distinct genome from the cell nucleus. The mitogenome typically contains minimal levels of recombination, a simple structure, maternal inheritance, and fast evolution. It is therefore acknowledged as one of the most trustworthy and effective molecular tools for research on tick phylogenetic studies, species identification, and population structure (10). Complete mitochondrial genomes are normally double-stranded, with the length of circular nucleotides ranging between 14 and 19 kb, and consist of 13 PCGs: cox1-cox3, nad1-nad6, atp8, atp6, nad4l, and cytb, 22 tRNAs, two rRNAs, and D-loop. Researchers have used mitochondrial genomes as instructive molecular labels to investigate numerous evolutionary studies among animals (11). Recent advances in sequencing technology have made it easier than ever to reconstruct phylogenies using animal mitochondrial genomes in their entirety rather than just partial DNA sequences.

Using Illumina sequencing technology, we first sequenced and annotated the entire mitochondrial genomes of *H. nepalensis* and *H. yeni* in the current work, then we compared them to other *Haemaphysalis* mitochondrial genomes. Further study of phylogenetics, mitochondrial genomes, nuclear rRNA genes, and taxonomy revision of related *Haemaphysalis* species and the Ixodidae family may benefit from the information provided here (12).

Materials and methods

Samples and DNA extraction

The H. nepalensis adult specimens used in this study were procured in October 2020 from Deqin in the Yunnan Province of China $(27^{\circ}33'\text{N}, 98^{\circ}3'\text{E})$ (n = 2, female; n = 1, male), Diqing Tibetan Autonomous Prefecture. Adult samples of H. yeni were collected in March 2021 from High Li Gong Shan in the Nujiang Lisu Autonomous Prefecture of the Chinese Yunnan Province $(26^{\circ}34'N, 98^{\circ}48'E)$ (n = 2, female; n = 1, male).Professor Chunhong Du examined the species' morphological identification using the essential diagnostic features (13). After collection, one adult female specimen was used for DNA extraction, and the remainder of the ticks were held as voucher specimens. The collected tick specimens were deposited at the Parasitological Museum of Dali University under the voucher numbers DLUP2010 and DLUP2103, respectively. The samples were maintained at -80° C and preserved in 95% alcohol before being utilized for DNA extraction. Single tick genomic DNA was extracted using DNAzol (Life Technologies, USA) following the manufacturer's instructions and stored for further processing (13).

DNA amplification and sequencing

Two overlapping sets of primers were used to amplify the mitogenomes of the *H. nepalensis* and *H. yeni* species. The long-PCR primers were created using the *12S rRNA* and *cox1* genes of *Haemaphysalis bancrofti* (NC041076) and *Haemaphysalis japonica* (MG253031). The following PCR primers were employed:

HN1 (5'-CTCYAATTAAATTCTTTATRGAAT-3', 5'-ATTAGGCTTGGTTGTATGAAWAA-3');
HN2 (5'-TCTGTATTAAYTACAGCAATTTTAC-3', 5'-CAAATWTTAAATTTAACACCCCCAATTTTA-3').
HY1 (5'-CTCTAGTTAATYTTGTGCCAGCAA-3', 5'-AGCAACAGCGGTTATACAAWAAG-3');
HY2 (5'-TCCGTATTAATTACTGCAATTCTAC-3', 5'-CAACTTTAWAATGTAACACTCCAATCTTA-3') (14).

The PCR was implemented in a 50 μ l reaction mixture including 10 μ l of 5X PrimeSTAR GXL Buffer (Takara, Japan), 1 μ l of PrimeSTAR GXL DNA Polymerase (Takara, Japan), 4 μ l of each primer, 4 μ l of dNTPs, 4 μ l of DNA template, and 23 μ l of nuclease-free water. The PCR conditions used in the amplification procedure were as follows: initial denaturation at 95°C for 5 mins, followed by 45 cycles of denaturation (98°C for 10 s), annealing (68°C for 30 s), and extension (68°C for 10 mins), and a final extension was subjected to 68°C for 10 mins. The findings of the PCR were examined using 1.2 percent agarose gel electrophoresis stained with ethidium bromide (15). Libraries were sequenced on the Illumina HiSeq 2500 platform at Shanghai Biotechnology Co. Ltd. after the amplified PCR products had been purified.

Gene annotation and sequence analysis

Data quality was evaluated from four indicators: single base quality of sequencing data, base content distribution, GC content distribution, and sequence base quality. The software used is FastQC (https://www.bioinformatics.babraham.ac.uk/ projects/fastqc). AdapterRemoval software (v2.0) was used to remove the contamination of original data, and SOAPec software (v2.01) was used to correct the quality of data based on k-mer distribution. With the mitochondrial genome sequence of *H. kolonini* as a reference, the whole mitogenomes of *H. nepalensis* and *H. yeni* were extracted using online BLAST tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi). SPAdesv3.9.0 (http:// cab.spbu.ru/software/spades/) and A5-miseqv20150522 were utilized to compile high-quality next-generation sequencing data for de novo mitogenome construction (16). BLASTn (BLAST v2.2.31+) alignment was performed between the sequences with high sequencing depth and the NT Library in NCBI to pick out the mitochondrial sequences of each spliced result. The mitochondrial stitching results obtained by the above different software were analyzed by using MUMmer (v3.1) software for collinearity analysis to determine the position relationship between conting and to fill the gap of contigs. Pilon software (v1.18) was used to correct the results to obtain the final mitochondrial sequence. Using the MITOS web server (http://mitos.bioinf.uni-leipzig.de/), the mitochondrial genomes of H. nepalensis and H. yeni were annotated (17). The program tRNAscan-SE was used to forecast the secondary cloverleaf architectures of tRNAs (18). The skewness of the composition was estimated using the formulas GC-skew = [G - C]/[G + C] and AT-skew = [A - T]/[A+ T]. The analysis of the nucleotide composition and relative synonymous codon usage was done using the software MEGA v7.0 and Geneious Prime (RSCU). The whole mitogenome annotation findings were submitted to NCBI in table (.tbl) format (19).

Phylogenetic analysis

Based on the concatenated datasets of 13 PCGs from 40 ticks, including 34 Metastriata and six species of Prostriata, the phylogenetic connection was examined. The concatenated

Feature	Strand	Position	Length (bp)	Initiation codon	Stop codon	Anticodon	Intergenic nucleotide
trnC	N	1-55/1-57	55/57			GCA	2/-1
trnM	Ν	58-122/57-119	65/63			ATG	
nad2	Ν	123-1,082/120-1,079	960/960	ATT/ATT	TAA/TAA		-2/5
trnW	Ν	1,081-1, 141/1,085-1,148	61/64			TCA	-2/1
trnY	J	1, 140-1,203/1,150-1,213	64/64			GTA	7/-8
cox1	Ν	1,211-2,734/1,206-2,744	1,524/1,539	ATA/ATT	TAA/TAA		4/4
cox2	Ν	2,739-3,414/2,749-3,423	676/675	ATG/ATG	T(AA)/TAA		
trnK	Ν	3,415-3,481/3,424-3,488	67/65			CTT	-1/-1
trnD	Ν	3,481-3,547/3,488-3,552	67/65			GTC	
atp8	Ν	3,548-3,706/3,553-3,714	159/162	ATC/ATT	TAA/TAA		-7/-7
atp6	Ν	3,700-4,365/3,708-4,373	666/666	ATG/ATG	TAA/TAA		3/3
cox3	Ν	4,369-5, 146/4,377-5,156	778/780	ATG/ATG	T(AA)/TAA		0/-1
trnG	Ν	5, 147-5,207/5,156-5,216	61/61			TCC	-3/0
nad3	Ν	5,205-5,546/5,217-5,558	342/342	ATA/ATT	TAG/TAA		-2/-1
trnA	Ν	5,545-5,605/5,558-5,619	61/62			TGC	4/3
trnR	Ν	5,610-5,669/5,623-5,682	60/60			TCG	-2/-2
trnN	Ν	5,668-5,728/5,681-5,741	61/61			GTT	19/2
trnS1	Ν	5,748-5,802/5,744-5,800	55/57			TCT	4/14
trnE	Ν	5,807-5,867/5,815-5,875	61/61			TTC	-7/184
nad1	J	5,861-6,802/6,060-7,010	942/951	ATT/ATT	TAA/TA(A)		/-13
trnL2	J	6,803-6,863/6,998-7,059	61/62			TAA	-41/56
rrnL	J	6,823-8,065/7,116-7,704	1,243/589				-10/556
trnV	J	8,056-8,117/8,261-8,321	62/61			TAC	-9/3
rrnS	J	8,109-8,793/8,325-8,744	685/420				334/575
trnI	Ν	9, 128–9, 192/9,320–9,385	65/66			GAT	
trnQ	J	9, 193-9,259/9,386-9,451	67/66			TTG	13/0
trnF	J	9,273-9,333/9,452-9,513	61/62			GAA	-1/-3
nad5	J	9,333-10,988/9,511-11,171	1,656/1,661	ATT/ATT	TAA/TA(A)		
trnH	J	10,989-11,052/11,172-11,230	64/59			GTG	0/-1
nad4	J	11,053-12,367/11,230-12,546	1,315/1,317	ATG/ATG	T(AA)/TAG		-7/-7
nad4l	J	12,361-12,636/12,540-12,815	276/276	ATG/ATG	TAA/TAA		2/2
trnT	Ν	12,639-12,701/12,818-12,879	63/62			TGT	0/-1
trnP	J	12,702-12,761/12,879-12,942	60/64			TGG	3/1
nad6	Ν	12,765-13,218/12,944-13,372	454/429	ATT/ATC	T(AA)/TAA		-21/3
cytb	Ν	13, 198-14, 277/13, 376-14, 455	1,080/1,080	ATG/ATG	TAG/TAG		-1/-2
trnS2	Ν	14,277-14,339/14,454-14,515	63/62			TGA	6/-1
trnL1	J	14,346-14,411/14,515-14,579	66/65			TAG	56/315
OH	Ν	14,468–14,712/0	245/0				7/0

TABLE 1 Organization of the *H. nepalensis* and *H. yeni* mitochondrial genomes.

nucleotide sequence of the mitochondrial 13 PCGs was used to determine the evolutionary relationship using the ME approach in the software MEGA v.7.0 based on 1,000 bootstrapped datasets. The PCGs' multiple sequence alignments were conducted using the MUSCLE nucleotide mode. All places with incomplete or blank information were eliminated. Based on the Akaike information criterion (AIC), the GTR + G + I best model was selected as the best-fit replacement model for nucleotide phylogenetic connectivity (20). To examine the RSCU and nucleotide composition, MEGA program was utilized. A chronogram made with FigTree v1.4.2 was used to demonstrate the evolutionary relationships that emerged.

TABLE 2 List of the 40 tick species analyzed in this paper with their GenBank numbers.

Species	Genus	Length (bp)	Genbank accession
Haemaphysalis nepalensis	Haemaphysalis	14,720	NC064124
Haemaphysalis yeni	Haemaphysalis	14,895	ON853615
Haemaphysalis concinna	Haemaphysalis	14,675	NC034785
Haemaphysalis formosensis	Haemaphysalis	14,676	NC020334
Haemaphysalis flava	Haemaphysalis	14,686	NC005292
Haemaphysalis hystricis	Haemaphysalis	14,716	NC039765
Haemaphysalis inermis	Haemaphysalis	14,846	NC020335
Haemaphysalis longicornis	Haemaphysalis	14,718	NC037493
Haemaphysalis doenitzi	Haemaphysalis	14,671	NC062158
Haemaphysalis sulcata	Haemaphysalis	14,679	NC062063
Haemaphysalis kolonini	Haemaphysalis	14,948	MZ054209
Haemaphysalis colasbelcouri	Haemaphysalis	14,885	NC062164
Haemaphysalis kitaokai	Haemaphysalis	14,936	NC062161
Haemaphysalis tibetensis	Haemaphysalis	14,714	OM368296
Haemaphysalis danieli	Haemaphysalis	14,739	NC062065
Dermacentor marginatus	Dermacentor	15,178	NC062069
Dermacentor reticulatus	Dermacentor	14,806	MT478096
Dermacentor nitens	Dermacentor	14,839	NC023349
Hyalomma asiaticum	Hyalomma	14,723	NC053941
Hyalomma truncatum	Hyalomma	14,731	KY457529
Hyalomma rufipes	Hyalomma	14,761	NC061209
Amblyomma marmoreum	Amblyomma	14,677	KY457516
Amblyomma testudinarium	Amblyomma	14,760	MT029329
Amblyomma geoemydae	Amblyomma	14,780	MK814531
Amblyomma sculptum	Amblyomma	14,780	NC032369
Ixodes tasmani	Ixodes	15,227	NC041086
Ixodes ovatus	Ixodes	14,512	NC062061
Ixodes ricinus	Ixodes	14,566	NC018369
Ixodes simplex	Ixodes	14,556	NC062060
Ixodes uriae	Ixodes	15,053	NC006078
Ixodes nipporensis	Ixodes	14,505	NC058242
Rhipicentor nuttalli	Rhipicentor	14,779	NC039828
Rhipicephalus australis	Rhipicephalus	14,891	NC023348
Rhipicephalus decoloratus	Rhipicephalus	15,268	NC052828
Rhipicephalus evertsi	Rhipicephalus	14,739	KY457537
Rhipicephalus simus	Rhipicephalus	14,929	KJ739594
Rhipicephalus maculatus	Rhipicephalus	14,714	KY457539
Rhipicephalus zambeziensis	Rhipicephalus	14,691	KY457543
Rhipicephalus turanicus	Rhipicephalus	14,717	NC035946
Archaeocroton sphenodonti	Archaeocroton	14,772	NC017745

Genome organization and nucleotide composition

The entire mitogenomes of *H. nepalensis and H. yeni* used in this study were closed circular molecules with a size of 14,720 and 14,895 bp, respectively (Figure 1). The complete mitochondrial genome had 37 distinguishing genes, including 22 tRNAs, two rRNAs (*rrnL* and *rrnS*), 13 PCGs (*cox1-3, nad1-6, atp8, atp6, nad4l, and cob*), and *H. nepalensis* has one D-loop (Table 1). Under the accession numbers NC064124 and ON853615, the whole mitochondrial genomes of *H. nepalensis* and *H. yeni*, respectively, had been uploaded to GenBank.

Region	A%	C%	G%	T%	A+T%	G+C%	AT skew	GC skew
Whole genome	38.46/38.65	12.74/12.28	9.51/9.31	39.29/39.74	77.75/78.39	22.25/21.59	-0.011/-0.014	-0.145/-0.138
nad2	38.54/37.18	11.15/10.52	5.31/5.63	45.00/46.67	83.54/83.85	16.46/16.15	-0.077/-0.113	-0.354/-0.303
cox1	31.04/31.50	16.08/15.07	14.63/14.10	38.25/39.31	69.29/70.81	30.71/29.17	-0.104/-0.110	-0.047/-0.033
cox2	36.83/36.14	16.57/15.41	10.06/9.78	36.54/38.67	73.37/74.81	26.63/25.19	0.004/-0.034	-0.244/-0.223
atp8	47.80/43.21	11.95/7.41	3.77/4.94	36.48/44.44	84.28/87.65	15.72/12.35	0.134/-0.014	-0.520/-0.200
atp6	32.13/33.62	13.06/13.06	9.01/8.71	45.80/44.59	77.93/78.21	22.07/21.77	-0.175/-0.140	-0.184/-0.200
cox3	31.23/28.72	14.01/13.21	11.18/11.79	43.57/46.28	74.81/75.00	25.19/25.00	-0.165/-0.234	-0.112/-0.056
nad3	32.75/29.53	7.89/10.53	9.65/9.65	49.71/50.29	82.46/79.82	17.54/20.18	-0.206/-0.260	0.100/-0.044
nad1	33.33/33.79	9.66/9.16	12.85/12.42	44.16/44.63	77.49/78.42	22.51/23.58	-0.140/-0.138	0.142/0.138
rrnL	41.35/38.88	7.32/9.00	11.26/15.79	40.06/36.33	81.42/75.21	18.58/24.79	0.016/0.034	0.212/0.274
rrnS	43.80/40.24	8.18/10.24	11.68/14.29	36.35/35.24	80.15/75.48	19.85/24.53	0.093/0.066	0.176/0.165
nad5	35.33/33.17	8.57/8.85	10.81/10.78	45.29/47.20	80.62/80.37	19.38/19.63	-0.124/-0.175	0.115/0.098
nad4	31.18/32.42	9.35/7.44	12.62/11.54	46.84/48.60	78.02/81.02	21.98/18.98	-0.201/-0.176	0.149/0.216
nad4l	34.78/35.51	5.80/3.26	9.78/10.51	49.64/50.72	84.42/86.23	15.58/13.77	-0.176/-0.176	0.256/0.527
nad6	39.21/41.03	9.47/8.86	4.85/5.83	46.48/44.29	85.68/85.32	14.32/14.69	-0.085/-0.038	-0.323/-0.206
cob	30.00/29.91	15.19/13.52	10.83/10.46	43.98/46.11	73.98/76.02	26.02/23.98	-0.189/-0.213	-0.167/-0.128
tRNA	40.00/39.50	8.69/9.00	11.68/11.70	39.64/39.80	79.64/79.30	20.37/20.70	0.005/-0.004	0.147/0.130
ОН	31.84	16.33	16.33	35.51	67.35	32.65	-0.055	0.000

TABLE 3 Composition and skewness of *H. nepalensis* and *H. yeni* mitogenome.

The mitochondrial genomes of *H. nepalensis* and *H. yeni* included the following nucleotide compositions: adenines = 38.46% (38.66%), thymines = 39.29% (39.74%), guanines = 9.51% (9.5%), and cytosines = 12.74% (12.28%). The complete mitochondrial genome of *H. nepalensis* and *H. yeni* were biased toward AT nucleotides (77.75 and 78.41%) (Table 3). Fourteen genes from both tick species are encoded on the majority (J) strand (Table 1). The *H. nepalensis* mitogenome includes 15 overlapping areas and intergenic nucleotides with a total length of 116 bp (range from 1 to 41 bp) and 464 bp (ranging from 2 to 334 bp). There were 14 overlapping areas in the mitochondrial genome of *H. yeni*, and the intergenic nucleotides were 49 base pairs long (ranging from 1 to 13 bp).

PCGs and codon usage

Both *H. nepalensis* and *H. yeni* possessed 13 typical PCGs in their whole mitogenomes, including four cytochrome genes (*cytb and cox1-3*), two ATP genes (*atp6 and atp8*), seven NADP genes (*nad4l and nad1-6*) (Figure 1). The PCGs' respective regions were 10,828 bp and 10,837 bp in size. The PCGs of *H. nepalensis* began with ATA (*cox1 and nad3*), ATT (*nad1*, *nad2, nad5, nad6*), ATG (*cox3, atp6, cox2, nad4l, and nad4*), and ATC (*atp8*), also seven PCGs that were terminated by TAA (*cox1, nad2, atp8, atp6, nad1, and5, and nad4l*). The stop codon employed by the *cox2, cox3, nad4*, and *nad6* was a single T, whereas the *nad3* and *cytb* were terminated with TAG. The PCGs of *H. yeni* begin with ATT (*cox1, nad2, nad3, atp8,* *nad1*, *and nad5*), ATG (*cox3*, *atp6*, *cox2*, *nad4l*, *nad4*, *and cytb*), and only *nad6* with ATC. *Nad1* and *nad5* used incomplete termination codons that consisted of TA, while the majority of PCGs terminated with TAA (Table 2).

We investigated the RSCU and codon use patterns in the mitochondrial genomes of *H. nepalensis* and *H. yeni.* 3,405 amino acids in total were encoded by the mitochondrial genome of *H. nepalensis*. Leucine (16.18%) was the amino acid that was used the most, followed by phenylalanine (13.71%) and isoleucine (9.36%). The PCGs encoded a total of 3,474 amino acids of the *H. yeni* mitogenome; phenylalanine (14.42%), leucine (12.95%), and isoleucine (12.14%) were the most often utilized amino acids; arginine (0.9%) was the least frequently used amino acid, indicating the popularity of biasness toward AT content among the PCGs (Table 3; Figure 2).

A+T skewness and transfer RNAs

Positive AT and GC skew in the whole mitochondrial genomes of *H. nepalensis* and *H. yeni* indicates that bases A and G are less frequent than their comparable bases (Table 3). The mitogenomes of *H. nepalensis* and *H. yeni* had a set of 22 tRNAs, like the majority of mitochondrial genome DNA. The tRNAs of *H. nepalensis* are 1,370 bp long and range in size from 55 nucleotides (trnC and trnS1) to 67 nucleotides (trnK, trnD, and trnQ). *H. yeni*'s tRNAs were between 57 and 66 bp in length. The *tRNA-C*, *tRNA-F*, and *tRNA-S1* genes, as well as the 14 tRNAs

encoded on the majority (J) strand, did not exhibit the normal cloverleaf structure.

Phylogenetic analysis

To determine the phylogenetic tree of 40 Ixodida, the whole mitogenomes of *H. nepalensis* and *H. yeni* were further examined (Table 2). Using ME investigations in the context of the Maximum Composite Likelihood model, the topologies of the phylogenetic tree were examined based on the concatenated nucleotide sequences of 13 PCGs (Figure 3). The majority of the genera *Ixodes, Amblyomma, Dermacentor, Hyalomma,* and *Rhipicephalus* in the tree formed a monophyletic branch in the phylogenetic analyses, according to the ML analyses. *Haemaphysalis* species were paraphyletic, despite this. The

sequences in the tree are divided into the Metastriata and Prostriata main branches. There is only one explicit *Ixodes* species in the Prostriata group. *H. nepalensis* and *H. tibetensis* are clustered together on one branch of the phylogenetic tree with a high nodal support value, and *H. yeni* and *H. kolonini* have a close phylogenetic relationship, indicating a sister group link between them. Furthermore, the phylogenetic relationship revealed that *H. nepalensis* and *H. yeni* were divided into various clades, yet they belonged to *Haemaphysalis* within Ixodida, correlating with other studies.

Discussion

Similar to previously known tick mitochondrial genomes, a comparison of the mitochondrial genome sequences in the genus *Haemaphysalis* suggests that the D-loop is where

the size shift is most prominent. The D-loop is the largest non-coding segment of the mitogenome and contains the major regulatory elements for its replication and expression. Furthermore, the high-level of intraspecific genetic variation found in the D-loop favors its use in population genetic studies of all kinds of organisms and phylogeographic analysis. Differences in the size of the complete mitogenome between species were driven by variation in the size of the control area, which in turn differed in both the size of different short repeat nucleotides and those replicated within it. In

this study, most ticks in the Haemaphysalis genus have two D-loops. Nevertheless, H. yeni and H. longicornis have no D-loop, H. nepalensis and H. hystricis have one D-loop, and H. colasbelcouri and H. kitaokai have three D-loops. Because the D-loop lacks characteristic coding constraints, it accumulates indels, a variable number of tandem repeats, and base substitutions which are responsible for the widespread length differentiation found in the mtDNA molecule. Most of the tRNA secondary structures, the genome's codon use, and the gene makeup and quantity of Haemaphysalis are identical to other mitochondrial species that have been observed (21). The tRNA-F gene of H. nepalensis, however, differs from those of most of the genus Haemaphysalis in that it did not reveal the usual cloverleaf structure. The mitochondrial genomes' gene arrangement is comparable with that of other Haemaphysalis.

Through the creation of two new primer nucleotide sequences, next-generation sequencing technologies, and a brand-new long-range PCR amplification, we explored the mitogenomes. This will open a new way for study into *H. nepalensis* and *H. yeni* in the future. Population biology, behavior, phylogenetics studies, and tick ecology are all made easier by genetic information. Only the 16s rDNA partial sequences for *H. nepalensis* and *H. yeni* are currently available in the database. The mitochondrial partial sequencing can only offer relevant data, though. The entire mitochondrial genome can provide more sensitivity and resolution for analysis of the evolutionary relationships between closely related species as compared to partial mitochondrial sequence.

The current study shows that whereas *Haemaphysalis* species are paraphyletic, the majority of genera analyzed are monophyletic. According to the results of the phylogenetic analysis, there are two branches within the eight genera: one major clade contains a branch of *Ixodes* species that is quite explicit and monophyletic, and the other clade is made up of the genera *Haemaphysalis, Archaeocroton, Amblyomma, Dermacentor, Rhipicentor, Hyalomma, and Rhipicephalus.* Within the Metastriata, they are split into two branches, one of which has a sister-taxon (*Haemaphysalis* + *Archaeocroton*), and the other of which contains the genera *Amblyomma, Dermacentor, and Rhipicentor*, which are sisters to the sister-group genera *Hyalomma* and *Rhipicephalus.*

In addition, the clade (*H. nepalensis* + *H. tibetensis* + *H. danieli*) that includes our target species *H. nepalensis* grouped into one branch, and *H. yeni* and *H. kolonini* have strong links and a high nodal bootstrap support value.

The *H. nepalensis* and *H. tibetensis*, the *H. yeni* and *H. kolonini* genes are arranged in the same order and the PCG encoding of *H. nepalensis* is 11 bp less than the PCG encoding of *H. tibetensis*, and the PCG encoding of

H. yeni is 35 bp more than the PCG encoding of H. kolonini. The percent identity of the cox1 gene of these two groups species were 98.37 and 90.16%, respectively. The percent identity of the complete mitochondrial sequences were 98.14 and 92.75%, respectively. Species identification mainly depends on morphology and molecular studies. Although the two groups (H. nepalensis and H. tibetensis, H. yeni and H. kolonini) were phylogenetically very closely related in phylogenetic tree analysis, the morphological differences and percent identity are <99%, which may lead to the formation of different species. The H. tibetensis and H. nepalensis species are now only known to have been found in Tibet alone. The phylogenetic analysis result demonstrates a close relationship between H. nepalensis and H. tibetensis, demonstrating the correctness of our sequencing findings and demonstrating the first distribution of H. nepalensis in Yunnan Province.

Conclusion

In this study, we sequenced the entire mitochondrial genomes of H. nepalensis and H. yeni, measuring 14,720 base pairs (bp) and 14,895 base pairs (bp), respectively. These genomes contained 37 genes (13 PCGs, 22 tRNAs, and two rRNAs), which are typical of the Haemaphysalis mitochondrial genome. H. nepalensis had an extra D-loop. All PCGs began with the ATN codon, with ATT and ATG being the most frequent initiation codons. The cox2, cox3, nad4, and nad6 of H. nepalensis and nad1 and nad5 of H. yeni had incomplete termination codons consisting of T or TA, and the other PCGs stop with the canonical TAG or TAA. The whole mitochondrial genomes of H. nepalensis and H. yeni had negative AT-skew and GCskew, which is consistent with the majority of sequenced Haemaphysalis. Higher-level phylogenies might be provided by the whole mitochondrial genome. This study provides a crucial resource for better understanding the phylogenetics, molecular evolution, and population dynamics of these significant tick species.

Data availability statement

The data presented in the study are deposited in the NCBI repository, accession number NC064124 and ON853615.

Ethics statement

This study was approved by the Administration Committee of Experimental Animals, Dali University, First Affiliated Hospital of Chengdu Medical College, and Yunnan Provincial Key Laboratory of Natural Epidemic Disease Prevention and Control Technology.

Author contributions

X-yL and Q-fZ conceived the study and wrote the manuscript. D-dJ, Y-fL, BC, and S-pY carried out the experiments and analyzed the data. Z-tS, HJ, and JW contributed to the collection of *Haemaphysalis nepalensis* and *Haemaphysalis yeni* and discussions. Y-hF, C-hD, and XY are responsible for the interpretation of experimental data, critical revision of important knowledge content, and final approval of the version to be published.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81760607 and U2002219), Yunnan

References

1. Tao M, You C, Zhao R, Liu S, Zhang Z, Zhang C, et al. Animal mitochondria: evolution, function, and disease. *Curr Mol Med.* (2014) 14:115. doi: 10.1038/nature18902

2. Yang X, Gao Z, Zhou T, Zhang J, Wang L, Xiao L, et al. Mapping the potential distribution of major tick species in China. *Int J Environ Res Public Health*. (2020) 17:5145. doi: 10.3390/ijerph17145145

3. Kelava S, Mans BJ, Shao R, Moustafa M, Matsuno K, Takano A, et al. Phylogenies from mitochondrial genomes of 120 species of ticks: insights into the evolution of the families of ticks and of the genus *Amblyomma*. *Ticks Tick Borne Dis*. (2021) 12:101577. doi: 10.1016/j.ttbdis.2020.101577

4. Waterhouse RM, Sonenshine DE, Roe RM, Ribeiro JM, Sattelle DB, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. *Front Cell Infect Microbiol.* (2016) 6:103. doi: 10.3389/fcimb.2016.00103

5. Dhanda V. Haemaphysalis nepalensis Hoogstraal, 1962 (Ixodoidea: Ixodidae), systematic position based on description of the nymph, and host and locality records. J Parasitol. (1964) 50:783-5. doi: 10.2307/3276201

6. Kwak ML. A checklist of the ticks (Acari: Argasidae, Ixodidae) of Japan. *Exp* Appl Acarol. (2018) 75:263–7. doi: 10.1007/s10493-018-0259-6

7. Saito Y, Hoogstraal H. *Haemaphysalis* (kaiseriana) *yeni toumanoff* (ixodoidea: ixodidae): discovery in Japan, description of female and immature stages, environment, and life cycle. *J Parasitol.* (1972) 58:950–9.

8. Hoogstraal H, Trapido H. Redescription of the type materials of *Haemaphysalis (kaiseriana) bispinosa neumann* (India), h. (K) *Neumanni donitz* (Japan), h (K) *Lagrangei larrousse* (Vietnam), and h (K) *Yeni toumanoff* (vietnam) (Ixodoidea, Ixodidae). *J Parasitol.* (1966) 52:1188–98.

9. Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. *Cell.* (2020) 182:1328–40. doi: 10.1016/j.cell.2020.07.023

10. Xin ZZ, Liu Y, Zhang DZ, Wang ZF, Tang BP, Zhang HB, et al. Comparative mitochondrial genome analysis of *Spilarctia subcarnea* and other noctuid insects. *Int J Biol Macromol.* (2018) 107:121–8. doi: 10.1016/j.ijbiomac.2017.08.153

11. Ciloglu A, Ibis O, Yildirim A, Aktas M, Duzlu O, Onder Z, et al. Complete mitochondrial genome characterization and phylogenetic analyses of the main

Natural Science Foundation (2017FD139), and Scientific Research Fund of Yunnan Education Department (2022J0687).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

vector of crimean-congo haemorrhagic fever virus: *Hyalomma marginatum* koch, 1844. *Ticks Tick-Borne Dis.* (2021) 12:101736. doi: 10.1016/j.ttbdis.2021.101736

12. Lu X, Zhang Q, Jiang D, Wang T, Sun Y, Du C, et al. Characterization of the complete mitochondrial genome of *Haemaphysalis (alloceraea) kolonini (ixodidae)* and its phylogenetic implications. *Parasitol Res.* (2022) 121:1951–62. doi: 10.1007/s00436-022-07535-2

13. Lu X, Zuo X, Jiang D, Yang X. The complete mitochondrial genome of *Ixodes* vespertilionis (acari: ixodidae). *Mitochon DNA Part B Resour*. (2021) 6:3001–3. doi: 10.1080/23802359.2021.1976686

14. Rozen S, Skaletsky H. Primer3 on the www for general users and for biologist programmers. *Methods Mol Biol (Clifton, NJ)*. (2000) 132:365-86.

15. Lu X, Zhang Q, Jiang D, Du C, Xu R, Guo X, et al. Characterization of the complete mitochondrial genome of *Ixodes granulatus* (ixodidae) and its phylogenetic implications. *Parasitol Res.* (2022) 121:2347–58. doi: 10.1007/s00436-022-07561-0

16. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina miseq data. *Bioinformatics*. (2015) 31:587–9. doi: 10.1093/bioinformatics/btu661

17. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. Mitos: improved *de novo* metazoan mitochondrial genome annotation. *Mol Phylogenet Evol.* (2013) 69:313–9. doi: 10.1016/j.ympev.2012. 08.023

18. Lowe TM, Chan PP. Trnascan-se on-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Res.* (2016) 44:W54–7. doi: 10.1093/nar/gkw413

19. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 70 for bigger datasets. *Mol Biol Evol.* (2016) 33:1870–4. doi: 10.1093/molbev/msw054

20. Yamaoka K, Nakagawa T, Uno T. Application of akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. *J Pharmacokinet Biopharm*. (1978) 6:165–75. doi: 10.1007/BF01117450

21. Taanman J. The mitochondrial genome: structure, transcription, translation and replication. *BBA Bioenergetics*. (1999) 1410:103-23. doi: 10.1016/S0005-2728(98)00161-3