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In cattle, vitrified/warmed (V/W) and frozen/thawed (F/T), in vitro-produced

(IVP) embryos, di�er in their physiology and survival from fresh embryos. In this

study, we analyzed the e�ects of embryo cryopreservation techniques on the

o�spring. IVP embryos cultured with albumin and with or without 0.1% serum

until Day 6, and thereafter in single culture without protein, were transferred to

recipients on Day 7 as F/T, V/W, or fresh, resulting in N = 24, 14, and 13 calves,

respectively. Calves were clinically examined at birth, and blood was analyzed

before and after colostrum intake (Day 0), and subsequently on Day 15 and Day

30. On Day 0, calves from V/W and F/T embryos showed increased creatinine

and capillary refill time (CRT) and reduced heartbeats. Calves from F/T embryos

showed lower PCO2, hemoglobin, and packed cell volume than calves from

V/W embryos while V/W embryos led to calves with increased Na+ levels.

Colostrum e�ects did not di�er between calves from fresh and cryopreserved

embryos, indicating similar adaptive ability among calves. However, PCO2 did

not decrease in calves from V/W embryos after colostrum intake. Serum in

culture led to calves with a�ected (P < 0.05) temperature, CRT, HCO−

3
, base

excess (BE), TCO2, creatinine, urea, and anion gap. On Day 15, the e�ects of

embryo cryopreservation disappeared among calves. In contrast, Day 30 values

were influenced by diarrhea appearance, mainly in calves from V/W embryos

(i.e., lower values of TCO2, HCO
−

3
, and BE; and increased glucose, anion gap,

and lactate), although with no more clinical compromise than calves from

fresh and F/T embryos. Diarrhea a�ected PCO2 and Na+ in all groups. Embryo

cryopreservation, and/or culture, yield metabolically di�erent calves, including

e�ects on protein and acid–base metabolism.

KEYWORDS

bovine, embryo-freezing, calves, embryo-vitrification, creatinine, acid-base

Introduction

In vitro assisted reproductive technologies are sustained by cryopreservation of

gametes and embryos. Cryopreservation suppresses the necessity to have recipients

available at the time of embryo production, thus facilitating worldwide exchanges of

genetic material. In cattle, cryopreservation of in vitro-produced (IVP) embryos for
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embryo transfer (ET) takes place normally after 7 ± 1 days of

culture. Embryo cryopreservation (covering slow freezing and

vitrification) induces damage such as morphological alteration

(1), DNA fragmentation (2), decreased cell numbers and

increased apoptotic cell ratio (3–5), abnormal gene expression

(6–8) and histone modifications (9), and changes in embryo

metabolism (10). Adaptation of embryos to divergent conditions

may trigger changes in post-natal phenotypes that may persist

until adulthood, as observed in rats (11, 12). In cattle and other

mammalian species, in vitro embryo production technologies

lead to offspring phenotypes deviating from those naturally

conceived or resulting from the transfer of in vivo collected

embryos (13–15). An extreme example occurs among calves

born from somatic cell nuclear transfer (SCNT) (16–18).

Generally, IVP cryopreserved embryos are less able to reach

term pregnancy upon transfer than their fresh counterparts

and in vivo-produced embryos (4, 19). Cryopreservation

reduces embryo survival rates and cell numbers in vitro (3,

4, 20, 21) and causes a series of functional and structural

damage in embryonic cells [reviewed by Mogas (22)]. At the

transcriptomics level, vitrification itself alters the expression

of genes relevant for development in IVP embryos surviving

cryopreservation (3, 23–25). Thus, IVP embryos show altered

cell differentiation, lipid metabolism, and cell adhesion, with

the intensity of such changes being higher in vitrified than in

frozen embryos (6). Moreover, embryonic genes associated with

organogenesis, immune response, and regulation of cognitive

functions are altered after vitrification, compared to fresh

embryos (25). Extensive transcriptomic changes remain within

vitrified/warmed embryos exposed to the uterus and collected on

Day 14, which show alteration in cell proliferation, cellular stress

response, mitochondrial dysfunction, control of translation

initiation, and DNA repair (23).

However, in vitro experiments often do not accurately

represent embryonic survival in vivo, and, while in vitro quality

parameters are sometimes superior in vitrified/warmed (V/W)

over frozen/thawed (F/T) embryos, such differences are not

observed in pregnancy rates (4, 26). Indeed, ET reports with

large numbers of V/W and F/T IVP embryos indicate that

both cryopreservation systems perform equally in pregnancies

reaching term, sometimes with rates close to fresh IVP embryos

(4, 13, 19, 27–30). Such studies focused on pregnancy and/or

birth rates, sometimes combined with calf morphometry and

survival; nevertheless, how V/W and F/T affect calf phenotypes

and basic hematological parameters is presently unknown.

A proportion of calves born from IVP embryos are prone

to show larger birth weight (BW) and perinatal mortality

(14), under a phenotype known as large offspring syndrome

(LOS) or abnormal offspring syndrome (AOS) (31–33) that

courses with placental overgrowth (34, 35) and compromised

vascular development (18, 36, 37). However, subtle alterations

may remain within animals derived from IVF procedures (38),

even without obvious phenotypic abnormality (33, 38); thus,

such animals are normally incorporated into the productive

process in farms. Clinical studies detected differences between

calves born from IVP embryos compared to calves born from

artificial insemination (AI) (39, 40), and between these and

clones (41). Furthermore, male IVP calves show activation of

the hypothalamus–pituitary–gonadal axis earlier than in vivo

developed calves produced by multi-ovulation and embryo

transfer (MOET) (38).

Neonates experience a striking metabolic challenge at birth.

The placental nutrition ceases abruptly and is replaced by a cyclic

enteral food supply to conserve homeostasis (42). Such a change

requires progressive adaptation to adulthood with adrenal,

pancreatic, and thyroid hormones driving from fetal setpoints

to anabolic oxidative metabolism, energy storage, and tissue

accretion (43). The welfare of calves has been often analyzed by

measuring biochemical and hematological parameters (39–41,

44–46). Such studies are crucial because of their contribution to

defining normalcy and alteration intervals. In contrast, limited

knowledge of the effects of cryopreservation on calf fitness

was documented.

In the present study, we hypothesized that cryopreservation,

as one of the hallmarks that trigger alterations and reduce the

viability of IVP embryos, may underlie effects on calf fitness

that cannot be obvious in offspring. For this purpose, we

used embryo cryopreservation procedures that yielded gestation

length (GL), BW, and daily gain weight of the fetus that did

not differ between fresh, F/T, and V/W calves (4). This way, the

absence of labor difficulties derived from heavier calves and/or

extended gestation may facilitate the evaluation of the effects of

cryopreservation as is or as a specific technique in itself (i.e., F/T

or V/W).

Materials and methods

The study was conducted following the guidelines of the

Declaration of Helsinki and approved by the Animal Research

Ethics Committees of SERIDA and the University of Oviedo

(PROAE 33/2020; Resolución de 13 de Noviembre de la

Consejería de Medio Rural y Recursos Naturales), in accordance

with European Community Directive 86/609/EC.

All reagents were purchased from SIGMA (Madrid, Spain)

unless otherwise stated.

Calves used in this study were born in a 3-year period

(May 2017-July 2020) from IVP embryos transferred to

recipients following procedures that did not induce differences

between fresh, frozen/thawed (F/T), and vitrified/warmed

(V/W) embryos in calf BW and GL (4) An update of

animals born in our herd confirmed no differences in BW

average, although 5/35 F/T and 8/33 V/W cases showed

BW>50 kg, compared with 1/26 in fresh embryos (3, 3,

and 1 of them, respectively, used in this study; unpublished

data). However, only two calves born from V/W and fresh
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TABLE 1 Calves sampled according to their embryonic origin (i.e., cryopreservation) and timing before or after colostrum intake, and calves

deceased during the sampling period (30 days from birth).

Colostrum intake Diarrhea Non-Diarrhea

Embryo Before After Male Female Treated Untreated Dead Dead

Fresh 12 13 5 8 2 1 0 0

Vitrified 10 14 7 7 2 2 0 1

Frozen 19 23 17 7 5 4 2 2

Diarrhea cases before Day-15 (N = 3) and after Day-15 (N = 13; mostly affecting Day-30 measurements by diarrhea/or its treatment).

Deaths: 1 vitrified (non-diarrhea: Day-2); 2 frozen (non-diarrhea: 1 Day-2 and 1 Day-7; diarrhea: 1 Day-10 and 1 Day-12).

Total calves: 24 Frozen; 13 Fresh; 14 Vitrified.

TABLE 2 Update of Day 40 and Day 62 pregnancy rates, pregnancy loss rates, birth rates, and calving ease after transfer of Day 7 and Day 8 vitrified,

frozen, and fresh embryos cultured from Day 0 to Day 6 in groups with either BSA (0.6%) or FCS (0.1%) + BSA (0.6%), and subsequently in individual

culture without protein supplements (0.5 mg/ml PVA) from Day 6 to Day 7 in the experimental herd.

Pregnancy rates (%) Pregnancy loss

>Day 40

Calving ease (N) %

Embryo Culture Day N Day 40 Day 62 Birth rates

(%)

1 and 2 3 and 4 5 Calves

analyzed

Fresh BSA 7 32 (22/32) 68.7 (18/32) 56.2 21.8 (7) (15/32) 46.9 (15) 100 - - 7

FCS+BSA 7 17 (11/17) 64.7 (10/17) 58.6 27.3 (3) *(8/16) 50.0 (7) 87.5 - (1) 12.5 5

Vitrified BSA 7 50 (32/50) 64.0 (31/50) 62.0 25.0 (8) (24/44) 54.5 (21) 87.5 (3) 12.5 - 10

BSA 8 2 (1/2) 50.0 (1/2) 50.0 - (1/2) 50.0 (1) 100 - - -

FCS+BSA 7 10 (5/10) 50.0 (5/10) 50.0 20.0 (1) *(4/9) 44.4 (4) 100 - - 4

Frozen BSA 7 65 (36/65) 55.4 (34/65) 52.3 13.8 (9) (27/59) 45.8 (23) 85.2 (4) 14.8 - 18

BSA 8 17 (5/17) 29.4 (5/17) 29.4 40.0 (2) (4/17) 26.7 (4) 100 - - 2

FCS+BSA 7 17 (9/17) 52.9 (8/17) 47.0 29.4 (5) (4/17) 26.7 (3) 75 (1) 25 - 4

*Two recipients dead after fresh ET (1 open and 1 pregnant after Day 62). Birth rates are unmatched with pregnancy rates reflecting that some pregnancies are ongoing. Of the total of

calves born at term, five died 24 h after birth, four corresponding to a transfer of a vitrified embryo cultured with BSA, and one to a fresh embryo cultured with BSA. Calving ease, 1 (no

assistance required); 2 (soft traction without manipulation); 3 (hard traction); 4 (manipulation and traction); and 5 (cesarean section).

Distribution of samples used per bull, Bull A, N = 12; Bull B, N = 9; Bull C, N = 10; Bull D, N = 4; Bull E, N = 7; Bull F, N = 7; Bull G, N = 2.

The calves analyzed in the present study are detailed.

embryos and pregnancies >290 days showed ≥60 kg at birth

(4). For these experimental purposes, the calves available for

analysis at Day 0 were N = 13 (fresh), N = 14 (V/W),

and N = 24 (F/T) (refer to Table 1, for details). The readers

are referred to our articles (4, 24, 47) for a complete

description of oocyte collection from slaughterhouse ovaries,

in vitro maturation (IVM) and in vitro fertilization (IVF),

which was performed with frozen/thawed semen from single

seven individual bulls [three Holstein and four Asturiana

de los Valles (AV)]. Pregnancy rates from each procedure

were also described (4, 24). An update of embryo transfers

performed in our experimental herd, pregnancy, pregnancy

loss, birth rates, and calving ease for fresh, F/T, and V/W

embryos cultured with or without serum is shown in

Table 2.

In vitro embryo production

Extended in vitro culture (IVC) procedures were described

(47). Briefly, after IVF, presumed zygotes were loaded into the

embryo culture medium (CM) which consisted of modified

synthetic oviduct fluid (mSOF) with MEM non-essential amino

acids (M7145), BME amino acids (B6766), citrate (0.1µg/ml),

myo-inositol (0.5µg/ml), and Bovine serum albumin (BSA)

(A3311) (6 mg/ml) with or without 0.1% (v/v) FCS (SIGMA

F4135), under mineral oil at 38.7◦C, 5% CO2, 5% O2, 90%

N2, and saturated humidity. Embryos were cultured in groups

until Day 6. On Day 6 (143 h after IVF onset) morulae, early

blastocysts and blastocysts were cultured individually in 12-

µl protein-free mSOF with polyvinyl-alcohol (P8136) under

mineral oil for 24 h. Thereafter, Day 7 embryos at the expanding
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blastocyst stage (ExB) and fully expanded blastocysts (FEB) were

transferred fresh or cryopreserved (F/T or V/W) to recipients

synchronized on cycle Day 7. As an exception, one calf was

derived from one Day 7 embryo which was re-cultured for

24 h with new protein-free CM and transferred as an F/T Day

8 embryo.

Embryo freezing and thawing

Freezing and thawing followed a described procedure (4).

Only ExB and FEB were collected from single culture drops

and washed three times in phosphate buffered saline (PBS) +

4-g/L BSA and loaded in a freezing medium containing PBS

(P4417), 1.5-M EG, and 20%CRYO3 (5617, StemAlpha, France)

for 10min. Embryos were loaded into a French straw between

two columns with PBS + 0.75-M EG + 20% CRYO3, and two

further columns PBS + 0.75-M EG + 20% CRYO3 separated

by air. The straw was sealed with a plug and loaded into a

programmable freezer (Crysalis, Cryocontroller PTC-9500) at

−6◦C for 2min and seeded once with supercooled forceps.

Straws remained for 8min at −6◦C and were subsequently

dehydrated at a −0.5◦C/min rate up to reach −35◦C. Finally,

the straws were stored in LN2 until used for ET. Thawing was

performed by holding the straws for 10 s on air and 30 s in at

35◦C (water bath) and drying with 70% ethanol. Each thawed

straw containing a single embryo was mounted in an ET catheter

and non-surgically transferred to recipients deeply in the uterine

horn ipsilateral to the corpus luteum of synchronized recipients.

Embryo vitrification

Vitrification procedures have been previously described

(48). Only ExB and FEB blastocysts were vitrified in two

steps with fibreplugs (CryoLogic Vitrification Method; CVM),

working on a heated surface (41◦C) in a warm room (25◦C).

Embryos were handled in a basic vitrification medium (VM:

TCM 199-HEPES + 20% (v/v) FCS). Each blastocyst was

exposed to VMwith 7.5% ethylene-glycol (EG, 102466-M), 7.5%

dimethyl sulfoxide (DMSO) (D2650, vitrification solution-1) for

3min, and then moved into a drop containing VM with 16.5%

EG, 16.5% DMSO and 0.5-M sucrose (vitrification solution-2;

VS2). The time spent by the embryos in VS2 (including loading)

did not exceed 25 s. Sample vitrification was induced by touching

the surface of a supercooled block placed in LN2 with a hook.

Fibreplugs with the vitrified embryos were stored in closed

straws in LN2 until warming previous to ET. Embryos were

warmed in single-step by directly immersing the fibreplug end

in 800 µl of 0.25M sucrose in VM, where the embryo was kept

for 5min and subsequently washed twice in VM and twice in

mSOF containing 6-mg/ml BSA and 10% FCS before preparing

for ET.

Recipient management, embryo transfer,
and pregnancy diagnosis

All recipients were managed, fed, transferred, and housed

during gestation; calving; and perinatal period (30 days) in

the experimental herd. Such procedures have been described

in depth (49, 50) and performed to minimize environmental

differences. Embryos were transferred to AV, Holstein, and

crossbred recipients synchronized in estrus with a progestagen-

releasing device (PRID Alpha; CEVA, Barcelona, Spain),

loaded intravaginally for 8–11 days, and removed 48 h after

prostaglandin F2α analog (Dynolitic, Pfizer, Madrid, Spain)

injection. Estrus appearance was observed by experienced

caregivers 2–3 times per day and/or monitored with an

automated sensor system (Heatphone, Medria, Humeco,

Huesca, Spain). In the absence of clear estrous signs,

progesterone concentrations were measured to select recipients,

with P4 fold change Day 7/Day 0 >8 and Day 7 P4

values >3.5 ng/ml. An enzyme-linked immunosorbent assay

(ELISA) test (EIA-1561, DRG Diagnostics, USA) was used

for progesterone measurement. Before ET, all recipients were

clinically explored by ultrasonographic scanning for detection

of a corpus luteum in one ovary and transferred at a fixed time.

ETs were performed non-surgically under epidural anesthesia.

Fresh embryos were washed twice in Embryo Holding Media

(019449, IMV Technologies) and mounted in straw in the

same medium. Vitrified embryos were warmed, examined in

their morphology, and mounted as fresh embryos for transfer.

Frozen/thawed embryos were directly transferred in straw and

not examined. Pregnancy was diagnosed on Day 40 and Day 62

by ultrasonography and birth rates were monitored.

Rationale

We planned a study based on sample variability to reach

experimental randomness. The variability in the experimental

conditions and individual bulls is intended to add degrees of

freedom to our study and avoid linkage between any particular

condition (i.e., a specific embryo culture, a single bull, etc.) and

the parameters we analyzed among calves from fresh, F/T, and

V/W embryos. Gestation was allowed to end naturally in the

experimental herd without calving induction. Calving and birth

time were monitored with an intravaginal sensor (Vel’Phone,

Medria, Humeco, Huesca, Spain). After birth, mothers were

adjusted in milk production by feeding 3 kgs concentrate/day,

given by automated dispenser; supervised manual milking was

performed when necessary to reduce possible excess of milk

production in dairy mothers. Calves were kept with mothers

in free stalls and suckled colostrum and milk ad libitum in

order to satisfy milk amounts >20% of calf body weight (51).

Mothers and calves were held in the same shared environment
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until calves were aged 1 month. The health status of calves

was assessed daily by experienced caregivers who monitored

behavior changes, suckling and appetite, fatigue, diarrhea

(presence/ absence), cough, eye, and/or nasal discharges. At

birth (Day 0), blood samples were collected before colostrum

intake and 1–4 h after colostrum intake (52). Hematological

and biochemical analysis were performed on blood samples

taken subsequently at fixed times (10 a.m. on Days 15 ± 1 and

30 ± 1 of life), together with clinical examination. Blood was

collected in vacuum tubes (containing lithium heparin) from

the jugular vein, shaking 10 times, and directly analyzed in

a Vetscan i-STAT One analyzer (Scil Animal Care, Madrid,

Spain; CG4+ and CHEM8+ modules). The analyzer was

loaded in a room in the experimental farm kept at 25◦C, and

blood tubes were collected independently to minimize time

spent until analysis. Parameters measured in calves and taken

into account in embryos for analysis are shown in Table 3.

Parameters measured by Vetscan i-STAT One were previously

subjected to a time-course validation to check consistency and,

eventually, apply corrections (which were not necessary as all

measures were performed in blood collected in time).Within the

measured parameters, acid–base status was estimated through

the followings: partial pressure of CO2 (PCO2), which represents

the respiration fraction of acid–base balance (i.e., Cellular

production of CO2 and ventilatory removal of CO2); HCO−
3 ,

which is the metabolic component of acid–base balance; total

CO2 (TCO2) is a measure of carbon dioxide in several states:

CO2 in physical solution or loosely bound to proteins, HCO−
3

or CO3 ions and carbonic acid (H2CO3); anion gap (AG), which

detects organic acidosis by measuring differences between the

cations Na+ and K+ and the anions Cl− and HCO−
3 ; PO2, i.e.,

partial pressure of oxygen dissolved in blood; oxygen saturation

(sO2), which represents the total amount of hemoglobin (Hb)

able to bind oxygen—oxyhemoglobin plus deoxyhemoglobin;

base excess (BE), which is the non-respiratory component of pH;

and pH.

Statistical analysis

Statistical analysis was performed with SAS/STAT package

(Version 9.2; SAS Institute, Inc.) using GLM models. The

biochemical and hematological parameters analyzed were first

submitted to a time-course validation test for consistency to

obtain appropriate time intervals for chemometric analysis.

Subsequently, for their study, data were divided into two

sets (Day 0, with and without colostrum intake; and a time-

course Day 0, Day 15, and Day 30 analysis, excluding Day

0 samples obtained prior to colostrum intake). This second

analysis included the effects of diarrhea, which appeared at

specific time points in some calves (refer to the footnote in

Table 1). Major effects alone and/or combined with pre-planned

interactions were studied in both datasets. First, the effect of

TABLE 3 Variables controlled in embryos and parameters measured in

calves on Days 0, 15, and 30 after birth.

Parameter Details

Recipient Breed AV / Holstein / Crossbred

Mother weight at birth Kg

Calving easy AU: 1-5 (no intervention to Caesaran section)

Gestation length Days

Calf breed AV / Holstein / Crossbred

Calf sex Male / Female

Colostrum intake Yes / No

Suckling reflex Yes / No

Capillary refill time Seconds: 1-5 (time to recover color after gum pressure)

Rectal temperature ◦C

Conjunctival appearance AU: 1-Anemic; 2-Pale; 3-congestive; 4 icteric

Nasal mucosa appearance AU: 1-No discharge; 2-Discharge; 3-Colored discharge

Ganglion size Palpation: 0-not-increased; 1-increased

Ganglion pain Digital pressure: No / Yes

Calf weight Kg

Body Size Cm

Chest perimeter Cm

Heartbeats Beats / min (auscultation)

Respiration Breathings /min (auscultation)

pH Vetscan i-STAT One (CG4+)

CO2 partial pressure (PCO2) mm Hg (Vetscan i-STAT One; CG4+)

O2 partial pressure (PO2) mm Hg (Vetscan i-STAT One; CG4+)

Base excess (BE) mmol/L (Vetscan i-STAT One; CG4+)

HCO−
3 mmol/L (Vetscan i-STAT One; CG4+)

Total CO2 (TCO2) mmol/L (Vetscan i-STAT One; CG4+)

O2 saturation (sO2) % (Vetscan i-STAT One; CG4+)

Lactic acid mmol/L (Vetscan i-STAT One; CG4+)

Na+ mmol/L (Vetscan i-STAT One; Chem8+)

K+ mmol/L (Vetscan i-STAT One; Chem8+)

Cl− mmol/L (Vetscan i-STAT One; Chem8+)

Ca2+ mmol/L (Vetscan i-STAT One; Chem8+)

Glucose mg/dL (Vetscan i-STAT One; Chem8+)

Urea mg/dL (Vetscan i-STAT One; Chem8+)

Creatinine mg/dL (Vetscan i-STAT One; Chem8+)

Hematocrit % PCV(a) (Vetscan i-STAT One; Chem8+)

Hemoglobin g/dL (Vetscan i-STAT One; Chem8+)

Anion gap mmol/L (Vetscan i-STAT One; Chem8+)

(a) Packed cell volume. AV: Asturiana de los Valles. AU, Arbitrary units.

cryopreservation systems on calf fitness on Day 0 was analyzed

in combination with or without colostrum intake. The following

major effects were considered and weighed in the GLM model:

the origin of the calf based on embryo cryopreservation (fresh,

frozen, and vitrified); colostrum intake; embryo culture medium

prior to Day 6 (i.e., with BSA or BSA+FCS); calf sex; calf breed

(Holstein, AV, and crossbred); and individual bull and recipient

breed (random effects). Second, the time-course effects of

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2022.1006995
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gómez et al. 10.3389/fvets.2022.1006995

cryopreservation on the original embryos were analyzed in their

interaction with blood sampling times on Day 0 (after colostrum

intake), Day 15, and Day 30. The major effects included in the

models were as above, except those made of colostrum intake

and included diarrhea as a random effect. Parameters that did

not show significant interactions between cryopreservation and

sampling day were analyzed singly in the time course (i.e., Day 0,

Day 15, and Day 30). Data were expressed as LSmeans ± SEM.

The P-values of <0.05 were considered significant for variable

values analyzed within each model. Subsequently, the predicted

least square mean difference value (PDIFF) was calculated as

a post-hoc test to identify significant differences (P < 0.05)

between least square means.

Results

Analytical validation

The stability of hematological and biochemical parameters

was tested in samples through a time-course experiment

(Supplementary Tables S1A, B). Within the CG4+ analytical

module, no parameter showed significant deviations in

measured concentrations before an average reading time of

10.75min (range: 10–11min). Only lactate showed significant

(P < 0.01) differences with the precedent times at a reading

time of 14.75min (range: 14–16min). Parameters analyzed by

the CHEM8+ module did not differ at any analytical time (top

time: 13.2min, range: 12–14min). In accordance with these

validation studies, all samples were analyzed and read <6min

after blood collection.

Studies on Day 0

Day 0 samples analyzed wereN= 91 (N= 41 before andN=

50 after colostrum intake), taken fromN= 51 calves (frozen: 24;

fresh: 13; vitrified: 14) (refer to Table 1). Within such a dataset,

BW was affected by embryo culture and sex but not by embryo

cryopreservation; chest perimeter by embryo culture, and calf

size by sex (Table 4). In the main effects shown in Table 4, the

bull (individual random effect) had the largest influence, with 17

parameters being affected, most of them with strong significance

(P < 0.01). Colostrum intake affected eight parameters, while

cryopreservation and embryo culture influenced 7 and 10 values

measured in calves, respectively. Recipient breed affected four

parameters, calf sex seven parameters, and calf breed had no

effect. Lactate, respiration rates, PO2, and sO2 were independent

of all variables analyzed.

Interactions between embryo cryopreservation systems and

colostrum on Day 0 are shown in Figures 1, 2. Notably, relevant

effects of both embryo cryopreservation systems on clinical

traits in calves (Figure 1) were observed for capillary refill time

(CRT) and differed significantly (P < 0.001) from the value

in calves of fresh embryos (calves of F/T: 3.613 ± 0.232 s and

calves of V/W embryos: 3.235 ± 0.247 s; vs. calves of fresh

embryos: 2.394± 0.252 s) (Figure 1A) and heartbeat rate (calves

from fresh: 154.6 ± 5.6 vs. F/T: 143.9 ± 5.2 and from V/W

embryos: 138.8 ± 5.5; P < 0.034) (Figure 1B). Within acid–

base equilibrium and blood gases (Figure 1), differences between

cryopreservation systems were also recorded for PCO2 (P <

0.01) (Figure 1C), between calves derived from F/T embryos

(49.55 ± 1.86mm Hg) vs. calves from fresh embryos (56.80 ±

2.02) but not within calves from V/W embryos (52.71 ± 1.97);

at the same time, colostrum intake did not reduce PCO2 in

calves of V/W embryos, contrary to in calves from F/T and

fresh embryos. Base excess (Figure 1D) and pH (Figure 1E)

were not affected by cryopreservation but they showed a

significant restorative effect of colostrum (P = 0.005 and P

< 0.001, respectively). The concentration of Na+ (mmol/L)

also differed in calves from V/W embryos vs. calves from

fresh and F/T embryos (P < 0.05) (140.3 ± 0.6 vs. 139.0

± 0.6 and 139.0 ± 0.5, respectively) (Figure 1F), and K+

(mmol/L) tended to increase in calves when the original embryo

was F/T vs. fresh (P = 0.089; pdiff = 0.0356). Among the

metabolites analyzed (Figure 2), creatinine in calves was clearly

affected (P = 0.004) by both embryo cryopreservation systems

(Figure 2A; F/T: 3.875 ± 0.306 mg/dl and V/W: 3.881 ± 0.326;

vs. fresh: 2.770 ± 0.333), as well as by culture medium and

calf sex, tending to decrease after colostrum intake (P = 0.097;

not shown in tables). Urea (Figure 2B) did not differ with

embryo cryopreservation but showed a significant dependence

on the embryo culture system (P = 0.0046). Both hematological

parameters (Figure 2), Hb (g/dl) (Figure 2C) and PCV (%)

(Figure 2D), differed (P < 0.05) between calves born from

F/T and V/W embryos, but they did not differ from calves

of fresh ones (Hb: 8.565 ± 0.470 vs. 9.844 ± 0.500, and

9.233 ± 0.511; PCV: 25.22 ± 1.38 vs. 28.95 ± 1.47, and 27.12

± 1.50, respectively). The remainder of Day 0 interactions

colostrum∗embryo cryopreservation did not significantly differ

and are shown in Supplementary Table S2.

Time-course studies in the perinatal
period

These studies used N = 138 samples, corresponding to Day

0 (N = 50), Day 15 (N = 44), and Day 30 (N = 44). Five calves

died before Day 15. On Day 15, two samples were not taken,and,

on Day 30, other two samples from different calves were not

taken either. Table 1 shows further calf details. We first analyzed

the interaction between embryo cryopreservation and calf age at

three time points. The sample distribution per groups for F/T,

fresh, and V/W resulted in Day 0: 23, 13, and 14; Day 15: 20, 13,

and 11; Day 30: 19, 13, and 12, respectively.
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TABLE 4 Main e�ects from clinical signs and blood parameters in calves born from fresh, vitrified, and frozen embryos measured on Day 0 prior to

and after colostrum intake.

Embryo Calf Recipient

Parameter Colostrum Cryo(a) Culture Sex Breed breed Bull

CRT <0.001 0.010 0.010

Birth weight <0.001 0.003 0.005

Chest perimeter <0.001 0.001

Size 0.012 0.001

Temperature 0.010 <0.001

Conjunctival 0.047 0.016

Nasal flux <0.001

Heartbeats 0.051 0.034 <0.001

Respiration

pH <0.001 0.002

PCO2 <0.001 0.008 0.015

Base excess 0.005 0.033 0.004

HCO−
3 0.037 0.011

TCO2 0.012 0.015

Lactate

Na+ 0.040 0.012 <0.001 <0.001

K+ 0.027

Cl− 0.003 <0.001

Ca2+ 0.027 <0.001

Glucose 0.010

Urea 0.023 0.001

Creatinine 0.004 0.030 0.004

PCV 0.046 0.005 <0.001

Hemoglobin 0.044 0.005 <0.001

Anion gap 0.027 <0.001

PO2

sO2

(a)Cryo: embryo fresh or cryopreserved (vitrified or frozen). CRT, capillary refill time. Tendency values (0.05>P < 0.06) are shown in bold.

Values measured on a temporal scale were mostly

independent of embryo cryopreservation and showed changes

regarding Day 0 values. However, on Day 30, several parameters

were influenced by the previous appearance of diarrhea. Mild

diarrhea was either untreated or corrected with diet. Moderate-

to-severe diarrhea was treated with diet and nutritional and

electrolyte replacement (Calf Lyte Plus, Vetoquinol, Spain), with

or without injected sulfadoxinetrimethoprim therapy (Borgal;

Virbac, Esplugues de Llobregat, Barcelona, Spain).

Figures 3–5 show values for the day effect and the interaction

day∗cryopreservation. Within acid–base equilibrium and blood

gas concentrations parameters (Figure 3), PCO2 decreased in

calves from fresh and V/W embryos, but remained constant

in calves from F/T embryos (Figure 3A), while overall TCO2

decreased on Day 30, an effect more marked within calves

born after transfer of V/W embryos (Figure 3B) which was

also shown by ion bicarbonate (Figure 3C) and BE (Figure 3D).

On the contrary, PO2 and sO2 increased throughout with no

incidence of cryopreservation effects (Figures 3E,F respectively).

The anion gap also showed an increase in Day 30 over Day

15 values within calves from V/W embryos, while the other

time points and groups remained without changes (Figure 3G).

Temperature increased in all groups from Day 0 to a plateau

on Day 15 and Day 30 (Figure 3H), with a more pronounced,

significant rise in calves from fresh embryos. Among calf

electrolytes (Figure 4), none was affected by cryopreservation,

with Na+ decreasing abruptly from Day 0 until Day 15 and

Day 30 (Figure 4A), while Cl− showed a transient decrease

only on Day 15 (Figure 4B), K+ a transient increase on Day

15 (Figure 4C) and Ca2+ rose on Day 15 to remain stable up

to Day 30 (Figure 4D). Among metabolites analyzed (Figure 5),

carbohydrates showed contrary profiles between them, with

glucose rising from Day 0 to remain stable on Day 15 and Day

30 (with a significant peak for calves from V/W embryos on
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FIGURE 1

Clinical traits [capillary refill time (A) and heartbeats (B)] and acid–base equilibrium and blood gases parameters [PCO2 (C), base excess (D), pH

(E), and Na+ (F)] di�ered on Day 0 between groups of calves (from frozen/thawed, fresh, and vitrified/warmed embryos). Values are LSM ± SEM.

Samples were N = 42 pre-colostrum and N = 50 post-colostrum, corresponding to N = 24 for the frozen group, N = 13 for the fresh group, and

N = 14 for the vitrified group of calves. Underlined superscripts indicate the cryopreservation e�ect, and not-underlined superscripts indicate

the interaction between the cryopreservation system and colostrum intake.
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FIGURE 2

Metabolite parameters [creatinine (A) and urea (B)] and hematological variables [hemoglobin (C) and packed cell volume (D)] di�ered on Day 0

between calves born from frozen/thawed, fresh, and vitrified/warmed embryos. Data are expressed as LSM ± SEM. Underlined superscripts (x,y)

indicate the cryopreservation e�ect.

Day 30) (Figure 5A), in contrast with lactate, which decreased

from Day 0 (Figure 5B). Creatinine showed on Day 0 -with

the post-prandial samples—the same changes described above

due to embryo cryopreservation, and thereafter decreased to a

basal level on Day 15 and Day 30 (Figure 5C). Hematological

parameters (Figure 5), Hb (Figure 5D), and PCV (Figure 5E)

showed parallel decreases from Day 0 with comparable values

between Day 15 and Day 30.

The diarrhea influence on parameters was exerted clearly

on Day 30 and particularly in calves from V/W embryos;

despite this, such calves did not show a higher incidence of

the illness than calves from F/T and fresh embryos (refer to

Table 1). Parameters influenced by diarrhea on Day 30 were

temperature, PCO2, TCO2, HCO−
3 , BE, and Na+. Parameters

that did not show diarrhea influence on Day 30 were PO2,

sO2, AG, Cl−, glucose, lactate, creatinine, PCV, and Hb. Culture
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FIGURE 3

Acid–base equilibrium and blood gas parameters di�ered on Day 0, Day 15, and/or Day 30 between groups of calves (from frozen/thawed,

fresh, and vitrified/warmed original embryos): PCO2 (A), TCO2 (B), HCO−

3 (C), base excess (D), PO2 (E), sO2 (F), anion gap (G), and temperature

(H). Data are expressed as LSM ± SEM. Underlined superscripts indicate the day e�ect, and not-underlined superscripts indicate the interaction

between days and cryopreservation.
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FIGURE 4

Electrolytes that di�er in the three groups of calves in the temporal study (Day 0, Day 15, and Day 30). Na+ (A), Cl− (B), K+ (C), and Ca2+ (D)

concentrations are shown. Data are expressed as LSM ± SEM. Underlined superscripts indicate the day e�ect, and not-underlined superscripts

indicate the interaction between days and the cryopreservation system.

conditions (i.e., the presence of 0.1% FCS in culture prior to

Day 6) affected calf temperature (not shown in figures), while

lactate, creatinine, PCV, and Hb were significantly different

between male and female calves. Calf weight (repeatedly

measured on days of sampling) affected concentrations of PO2,

sO2, Na+, and Cl−. Gestation length affected AG, creatinine,

PCV, and Hb. The remaining parameters measured did not

show time-dependent changes or interaction with the embryo

cryopreservation origin of the calves; such values are described

in Supplementary Table S3.

Creatinine showed low or no correlation with parameters

that can be altered by dehydration (i.e., CRT: R = 0.26752, P

= 0.0371; PCV: R = 0.18547, P = 0.1524; Hb: R = 0.1485,

P = 0.18721) showing only correlations with PCO2 (R =

−0.30673; P= 0.0241), GL (R= 0.37304; P= 0.0031), and chest

perimeter (R= 0.30860; P= 0.0155) but no correlation with calf

weight and size at birth; nor did any other parameter measured.

This indicates that cryopreservation accounted for most of the

creatinine variation.

A comparison between the values of parameters obtained in

our study on Day 0 (before and after colostrum intake), Day

15, and Day 30 and reference values reported in other studies

is shown in Supplementary Table S4. Total consistency of our

values with a given list of reference values was not observed; in
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FIGURE 5

Metabolite concentration [glucose (A), lactate (B), and creatinine (C)] and hematological parameters [hemoglobin (D) and packed cell volume

(E)] measured on Day 0, Day 15, and Day 30 di�ered (P < 0.05) between calves derived from frozen/thawed, fresh, and vitrified/warmed

embryos. Data are expressed as LSM ± SEM. Underlined superscripts indicate the day e�ect, and not-underlined superscripts indicate the

interaction between days and the cryopreservation system.
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addition, no reference value list showed complete consistency

with each other. However, all our specific parameters showed

adjustment to at least one reference value at any time, with the

exception of urea (lower concentration in our study) and TCO2

(which was not measured in the referred studies).

Discussion

We evaluated calf fitness on Day 0 (before and after

colostrum intake) and on Days 15 and 30 after birth to monitor

adaptive changes. Part of the parameters measured on Day 30,

but not before, was significantly affected by the appearance

of diarrhea, which was of mild-to-moderate intensity in most

cases, including two deaths. Although the focus of our study

was investigating the effects of embryo cryopreservation among

IVP calves, we compared our results with recommended values

(Cornell University), and values obtained in similar studies

(40, 41, 46, 53–58). Overall, parameters measured in our

study fitted well with parameters given by other authors in

an independent way, but reliable and linear comparisons must

be cautiously interpreted because the age and conditions of

animals in literature were not always the same as our sampling

times, and studies were generally conducted under different

nutritional andmanagement diets. Therefore, accounting for the

effects of other environmental variables (farm, feeding time and

composition, type of food, reproductive methods, such as AI,

cloning, other in vitro production systems, analytical platforms,

and undetermined residual factors) is not feasible (46). The

analyzer we used has been positively evaluated in calves (40, 59–

61), and although some minor biases were noted between our

and other analyzers, they did not interfere with the clinical value

of data (62).

Embryo technologies, calf performance,
and growth

In vitro-produced calves often come from a prolonged

gestation (40, 63), which contributes to increased BW and

puts mother and calf at risk and may include a proportion

of calves with LOS/AOS phenotype [reviewed by Rivera et al.

(64)]. However, in our experimental herd, there were no BW

differences between fresh, F/T, and V/W calves. Beef recipients,

like AV, have shorter GL than dairy cattle (65) and lower

milk yield. For this reason, the recipient breed (Holstein, AV,

crossbred) was a factor to correct in our study, which affected

nasal flux, conjunctival appearance, Na+, and Cl− values at

birth. Instead, in our time-course study, the recipient breed only

affected PO2 and K+. Although the transfer of V/W embryos

leads to reduced pregnancy and birth rates and increased GL

(14), embryo cryopreservation as a source of alteration in

newborn calves has been not studied in depth. This is in contrast

with data obtained from technologies of embryo production

(12, 15). For example, PCV, Hb, urea, and creatinine differ

between clones and calves from AI (41), and in our study

with cryopreservation. Clones and calves showing AOS present

hypoglycemia (41), contrary to our study, where neither glucose

nor lactate at birth was affected by cryopreservation. Glucose

did not increase after colostrum intake, in accordance with (66),

but contrary to Guo and Tao (52), and increased on Day 15,

as shown by others (66–68). This is opposed to lactate, which

decreases with age (52, 66, 67). However, we do not know the

reason for higher glucose in calves from V/W embryos on Day

30, as an isolated finding, although temporary glucose increases

have been reported in calves obtained from IVP embryos vs. AI

(39). Alterations induced in calves by reproductive techniques

may help to identify parameters “sensitive” to injuries. Thus, the

type and sense of changes reported between calves from IVP

and/or cloned embryos vs. calves from AI could have parallel

effects due to cryopreservation in our IVP embryos.

Acid–base equilibrium and blood gases

The combination of metabolic and respiratory acidosis, due

to altered gas exchange between the fetus and the mother, is

a major cause of perinatal calf mortality (69, 70). Deviation

in acid–base balance entailed lower values of hematic HCO−
3 ,

pH, and BE in heavier calves compared with those with more

reduced BW (71). In our study, calves from fresh, V/W, and

F/T embryos did not differ in BW and GL. Calf overgrowth

leads to labor difficulties, which affect at least pH, lactate, and

PCO2 at birth (72). Gas values, pH, lactate, and BE are early

predictors of respiratory compromise and their values correlate

with blood levels of lung injury proteins (73). However, in our

study, parameters involved in the acid–base equilibrium on Day

0 reflected only slight differences between cryopreserved and

fresh embryos, without pathological damage.

Reduced PCO2 concentration in F/T calves suggests

primary respiratory alkalosis due to hypoxia, pointing to

hyperventilation during labor as a probable cause. After

colostrum intake, PCO2 decreased in F/T and fresh calves

but not within V/W. All differences in PCO2 disappeared on

Day 15 and Day 30, with a PCO2 reduction over the days.

In contrast, the concentration of HCO−
3 was steady on Day

0 and Day 15, being reduced by diarrhea on Day 30. Such

a decrease in HCO−
3 was more pronounced in V/W calves,

perhaps suggesting a higher sensitivity to diarrhea and/or more

compromised immune status, which should be investigated in

future studies. TCO2 and BE, not affected by cryopreservation

at birth, were however affected by diarrhea, and in calves from

V/W embryos on Day 30. AG, an indicator of diarrhea and

metabolic acidosis, showed a slight increase on Day 30 in calves

from V/W vs. fresh embryos, which is also consistent with

the timing for diarrhea. Interestingly, calves from F/T embryos
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showed intermediate values between calves from V/W and fresh

embryos on Day 30 in TCO2, HCO−
3 , BE, and AG, reflecting

that the possible metabolic alteration by diarrhea in F/T did not

occur to the greater extent showed by V/W.

Cryopreservation had a limited or no effect on PO2 and

sO2, parameters associated with oxidative stress. Interestingly,

sO2 does not account for fetal Hb or dysfunctional Hbs, by

which sO2 is seen here as a measure of the temporal replacement

of fetal calf Hb by adult Hb, a process that ends at 13 weeks

of age (74, 75). Embryo cryopreservation did not interfere

with this normal adaptation to adult life. Consistent with sO2,

PCV values decreased throughout, reflecting the physiological

replacement of large fetal erythrocytes by the lower volume

adult cells (76). At the end of pregnancy, the fetus responds

to hypoxia with a transient higher concentration of Hb and

PCV. Thus, colostrum intake, a rapid erythrocyte replacement,

and a decrease in fetal Hb trigger changes in hematological

parameters in the first weeks after birth (77–79). Colostrum had

the expected restorative effects on calf physiology, and there

were no major significant interactions between colostrum and

the cryopreserved or fresh status of the original embryos.

Oxidative stress is prevalent in calves from IVP and cloned

embryos, which show higher concentrations of free radicals and

less counteracting glutathione in the blood than in adult cattle

(80, 81). Such higher levels of free radicals were attributed to

the onset of breathing after birth, which enhances the contact

between lung epithelia and oxygen (80). However, we identified

lower PO2 and sO2 at birth than later on in our three types of

calves, and oxygen-based parameters did not vary with embryo

cryopreservation or any other effect at birth. We suggest that

non-respiratory factors also underlie increased ROS levels in

newborn calves.

Measures of acid–base balance (pH, PCO2, PO2, BE, and

HCO−
3 ), PCV, Hb concentration, and blood cells did not differ

between calves born from IVP embryos and AI aged 1 and 7

days (40). However, Sangild et al. (68) observed calves from IVP

embryos with higher pH, Hb, oxygen contents, and temperature.

Electrolytes can in turn increase in calves from IVP embryos at

birth [K+: (68)] and on Day 7 [K+ and Na+: (40)] or decrease

at birth [K+: (40); Na+ and Cl−: (68)]. We noted a tendency

toward elevated K+ in calves from fresh over F/T embryos,

and we agree with other authors regarding the decrease in

Na+ and Cl− over time as explained by colostrum and water

intake leading to hemodilution (40). In parallel, the Ca2+ supply

in milk would explain its rise until Day 15, as observed by

Sangild et al. (68) although not seen by Rerat et al. (40). Embryo

cryopreservation seemed to imposemore changes on calves than

reported for IVP vs. AI.

Calf temperature at birth did not vary with cryopreservation

and decreased with colostrum intake. Nor temperature at birth

does differ between calves from IVP and AI calves, despite

the fact that the regulating plasmatic 3,5,3
′

-triiodothyronine

(T3) and thyroxine (T4) hormones at birth are lower in calves

derived from IVP embryos (40). However, cloned calves show

higher temperatures than AI calves until 50 days of age (41)

and the expression of genes related to thermogenesis differs

in the hypothalamus of young male calves obtained from IVP

vs. MOET embryos (38). Collectively, the above suggests that

temperature regulatory mechanisms are not specific targets for

embryo cryopreservation.

Protein metabolism: Urea and creatinine

Creatinine concentration was higher at birth in calves from

V/W and F/T vs. fresh embryos, indicating a consistent

alteration induced by cryopreservation, whatever the

cryopreservation technique used. Creatinine also increased in

umbilical cord plasma (82) and calf venous blood (39) of IVP

vs. AI fetuses. Subsequently, creatinine decreases (78, 83–85)

as found in our study. The endogenous metabolism in muscles

generates creatinine as waste, in a direct proportion of muscle

mass, and blood creatinine concentration does not depend on

nutrition. The responsiveness of our calves to the colostrum

intake by decreasing creatinine, and the disappearance of

differences observed shortly after, indicate reversibility and no

obvious damage induced by cryopreservation. The creatinine

alteration is in contrast with the steady concentrations of

urea among groups on Day 0. Urea concentration depends

on nutrition, and its increase in blood indicates protein

catabolism (83), although we did not observe any decrease in

urea concentration with time. In the ewe, high urea levels in

the uterus and oviduct reduce embryo development rates and

enhance fetal growth (86, 87), as occurs in culture with serum

(88), and our study.

Sex affected Day 0 concentrations of Na+ and Cl−

(increased in men), but such differences disappeared afterward.

However, sex differences in creatinine, PCV, and Hb observed

on Day 0 remained throughout. Creatinine concentration was

higher in males at birth (40), which can be explained by the

larger muscle mass in these calves (40, 89). Our results are

consistent with observations of Dillane et al. (46) for Cl−, PCV,

and pH (which showed a tendency), are contrary for Na+,

and are not coincident for glucose, HCO−
3 , PCO2, AG, and

K+ (not affected by sex in our study). Other studies did not

find differences attributable to calf sex for the above and other

parameters investigated (76, 90).

Adaptation to extrauterine life

As reported by Schäff et al. (67), we observed how

parameters measured in the first month of an age change to

adapt to mature life. CRT is a measure of mild-to-moderate

dehydration in calves (91). In our story, calves from F/T and

V/W embryos seemed to show this moderate dehydration,
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as their CRT surpassed 3 but not 4 s both before and after

colostrum intake. CRT ≥ 3 s reflects a 4.3% reduction in

hydration in dairy calves compared with lower refill times

(91). PCV is also typically elevated in dehydration (92), as

shown in calves from V/W embryos compared with calves from

F/T embryos but not within calves from not cryopreserved

embryos. Rectal temperature and respiration rates decrease by

dehydration (91), but such parameters did not change between

calf types. Collectively, V/W embryos led to calves who showed

more dehydration signs than calves from F/T embryos, although

without reaching a clinical compromise, since CRT cannot be

measured in calves with severe dehydration (91, 93). Thus, the

pH values of all calf types at birth were higher than 7.2, a clinical

limit to judge a calf as acidotic (93), and all types responded to

colostrum intake with pH rises between 7.30 and 7.35. Animals

over 7 days old should reflect values > 7.31 (94) or > 7.36 (90).

Metabolic adaptation in the calf starts during the third

week of life when newly synthesized, calf proteins must replace

colostrum-provided and in utero-synthesized proteins (83).

Disrupting neonatal metabolic adaptation would make the

calf susceptible to infectious- and non-infectious diseases. We

observed here that calves from V/W embryos showed metabolic

traits compatible with diarrhea despite not being clinically

affected and/or no more affected than their counterparts.

With the few exceptions marked on Day 0, generally,

colostrum intake and subsequent development led to similar calf

adaptation of fresh, V/W, and F/T embryos until Day 15. The

incidence of diarrhea led to differences on Day 30 within calves

from V/W embryos (i.e., two cases treated and two cases not

treated within 13 surviving calves). HCO−
3 , AG, BE, and TCO2,

differed on Day 30 between calves from V/W vs. fresh and F/T

embryos, consistent with significant effects of diarrhea. Other

parameters were affected by diarrhea (i.e., temperature, PCO2,

andNa+) but without particular differences between calf groups.

Conclusion

In the present study, apparently normal calves from

cryopreserved embryos show particular clinical and biochemical

traits, more pronounced on Day 0 than afterward, as observed

with CRT, creatinine, or heartbeat rate. Furthermore, V/W

and F/T embryos also led to specific effects on calves, as

occurred with PCO2 or Na+. However, differences from embryo

cryopreservation disappeared in calves on Day 15 and Day 30.

In contrast, on Day 30, diarrhea altered several parameters,

and our results point to V/W embryos as making calves more

susceptible to these effects, although overall mortality rates did

not differ. The small concentration of serum we used in embryo

culture was reflected in the protein metabolism (i.e., urea and

creatinine) of calves, although no conclusive statement can

be drawn without studying such changes at the cellular level.

Anyhow, such differences observed on Day 0 disappeared over

time, with the only temperature remaining affected. Colostrum

was restorative in the three groups of calves, which indicates

an initial similar adaptation to extrauterine life between calves

from fresh and cryopreserved embryos. This is the first study to

compare the clinical status of calves born from fresh vs. frozen

and vitrified IVP embryos. The molecular basis of the observed

differences, and whether they persist in progeny as subtle effects

not approached herein, requires further investigation.
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