AUTHOR=Wang Jinhui , He Kangxin , Wu Zhengjiao , Jin Weikun , Wu Wende , Guo Yanfeng , Zhang Weiyu , Di Wenda
TITLE=Development of a colloidal gold immunochromatographic strip for the rapid detection of antibodies against Fasciola gigantica in buffalo
JOURNAL=Frontiers in Veterinary Science
VOLUME=9
YEAR=2022
URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2022.1004932
DOI=10.3389/fvets.2022.1004932
ISSN=2297-1769
ABSTRACT=BackgroundFasciola gigantica, a tropical liver fluke, infects buffalo in Asian and African countries, causing significant economic losses and posing public health threats. The diagnostic of buffalo fascioliasis caused by F. gigantica is vital in fascioliasis control and preventation. The 22nd gel filtration chromatography fraction of F. gigantica Excretory-Secretory Products (FgESP), namely Fasciola 22 (F22), which was used as a diagnostic antigen in indirect ELISA, has demonstrated great potential for fascioliasis diagnosing. In the absence of rapid diagnostic methods, the use of a colloidal gold immunochromatographic strip based on F22 was applied to detect F. gigantica infection in buffalo.
MethodsIn the present study, the 22nd gel filtration chromatography fraction of FgESP (F22) was used as an antigen to establish the colloidal gold-based immunochromatographic strip (ICS). The nitrocellulose membrane was incubated with F22 at the test line (T line) and goat anti-mouse secondary antibody at the control line (C line). The mouse anti-buffalo secondary antibody 2G7 conjugated to colloidal gold particles was used as the detection system for line visualization. The strip was assembled and developed by optimizing reaction conditions. The sensitivity, specificity, stability, and early diagnostic value of the strip were evaluated employing buffalo-derived sera.
ResultsAn immunochromatographic strip for the rapid detection of antibodies against F. gigantica-FgICS was developed. The strip demonstrated high sensitivity and specificity. Sensitivity tests confirmed positive results even when the positive reference serum was diluted 4,096 times. Except for one Schistosoma japonicum-positive serum that tested positive via FgICS, specificity tests confirmed no cross-reactivity with other positive sera of Schistosoma japonicum and Babesia bovis. The strip remained stable after storage at 4°C for up to 3 months. In infected buffalo, antibodies could be detected as early as 14–21 days post-infection. The detection of 17 positive sera yielded an 82.4% positive rate via FgICS vs. a 100.0% positive rate via ELISA based on FgESP. For FgICS, the 95% confidence interval of sensitivity was 84.8–95.4%, while specificity was 4.2–14.7%.
ConclusionThe immunochromatographic strip FgICS developed in this study provides a simple and rapid method of F. gigantica antibody detection and infected buffalo monitoring in the field.