
PERSPECTIVE
published: 06 January 2021

doi: 10.3389/fvets.2020.608235

Frontiers in Veterinary Science | www.frontiersin.org 1 January 2021 | Volume 7 | Article 608235

Edited by:

Vincent Obanda,

Kenya Wildlife Service, Kenya

Reviewed by:

Gustavo Machado,

North Carolina State University,

United States

Hans-Hermann Thulke,

Helmholtz Centre for Environmental

Research (UFZ), Germany

*Correspondence:

Aniruddha V. Belsare

avbxv8@mail.missouri.edu

Specialty section:

This article was submitted to

Veterinary Epidemiology and

Economics,

a section of the journal

Frontiers in Veterinary Science

Received: 19 September 2020

Accepted: 07 December 2020

Published: 06 January 2021

Citation:

Belsare AV, Millspaugh JJ, Mason JR,

Sumners J, Viljugrein H and

Mysterud A (2021) Getting in Front of

Chronic Wasting Disease:

Model-Informed Proactive Approach

for Managing an Emerging Wildlife

Disease. Front. Vet. Sci. 7:608235.

doi: 10.3389/fvets.2020.608235

Getting in Front of Chronic Wasting
Disease: Model-Informed Proactive
Approach for Managing an Emerging
Wildlife Disease
Aniruddha V. Belsare 1*, Joshua J. Millspaugh 2, J. R. Mason 3, Jason Sumners 4,

Hildegunn Viljugrein 5 and Atle Mysterud 6

1Department of Fisheries and Wildlife, Boone and Crockett Quantitative Wildlife Center, Michigan State University, East

Lansing, MI, United States, 2W.A. Franke College of Forestry and Conservation, Wildlife Biology Program, University of

Montana, Missoula, MT, United States, 3Michigan Department of Natural Resources Executive in Residence, College of

Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States, 4Missouri Department of

Conservation, Columbia, MO, United States, 5Norwegian Veterinary Institute, Oslo, Norway, 6Department of Biosciences,

Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway

Continuing geographic spread of chronic wasting disease (CWD) poses a serious threat

to the sustainable future of cervids and hunting in North America. Moreover, CWD has

been detected in captive cervids in South Korea and, in recent years, in free-ranging

reindeer in Europe (Norway). Management of this disease is limited by logistical, financial,

and sociopolitical considerations, and current strategies primarily focus on reducing host

densities through hunter harvest and targeted culling. The success of such strategies

in mitigating the spread and prevalence of CWD only upon detection is questionable.

Here, we propose a proactive approach that emphasizes pre-emptive management

through purposeful integration of virtual experiments (simulating alternate interventions

as model scenarios) with the aim of evaluating their effectiveness. Here, we have used

a published agent-based model that links white-tailed deer demography and behavior

with CWD transmission dynamics to first derive a CWD outbreak trajectory and then use

the trajectory to highlight issues associated with different phases of the CWD outbreak

(pre-establishment/transition/endemic). Specifically, we highlight the practical constraints

on surveillance in the pre-establishment phase and recommend that agencies use a

realistic detection threshold for their CWD surveillance programs.We further demonstrate

that many disease introductions are “dead ends” not leading to a full epidemic due to high

stochasticity and harvesting in the pre-establishment phase of CWD. Model evaluated

pre-emptive (pre-detection) harvest strategies could increase the resilience of the deer

population to CWD spread and establishment. We conclude it is important to adaptively

position CWD management ahead of, rather than behind, the CWD front.
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INTRODUCTION

Chronic wasting disease (CWD) is an emerging prion disease of
North American cervid populations (including white-tailed deer
Odocoileus virginianus, mule deer Odocoileus hemionus, and elk
Cervus canadensis) that has been detected in free-ranging and
captive cervids in 26U.S. states and three Canadian provinces
as well as in free-ranging reindeer Rangifer tarandus in Norway
and in captive cervids in South Korea. The seemingly inexorable
spread of CWD presents both short- and long-term threat to
free-ranging cervids and to wildlife conservation in general. Field
data show that CWD can markedly reduce cervid populations
(1, 2); while modeling studies suggest that CWD may even
cause extirpation of local cervid populations (3). As well, CWD-
driven declines in hunting license revenue, and the unsustainable
cost of existing CWD surveillance and management programs
have obvious economic implications (4, 5). Deer and deer
hunting underpin the economic well-being of North American
conservation as deer hunting is an important source of revenue
for wildlife related work and added conservation value through
the protection and management of private lands that benefit
other wildlife (6, 7).

The management of wildlife diseases in general and CWD
in particular is constrained by limited scientific knowledge
about transmission dynamics (8). Moreover, uncertainties about
the current status of infection in many populations and the
likelihood of success of different management actions are
major challenges. These challenges are compounded by the
controversial nature of deer management and popular and
political opposition to disease management interventions (9, 10).
Regardless, affected publics and politicians expect and demand
that wildlife agencies respond promptly and effectively to disease
threats. An effective approach to addressing uncertainties while
dealing with complex systems is through the integration of
formal models with management and related policy decision
making (11).Modeling presents an economical and time sensitive
alternative to direct field tests that are costly, require years to
complete and are difficult to sustain. Such virtual explorations
can enhance scientific understanding of complex systems and
can be developed specifically for evaluating the utility of various
interventions and regulatory packages.

There are many different ways to model CWD dynamics
depending on the objectives (12). Here, we build our argument
using a published agent-based modeling framework, OvCWD,
that simulates the complex white-tailed deer-CWD system
(13, 14). An important feature of this agent-based modeling
framework is the ability to simulate age–sex-specific scenarios
and interventions, as relevant individual host characteristics
(age, sex, and group membership) and behaviors (dispersal,
grouping behavior) have been incorporated in the constituent
model programs. We illustrate how this model-based approach
can be used to better understand phase-specific issues associated
with CWD outbreaks. In this perspective, we argue that
CWD management approaches should be phase specific (pre-
establishment/transition/endemic) and should specifically take
into consideration the need for pre-emptive, pre-detection
strategies due to imperfect detection in the pre-establishment

phase. A unique feature of CWD is the slow epidemic growth
in the initial stage, and stochasticity plays an important role
in determining whether the infection gets established in the
deer population. Moreover, harvest strategies can influence
the probability of CWD persistence. We conclude that a way
forward should include the development of defensible pre-
emptive harvest strategies that are locally relevant, sustainable
and cost-effective, and prevent the establishment of CWD.

UNDERSTANDING CWD DYNAMICS

We derived CWD outbreak trajectories to provide a context
for designing more efficient and sustainable CWD surveillance
and management strategies. Model parameterization and
implementation are detailed elsewhere (13). Here, we briefly
describe the modeling process to derive outbreak trajectories.
CWD was introduced in the model deer population (pre-harvest
deer abundance ∼52,800, representing a midwestern county
landscape of ∼721 square miles) by a dispersing yearling during
the first year of the model run. The subsequent spread of CWD
in the model deer population was documented over a 25 year
period for each model simulation. Model output data from 100
iterations were summarized to generate a statistical portrait of
CWD prevalence for each year of the model run (Figure 1; the
dashed blue line represents CWD outbreak trajectory). CWD
prevalence remains low (below 1%) for at least a decade after
introduction, and this pattern is in agreement with field and
modeling data from other studies in North America (15–17).
Similar CWD outbreak patterns have been documented in
white-tailed deer populations from Wisconsin, Pennsylvania
and West Virginia. Such low prevalence rates after introduction
have important implications for surveillance and management
of CWD.

The Issue of Sampling and Imperfect CWD
Detection
In the early phase of the outbreak (∼10–15 years after
introduction into a natural population), detection of CWD using
hunter-harvested deer (non-probabilistic sampling) is difficult, if
not practically impossible, because the overall prevalence remains
very low and cases are clustered, not randomly distributed (18–
20). Nevertheless, at present, sample size calculations are usually
undertaken without accounting for the clustering of cases and
the non-probabilistic nature of hunter-harvest. As a result, the
detection probability (or the confidence of detecting CWD) is
likely overestimated (14, 21), and therefore, inferences about the
presence or absence of CWD in the targeted population during
the pre-establishment phase are unreliable (22, 23). Most often,
by the time active surveillance detects CWD in a population,
the disease is already well-established and difficult to eliminate
(16, 24).

To highlight phase-specific sampling issues, we used the
surveillance model (14) to calculate sample size targets for
high detection probability (95%) over the course of the CWD
outbreak simulating (a) current standard assumptions (randomly
distributed CWD cases, random sampling) and (b) realistic
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FIGURE 1 | Blue solid circles represent the mean CWD prevalence (±SE) for

iterations with active CWD cases. The model-derived CWD trajectory is divided

in three phases: pre-establishment, transition, and endemic. Model-derived

sample size requirements for CWD detection (turquoise line = standard

assumptions, red line = realistic assumptions) are plotted along with the CWD

outbreak trajectory. The y-axis on the right side is for sample size. For

example, when the true prevalence of CWD in the model deer population is

∼1% (year 14), the sample size needed for a 95% detection probability is 300,

assuming a random distribution of CWD cases in the population and random

sampling method (standard assumptions). For the same prevalence, but

assuming a clustered distribution of CWD cases and non-random sampling

(realistic assumptions), the sample size necessary for a 95% detection

probability is ∼2,200. Red dashed line highlights the pre-establishment phase

features: prevalence below 1% for ∼14 years post-introduction.

assumptions (clustered CWD distribution and non-random
sampling). Model-derived sample size requirements are plotted
along with the CWD outbreak trajectory (Figure 1). Based
on the model-derived insights about CWD spread dynamics
and sampling requirements, we define three phases of CWD
outbreak: (a) pre-establishment phase is the early stage of
the outbreak characterized by low CWD prevalence (below
1%) and sample size requirements that are either difficult
to achieve and unsustainable (using realistic assumptions) or
unreliable (detection probability overestimated due to unrealistic
assumptions); (b) transition phase follows the pre-establishment
phase, characterized by an increasing prevalence (above 1%,
but <3%) and a considerable decrease in the sample size
requirement even with realistic assumptions; and (c) endemic
phase characterized by rapidly increasing CWD prevalence
and a corresponding decrease in sample size requirement for
CWD detection using realistic assumptions. Thus, surveillance
strategies at each phase necessitates different sample sizes
to confidently detect the existence of CWD. Among other
factors, environmental contamination likely plays an increasingly

important role in CWD transmission in the endemic phase,
further complicating disease management (3).

Here, we show that model-derived sample size requirements
for confidently detecting CWD in the pre-establishment phase
are considerably large if realistic assumptions are used (Figure 1).
Moreover, the surveillance model as presented here assumes
100% test sensitivity. But the probability of obtaining a positive
result when testing an infected individual (test sensitivity) is
<100% which is of special relevance for CWD because test
sensitivity is typically lower in the early infection stages of
the disease (25). Therefore, the actual samples required for
confidently detecting CWD will be likely larger than the model-
derived sample size.

Other model approaches, such as Bayesian weighted
surveillance (26) and risk-based scenario tree modeling (27, 28)
have been proposed for the early detection of CWD and other
emerging diseases. Utilizing targeted sampling of high–risk
individuals may be more cost-effective and reduce the sample
size needed to detect disease when compared to random or
convenience sampling. However, regardless of the approach
to determine sample sizes, CWD surveillance data will be
biased if clustering of cases in the pre-establishment phase
and very low prevalence are not accounted for. A modeling
tool that incorporates spatial clustering of cases (like OvCWD)
will be particularly useful for determining realistic sample
size requirements for confidently detecting CWD in the pre-
establishment phase. Better still, such a tool can be used to set a
realistic detection threshold to economize surveillance efforts for
efficient management of CWD.

Pre-establishment Phase CWD Dynamics
and Pre-emptive Harvest Strategies
CWD is difficult to detect in the early phase of the outbreak
when prevalence is low, and difficult to eliminate in the later
stage of the outbreak when CWD is established. Preventing
widespread establishment of CWD in regional populations is
the key to avoiding long-term population health and economic
impacts caused by CWD. The early-stage CWD dynamics in
the model deer population underscores an important feature
that sets the context for pre-emptive management of CWD:
every introduction event does not necessarily result in persistent
CWD transmission in the population, and it is possible that
multiple introduction events occur before CWD is eventually
established. The probability that a CWD introduction event
results in persistent CWD transmission in the population
is underpinned by two stochastic processes occurring at the
individual level: actual transmission of infection between an
infected and susceptible individual and an infected individual
surviving harvest mortality. OvCWD explicitly simulates these
stochastic processes, and therefore can be used to derive
“CWD persistence probability” [calculated as the proportion of
iterations that have active CWD transmission in year 10 post-
introduction; this was referred to as CWD Outbreak probability
by (13)]. For example, for the scenario described in this paper,
CWD transmission persisted in 41 out of 100 iterations while
CWD transmission was extinguished before year 10 in 59
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FIGURE 2 | Blue lines in the left panel (A) represent model iterations where the CWD transmission persisted for 10 years. The red dotted line indicates 1% prevalence

level. Blue lines in the right panel (B) represent model iterations where CWD was extinguished from the population before year 10. Note the y-axis scale for the right

panel, the maximum number of cases in non-persistent outbreaks remained under 10.

iterations (Figure 2). Therefore, the CWDpersistence probability
for themodel deer population under the current harvest regime is
0.41. This metric can be used to compare and contrast the efficacy
of alternate management actions implemented in the early phase
of CWD outbreak.

For a given region of interest, CWD transmission (and
therefore CWD persistence probability) is influenced by multiple
factors, including: habitat characteristics, host community
(species-specific differences in transmission and susceptibility),
genetic structure (e.g., PRNP variation), demographics, behavior
(dispersal, migration, aggregation, etc.), population connectivity
related to natural and man-made barriers, and, of course, harvest
(19, 20, 29–34). Some of these features are difficult to manipulate
on meaningful spatial and temporal scales whereas others,
especially demographics, can be manipulated by altering harvest
strategies so as to decrease the CWD persistence probability.
Implementing such harvest strategies before CWD is detected in
a region (therefore, pre-emptive strategies), with the objective of
increasing the resilience of the deer population to the spread and
persistence of CWD, could be an important step forward in the
current fight against CWD.

DISCUSSION

The management of CWD shares challenges common for many
wildlife diseases. A common limitation is the lack of a firm
theoretic basis whenmanaging wildlife diseases (35). We propose
the use of OvCWD as one possible solution in the case of harvest
management of CWD. Phase-specific management actions have

been advocated for wildlife diseases in general (36), and for CWD,
is one clear recommendation arising both from our modeling
and from earlier literature surveys (8). Yet, implementing actions
sufficiently early is made difficult by the uncertainty about the
current status of infection in areas where wildlife disease has not
been detected (11). In the case of CWD, this uncertainty stems
from logistical constraints on wildlife agencies’ ability to match
the sample size targets required for detection of CWD in the
early phase of the outbreak. For this reason, a blanket surveillance
strategy, without considering the phase of the outbreak, may be
inherently appealing and politically popular but is inefficient and
unsustainable. Furthermore, non-uniform sampling effort across
regions complicates the assessment of CWD status in regional
deer populations. What is needed is the ability to rapidly assess
the status of CWD in areas where it has not been detected yet.

We have already illustrated the use of our model-based
framework for guiding collection and analysis of surveillance
data that relies on harvest-based sampling (14). It is nearly
impossible to confidently confirm the absence of CWD in a
population or to confidently detect CWD in the early phase of
the outbreak. In our view, surveillance strategies for areas with
uncertain CWD status should acknowledge inherent logistical
and practical limitations and use a realistic disease detection
threshold. As illustrated in this paper, large number of samples
are required for confident detection of CWD in the pre-
establishment phase compared to the transition phase (Figure 1).
Therefore, instead of a difficult to achieve and unsustainable
surveillance target, agencies should consider setting the detection
threshold to coincide with the transition phase of the CWD
outbreak (prevalence above 1%, but <3%). Moreover, the
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effect of non-random sampling is scale-dependent, and using
smaller, ecologically based sampling units might reduce bias in
probability of detection from non-random sampling and disease
clustering (37).

From veterinary epidemiology, it is known that pre-emptive
culling is required for diseases with latent stages or for
those with initial low prevalence building up environmental
reservoirs (38). Therefore, if CWD remains undetected with
the detection threshold set for the transition phase, agencies
should consider implementing pre-emptive harvest strategies
tailored specifically for the target population. First, locally
relevant harvest strategies that could be reasonably applied
should be identified. These strategies will mostly involve
manipulation of age and sex specific harvest rates, numbers
removed, and spatial extent of affected area. The efficacy of such
pre-emptive harvest strategies can then be evaluated using a
simulation modeling framework like OvCWD by deriving CWD
persistence probabilities (13). Lower persistence probabilities
can be interpreted as higher resiliency in the deer population
to the spread and establishment of CWD. Additionally, CWD
outbreak trajectories (and outbreak sizes) can be compared
among different scenarios to assess their efficacy in limiting
the spread of CWD. Wildlife agencies are likely to encounter
resistance for pre-emptive strategies from stakeholders. Model-
based simulations and virtual experiments can be used to
communicate nuanced and complex management issues to
stakeholders. Furthermore, user-friendly apps (Shiny apps,
dashboard; e.g., https://rpubs.com/anyadoc/OvCWD_APR) can
be developed to effectively illustrate these outcomes and ideas.
Despite the publics’ resistance that could occur with pre-emptive
management strategies, such actions could help avoidmuchmore
invasive procedures such as population eradication.

Our modeling work highlights the importance of pre-emptive
harvest strategies before CWD detection. By implementing
model-evaluated harvest strategies pre-emptively, before CWD
is detected in the population, wildlife agencies can improve their
chances of reducing spread of CWD. Furthermore, management
strategies implemented in the early stage of the outbreak

during pre-introduction or pre-establishment will be relatively
sustainable and logistically doable. Such pre-emptive strategies

would be more palatable to the North American public than
eradicating entire populations [e.g., (39)].
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