AUTHOR=Gottlieb Susan , Rand Jacquie , Anderson Stephen T. , Morton John Murray , Dias Daniel A. , Boughton Berin A. , Roessner Ute , Ramadan Ziad TITLE=Metabolic Profiling of Diabetic Cats in Remission JOURNAL=Frontiers in Veterinary Science VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2020.00218 DOI=10.3389/fvets.2020.00218 ISSN=2297-1769 ABSTRACT=

Background: The majority of diabetic cats in remission have abnormal glucose tolerance, and approximately one third relapse within 1 year. Greater understanding of the metabolic characteristics of diabetic cats in remission, and predictors of relapse is required to effectively monitor and manage these cats.

Objectives: To identify and compare differences in plasma metabolites between diabetic cats in remission and healthy control cats using a metabolomics approach. Secondly, to assess whether identified metabolites are predictors of diabetic relapse.

Animals: Twenty cats in diabetic remission for a median of 101 days, and 22 healthy matched control cats.

Methods: Cats were admitted to a clinic, and casual blood glucose was recorded. After a 24 h fast, blood glucose concentration was measured, then a blood sample was taken for metabolomic (GCMS and LCMS) analyses. Three hours later, a simplified intravenous glucose tolerance test (1 g glucose/kg) was performed. Cats were monitored for diabetes relapse for at least 9 months (270 days) after baseline testing.

Results: Most cats in remission continued to display impaired glucose tolerance. Concentrations of 16 identified metabolites differed (P ≤ 0.05) between remission and control cats: 10 amino acids and stearic acid (all lower in remission cats), and glucose, glycine, xylitol, urea and carnitine (all higher in remission cats). Moderately close correlations were found between these 16 metabolites and variables assessing glycaemic responses (most |r| = 0.31 to 0.69). Five cats in remission relapsed during the study period. No metabolite was identified as a predictor of relapse.

Conclusion and clinical importance: This study shows that cats in diabetic remission have abnormal metabolism.