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Targeting bladder urothelial
carcinoma with pHLIP-ICG
and inhibition of urothelial
cancer cell proliferation
by pHLIP-amanitin
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Joshua Doyle1†, Ohad Kott3, Boris Gershman3†,
Michael DuPont1, Yujing Li4, Xiongbin Lu4,5,
Donald M. Engelman6, Oleg A. Andreev1,
Yana K. Reshetnyak1* and Dragan Golijanin3*

1Physics Department, University of Rhode Island, Kingston, RI, United States, 2Department of
Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, The
Miriam Hospital, Providence, RI, United States, 3Division of Urology, Department of Surgery, Brown
University, The Miriam Hospital, Providence, RI, United States, 4Department of Medical and
Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States, 5Melvin &
Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United
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Acidity is a useful biomarker for the targeting of metabolically active cells in

tumors. pH Low Insertion Peptides (pHLIPs) sense the pH at the surfaces of

tumor cells and can facilitate intracellular delivery of cell-permeable and cell-

impermeable cargo molecules. In this study we have shown the targeting of

malignant lesions in human bladders by fluorescent pHLIP agents, intracellular

delivery of amanitin toxin by pHLIP for the inhibition of urothelial cancer cell

proliferation, and enhanced potency of pHLIP-amanitin for cancer cells with

17p loss, a mutation frequently present in urothelial cancers. Twenty-eight ex-

vivo bladder specimens, from patients undergoing robotic assisted

laparoscopic radical cystectomy for bladder cancer, were treated via

intravesical incubation for 15-60 minutes with pHLIP conjugated to

indocyanine green (ICG) or IR-800 near infrared fluorescent (NIRF) dyes at

concentrations of 4-8 mM. White light cystoscopy identified 47/58 (81%) and

NIRF pHLIP cystoscopy identified 57/58 (98.3%) of malignant lesions of different

subtypes and stages selected for histopathological processing. pHLIP NIRF

imaging improved diagnosis by 17.3% (p < 0.05). All carcinoma-in-situ cases

missed by white light cystoscopy were targeted by pHLIP agents and were

diagnosed by NIRF imaging. We also investigated the interactions of pHLIP-

amanitin with urothelial cancer cells of different grades. pHLIP-amanitin

produced concentration- and pH-dependent inhibition of the proliferation of

urothelial cancer cells treated for 2 hrs at concentrations up to 4 mM. A 3-4x

enhanced cytotoxicity of pHLIP-amanitin was observed for cells with a 17p loss

after 2 hrs of treatment at pH6. Potentially, pHLIP technology may improve the

management of urothelial cancers, including imaging of malignant lesions
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fruro.2022.868919/full
https://www.frontiersin.org/articles/10.3389/fruro.2022.868919/full
https://www.frontiersin.org/articles/10.3389/fruro.2022.868919/full
https://www.frontiersin.org/articles/10.3389/fruro.2022.868919/full
https://www.frontiersin.org/articles/10.3389/fruro.2022.868919/full
https://www.frontiersin.org/journals/urology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fruro.2022.868919&domain=pdf&date_stamp=2022-08-24
mailto:dgolijanin@lifespan.org
mailto:reshetnyak@uri.edu
https://doi.org/10.3389/fruro.2022.868919
https://www.frontiersin.org/journals/urology#editorial-board
https://www.frontiersin.org/journals/urology#editorial-board
https://doi.org/10.3389/fruro.2022.868919
https://www.frontiersin.org/journals/urology


Moshnikova et al. 10.3389/fruro.2022.868919

Frontiers in Urology
using pHLIP-ICG for diagnosis and surgery, and the use of pHLIP-amanitin for

treatment of superficial bladder cancers via intravesical instillation.
KEYWORDS

tumor acidity, superficial bladder cancer, pH-dependent delivery, treatment,
intravesical instillation, imaging, surgery
Introduction

Bladder cancer (BC) is the sixth most common cancer

worldwide (1). About 75% of all newly diagnosed cases are

non-muscle invasive BC (NMIBC) (2). The recurrence rate of

NMIBC varies from 30 to 80%, and about 10 to 20% of the

recurrent cases progress to muscle-invasive BC (MIBC) within

2–5 years. The medical need to identify and treat NMIBC is high

and, if successful, new treatments could reduce mortality and

morbidity in patients with BC.

Active efforts to identify diagnostic molecular markers in

blood or tissue samples are under development (3, 4), but

treatment improvements to eradicate urothelial cancer lesions

are needed. Primary treatment options include surgical Trans-

Urethral Resection of Bladder Tumors (TURBTs) combined

with pre- and/or post-operative intravesical immuno and

chemotherapy. Recent statical analysis indicates that Bacillus

Calmette–Guérin (BCG) instillation immuno-therapy does not

provide long-term benefits over chemotherapy in intermediate-

risk NMIBC, while chemotherapy with maintenance reduces the

recurrence rate (5). The effectiveness of the most common

intravesical chemotherapies, including mitomycin C and

gemcitabine, is limited (6). The major issues are i) a lack of

specific targeting of cancer cells; ii) limited penetration into the

tumor mass; and iii) rapid clearance of small molecule
02
chemotherapeutics by capillaries, preventing them from acting

in the bladder and leading to systemic absorption associated

with adverse effects. Novel approaches for targeted delivery of

both imaging and therapeutic agents for better visualization of

cancer lesions during TURB and improved chemotherapy

are needed.

We have explored the use of a pH-Low Insertion Peptide

(pHLIP) as a tumor targeting peptide, which senses and targets

the low pH at the surfaces of cancer cells (7, 8). Since pHLIP is a

moderately hydrophobic peptide, it is reversibly adsorbed by

cellular membranes at normal and high pHs (state II, Figure 1).

At the moderately low local pH (pH 6.0-6.5) found at the

surfaces of cancer cells, pHLIP peptides insert across the cell

membrane to form a stable transmembrane helix (state III,

Figure 1) (9–11). A variety of imaging and therapeutic agents

have been successfully delivered to tumors by pHLIP peptides.

The molecular mechanism of action of the acidity targeting by

peptides of the pHLIP family has been rigorously investigated in

many publications (see review (8) and references within).

Imaging of malignant lesions in human bladders and upper

urinary tracts has been shown using a near infrared fluorescent

(NIRF) dye, ICG (indocyanine green), linked to pHLIP (pHLIP-

ICG) (12, 13). When a cargo molecule is attached to the

peptide’s membrane-inserting end via a cleavable S-S link,

which is unstable in the reducing environment of the
FIGURE 1

Schematic representation of the pHLIP peptide interaction with the membrane lipid bilayer. A pHLIP peptide (shown in red) interacts with a lipid
bilayer at the neutral pH of normal cells (state II) and at the low pH of cancer cells (state III). A payload, such as a NIRF dye, ICG or IR-800,
would be conjugated with the membrane non-inserting end of pHLIP via a non-cleavable bond. A payload, such as amanitin, would be
conjugated with the membrane-inserting end of pHLIP via cleavable S-S bonds to translocate the payload across the membrane and release it
in the cytoplasm of cancer cells.
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cytoplasm, pHLIP peptides can translocate the cargo across the

membrane and release it into the cell. We have previously

reported the pH-dependent intracellular delivery of alpha-

amanitin, phalloidin and phallacidin, which are polar, cell-

impermeable deadly toxins using linear and cyclic versions of

pHLIPs (14–18).

The goal of our study is two-fold: i) to investigate the

specificity and sensitivity of fluorescent pHLIP-ICG for the

visualization of cancer lesions in human bladder specimens to

potentially improve TURBT outcomes, and ii) to assess pHLIP-

amanitin as a toxic agent against urothelial tumor cells to pave

the way for targeted chemotherapeutic treatments applied via

intravesical instillation.
Methods

NIRF imaging on human bladders

We studied bladder lesion targeting by fluorescent pHLIP

agents (pHLIP-ICG and pHLIP-IR800) in 28 patients undergoing

radical cystectomy for non-metastatic urothelial carcinoma of the

bladder at The Miriam Hospital. Excised bladder specimens were

irrigated and incubated ex-vivo with pHLIP-ICG or pHLIP-IR800

followed by washing. The bladders were opened using a “Y” incision

on the anterior wall, followed by careful examination for

macroscopic lesions using white light (WL) and NIRF imaging

with either a DaVinci Si Surgical System Firefly or a Stryker 1588

AIM imaging system. Randomized control sections were selected

from regions with no pHLIP signal and where no lesions were

found by WL examination. In all cases, macroscopic lesions found

under either WL or NIRF imaging were labeled and thoroughly

sampled for pathological analysis, which was performed according

to the standard institutional grossing procedure with emphasis on

the marked areas of the bladder. Obtained NIRF images were

processed using software developed in MATLAB. Diagnostic

accuracy was evaluated as sensitivity and specificity compared

across WL and NIRF imaging using McNemar’s test.
Proliferation of cancer cells treated with
pHLIP-amanitin

The cytotoxic ex-vivo effect of increasing amounts of pHLIP-

amanitin, pHLIP or amanitin was evaluated at various pHs and

times of treatment of urothelial (UMUC3, SW780, RT4 - grade

1; 5637 - grade 2; J82, T24, HT-1376 - grade 3; TCCSUP, HT-

1197 - grade 4 (19–27)) and breast MDA-MB-231 WT

(POLR2A+/+) and isogenic (POLR2A+/-) cancer cells. The

treatment of cells at normal pH mimics (to some extent) the

interactions of the agent with normal cells, taking into account

that cancer cells, as opposed to normal cells, have lower cell

surface pH even in a medium with normal pH (28–30).
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The detailed description of all protocols can be found in the

Supplementary Information.
Results

NIRF pHLIP imaging of human bladders

Fluorescent pHLIP agents (pHLIP-ICG used in 26 patients

and pHLIP-IR800 used in 2 patients) were investigated in 64

lesions in 28 resected bladders (Table 1). Among the lesions

investigated, 58 were cancerous and 6 were non-cancerous (from

previous treatments). Information about types and grades of the

investigated lesions is provided in Table 1 and Supplementary

Table S1.

After surgery, the organ remains viable for a short period of

time, continuing metabolic functions until cellular capacities are

expended. We used all specimens immediately after their

extraction, and all imaging was completed within two hours

post radical cystectomy. No prominent histopathological

alteration in the bladder mucosa or wall was noticed. Both

ICG and IR800 are NIRF dyes with similar spectral properties

suited well for clinical imaging systems. The representative light

and pHLIP-ICG NIRF images of malignant lesions including

carcinoma in-situ (CIS) and high grade invasive (HGI) urothelial

carcinomas are shown in Figure 2. The imaging quality was not

affected by the time of incubation with agents or choice of

fluorophore (images of malignant lesion using NIRF pHLIP-

IR800 are shown in Supplementary Figure S1). NIRF image

processing was performed to establish lesion margins (Figure 3).

During gross evaluation using WL, 81% of the lesions were

identified, while 98% of the lesions were seen under NIRF

imaging. One lesion (inside a narrow-necked diverticulum

with restricted access) seen under WL was not identified by

NIRF imaging. Ten lesions missed under WL included two HGI

and eight CIS. Compared to WL, NIRF evaluation with pHLIP

demonstrated significantly higher sensitivity (98% vs. 81%; p =

0.006) and equal specificity (100% vs. 100%) in detection of

malignant lesions (Supplementary Table S2).

NIRF evaluation with pHLIP also identified 6 non-cancerous

lesions that represented treatment-related effects, including mucosal

necrosis, granulation tissue formation, submucosal fibrous scar or

granulomatous inflammation, diverticula with concomitant

treatment effect and nephrogenic adenoma (NA) with associated

treatment effects (all cases of NA were confirmed using PAX8

immunostaining). Normal tissues were not labeled by fluorescent

pHLIP. Twelve randomly chosen, normal looking areas lacking

NIRF signals were selected from different specimens as controls and

were submitted for histopathology. Fluorescence images showed

that mucosal hemorrhage and cystitis cystica et glandularis regions

were not labeled by pHLIP (Supplementary Figure S2).

As an exploratory analysis in one case, ex-vivo laparoscopic

cystoscopy imaging was performed (Figure 4). pHLIP-ICG
frontiersin.org
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TABLE 1 Demographic information, pathological stage and diagnosis, lesions seen by white light (WL) and near-infrared fluorescence (NIRF)
imaging with pHLIP-ICG or pHLIP-IF800.

Case
#

Sex/
Age

Stage Pathological Diagnosis Grade Lesion WL NIRF Construct

1 M/63 pT3aN1 Invasive high grade urothelial carcinoma, CIS HGI 1 + + pHLIP-ICG

2 F/84 ypT3bN0 Invasive high grade papillary urothelial carcinoma HGI 2 + + pHLIP-ICG

Invasive high grade urothelial carcinoma HGI 3 + +

3 M/51 pT2aN1 Invasive high grade urothelial carcinoma (micropapillary features) HGI 4 + + pHLIP-ICG

4 M/69 pT1N0 Non-invasive high grade papillary urothelial carcinoma HGN 5 + + pHLIP-ICG

Invasive high grade urothelial carcinoma, CIS HGI 6 + +

5 M/65 pTisN0 CIS CIS 7 + + pHLIP-ICG

CIS CIS 8 + +

6 M/61 pT1N0 Invasive high grade urothelial carcinoma HGI 9 + + pHLIP-ICG

7 M/79 pT0N0 Dysplasia DYS 10 – + pHLIP-ICG

Treatment effect - 11 – +

8 F/82 pT1N0 Non-invasive high grade urothelial carcinoma HGN 12 + + pHLIP-ICG

Invasive high grade urothelial carcinoma HGI 13 + –

CIS CIS 14 – +

CIS CIS 15 – +

9 M/68 pTisN0 CIS CIS 16 + + pHLIP-ICG

CIS CIS 17 – +

10 M/71 pTaN0 Non-invasive high grade urothelial carcinoma HGN 18 + + pHLIP-ICG

Non-invasive high grade urothelial carcinoma HGN 19 + +

CIS CIS 20 – +

CIS CIS 21 – +

11 F/77 pTisN0 CIS with early invasion CIS 22 + + pHLIP-ICG

CIS with early invasion CIS 23 – +

12 M/57 pT1bN0 Invasive high grade papillary urothelial carcinoma HGI 24 + + pHLIP-ICG

CIS with early invasion CIS 25 + +

Treatment effect - 26 + +

13 M/72 pT3aN0 Invasive high grade urothelial carcinoma, CIS HGI 27 + + pHLIP-ICG

Diverticulum and treatment effect - 28 + –

14 M/66 ypT3aN0 Invasive high grade urothelial carcinoma (neuroendocrine features) HGI 29 + + pHLIP-ICG

15 M/70 ypTisN0 CIS CIS 30 + + pHLIP-ICG

Treatment effect - 31 - +

16 M/62 pT1bN0Mx Invasive high grade papillary urothelial carcinoma HGI 32 + + pHLIP-ICG

Invasive high grade papillary urothelial carcinoma HGI 33 + +

Invasive high grade papillary urothelial carcinoma HGI 34 + +

17 M/42 ypT3aN0Mx Invasive high grade urothelial carcinoma (squamous features) HGI 35 + + pHLIP-ICG

18 F/62 ypT2aN1Mx Treatment effect - 36 + + pHLIP-ICG

Invasive high grade papillary urothelial carcinoma, CIS HGI 37 - +

- +Invasive high grade papillary urothelial carcinoma, CIS HGI 38

19 F/64 ypT1aN0Mx Invasive high grade papillary urothelial carcinoma HGI 39 + + pHLIP-ICG

Invasive high grade papillary urothelial carcinoma HGI 40 + +

20 M/79 pTisN0Mx CIS CIS 41 + + pHLIP-ICG

CIS CIS 42 + +

CIS CIS 43 - +

CIS CIS 44 - +

21 M/58 pT2bN0Mx Invasive high grade papillary urothelial carcinoma, CIS HGI 45 + + pHLIP-ICG

Invasive high grade papillary urothelial carcinoma, CIS HGI 46 + +

Invasive high grade papillary urothelial carcinoma, CIS HGI 47 + +

(Continued)
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targeting of HGI urothelial carcinoma lesion was confirmed with

cystoscopy using a laparoscope (Figure 4B), while the

nonmalignant mucosal hemorrhage area was not labeled with

the agent (Figure 4E).
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For CIS and HGI urothelial carcinomas we analyzed the

homogeneity of the pHLIP-ICG signal (Figure 5). The

fluorescence signal within lesions varied from 30-40 a.u. to

110-120 a.u. from the tumor margin to the tumor center,
TABLE 1 Continued

Case
#

Sex/
Age

Stage Pathological Diagnosis Grade Lesion WL NIRF Construct

22 M/80 pT3aN0Mx Invasive high grade urothelial carcinoma (squamous, sarcomatoid and small cell
features)

HGI 48 + + pHLIP-
IR800

23 M/42 pT3aN2Mx Invasive high grade papillary urothelial carcinoma HGI 49 + + pHLIP-
IR800Invasive high grade papillary urothelial carcinoma HGI 50 + +

Invasive high grade papillary urothelial carcinoma HGI 51 + +

24 M/57 ypT3bN2Mx Invasive high grade urothelial carcinoma (sarcomatoid features) HGI 52 + + pHLIP-ICG

Invasive high grade urothelial carcinoma (sarcomatoid features) HGI 53 + +

25 M/76 pT1aN0Mx Invasive high grade papillary
urothelial carcinoma (squamous features)

HGI 54 + + pHLIP-ICG

26 M/63 pT2N0Mx Invasive high grade papillary urothelial carcinoma (squamous features) HGI 55 + + pHLIP-ICG

Invasive high grade papillary
Urothelial carcinoma (squamous features)

HGI 56 + +

Invasive high grade papillary urothelial carcinoma (squamous features) HGI 57 + +

27 F/81 pT2aN0Mx Invasive high grade urothelial carcinoma (sarcomatoid features), CIS HGI 58 + + pHLIP-ICG

Invasive high grade urothelial carcinoma (sarcomatoid features), CIS HGI 59 + +

Invasive high grade urothelial carcinoma (sarcomatoid features), CIS HGI 60 + +

Invasive high grade urothelial carcinoma (sarcomatoid features), CIS HGI 61 + +

28 M/74 mpT2aN0M
x

Invasive high grade papillary urothelial carcinoma HGI 62 + + pHLIP-ICG

Invasive high grade papillary urothelial carcinoma HGI 63 + +

Treatment effect - 64 + +
fro
F is Female, M is Male. When applicable, HGI is high grade invasive, HGN is high grade noninvasive, CIS is carcinoma in situ, and DIS is dysplasia. Treatment effects do not receive a grade
or stage. Detailed staging definitions can be found in AJCC Cancer Staging Manual 7th edition section on Urinary Bladder.
FIGURE 2

Imaging of malignant bladder lesions. (A–C): case #20 with urothelial carcinoma in-situ (CIS) (A), white light; (B), pHLIP-ICG NIRF with white
light; (C), H&E 20x). (D–F): case #17 with high grade invasive (HGI) urothelial carcinoma showing squamous differentiation (D), white light; (E),
pHLIP-ICG NIRF with wight light; (F), H&E 10x).
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respectively, to confirm that the entire lesion is targeted by the

pHLIP agent, which is important for both imaging and therapy.
Inhibition of urothelial cancer cell
proliferation by pHLIP-amanitin

Having shown that pHLIP targets malignant lesions in

bladders, we sought to pave the way for targeted delivery of

therapeutic agents. We tested amanitin delivery as a possible

therapy for the treatment of superficial malignant bladder

lesions by intravesical instillation. Amanitin was linked to

pHLIP via a cleavable S-S bond (pHLIP-Am) aiming to release

amanitin in the cytoplasm of bladder cancer cells to induce cell

cycle arrest and death. Amanitin, a polar, ~ 1 kDa cyclic peptide,

has advantages as a cytotoxic agent for use with pHLIP as it has

low cell membrane permeability, thus it will not enter cells by

itself, and it has enhanced potency for cancer cells with 17p loss,

which involves deletion of the tumor suppressor TP53 and

POLR2A. This deletion often found in urothelial tumors.

As a test of pH-dependent delivery and mutant sensitivity,

we studied pHLIP-Am inhibition of the proliferation of human

breast cancer MDA-MB-231 WT cells (POLR2A+/+) and

isogenic (POLR2A+/-) cells. Both WT and isogenic cell lines

were treated with pHLIP-Am for 2 hrs in medium at pH 7.4 and

6.0, and for different time periods ranging from 0.5 to 2 hrs at pH

6.0 (Figure 6 and Table 2). The cytotoxicity of pHLIP-Am on

isogenic cells compared to treatment of WT cells increased with

incubation time at pH 6.0. The strongest cytotoxic effect and the

largest difference (3-4x) between POLR2A+/- and POLR2A+/+
FIGURE 3

Margins of malignant lesions. (A–F): case #20 with urothelial CIS
and (G–L): case #17 with HGI urothelial carcinoma. White light
images (A, G), pHLIP-ICG NIRF fluorescent images (B, H), Sobel
gradient field of B and H images (C, I), binary mask of B and H
images (D, J), binary mask of C and I (E, K), and white light
images with fluorescent signal outline indicating tumor margins
(F, L) are shown.
FIGURE 4

Ex-vivo laparoscopic cystoscopy. Case #17 with high grade invasive urothelial carcinoma white light (A), pHLIP-ICG NIRF with white light (B),
and H&E 10x (C) images; and nonmalignant, signal free, control area showing mucosal hemorrhage white light (D), pHLIP-ICG NIRF with white
light (E), and H&E 10x (F) images.
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FIGURE 5

Intensity of within malignant lesions. Case #20 with urothelial carcinoma in-situ (A–C) and case #27 D-F with high grade invasive urothelial
carcinoma with sarcomatoid features; white light images (A, D); pHLIP-ICG NIRF images (B, E); rainbow presentation of pHLIP-ICG NIRF images
(C, F).
A B

DC

FIGURE 6

Viability of MDA-MB-231 cancer cells WT (POLR2A+/-) and isogenic (POLR2A+/-) after treatment with pHLIP-Am. Normalized WT and isogenic
cell viability data, when cells were treated with different concentrations of pHLIP-Am at pH 7.4 for 2 hrs (A) and at pH 6.0 for different time
periods (B–D). The data were fitted by dose-response functions (curves) to calculate the EC50 values presented in Table 2.
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cells were detected when pHLIP-Am was exposed to cells for 2

hrs at pH 6.0.
Inhibition of urothelial cancer cell
proliferation by pHLIP-amanitin

Next, a range of well-characterized urothelial cancer cells of

different grades were investigated, including squamous cell

carcinoma, SCaBER, and transitional cell carcinomas, such as:

UMUC3, SW780, RT4 - grade 1; 5637 - grade 2; J82, T24, HT-

1376 - grade 3; TCCSUP, HT-1197 - grade 4. Urothelial cancer

cells were treated with different concentrations of pHLIP-Am for

2 hrs at pH7.4 and 6.0. pH-Dependent bladder cancer cell death

was observed as result of 2 hrs of treatment (Figure 7). In a

control experiment, selected cell lines were treated with pHLIP

and amanitin alone with no significant cytotoxic effect observed

(Supplementary Figure S3).

The EC50 values (presented in Table 3) varied over a range

from 28 nM to 430 nM, when cells were treated with the agent at

pH6.0, and EC50 values varied from 211 nM to 2027 nM, when

cells were treated with the agent at pH7.4. The efficacy of

treatment or therapeutic index at low pH compared to normal

pH ranged from 4 to 11 times for different bladder cancer

cell lines.

We also investigated further pHLIP-Am cytotoxic effect in a

wider range of pHs on the selected urothelial cancer cell lines of

grade I (SW780) and grade II (5637). Cells were exposed to

pHLIP-amanitin agent for 30 min at pHs 7.4, 6.0 and 5.0. The

progressive increase of cytotoxicity was observed with decrease

of pH of treatment (Supplementary Figure S4).
Discussion

We employed pHLIP technology for targeting of imaging

and therapeutic cytotoxic agents to acidic urothelial carcinomas.

It is well-established that cancer cells alter their metabolism to

support their rapid proliferation and dissemination during

tumor development and progression. Such an aberrant

metabolism manifests itself in high rates of aerobic (Krebs
Frontiers in Urology 08
cycle) and anaerobic (Warburg effect) glucose consumption

and an overexpression of cell surface carbonic anhydrases that

catalyze the transformation of carbon dioxide and water into

carbonic acid (31–33). As a result of both anaerobic and aerobic

glycolysis, and the overexpression of carbonic anhydrases,

cancer cells exhibit elevated acidity in the vicinity of their

plasma membranes (28–30). It has been shown in genetically

engineered bladder cancer mouse models and human bladder

cancers that overexpression of pyruvate kinase M2 promotes

tumorigenesis by facilitating the Warburg effect and enhancing

the activities of oncoproteins (34), and, thus, promoting

acidification at the surface of urothelial cancer cells.

Fluorescent and narrow band endoscopic imaging improves

the detection of malignant and premalignant urothelial

carcinoma lesions compared to WL cystoscopy (35–40).

Narrow band imaging in enhanced endoscopy allows from

34% to 100% sensitivity in the diagnosis of urothelial

carcinoma (40). Similarly, compared to WL cystoscopy, blue

light (BL) cystoscopy has been reported to provide up to a 24%

improvement in the detection of papillary bladder tumors and

up to a 43% improvement in the detection of carcinoma in situ

(39). BL cystoscopy requires intravesical instillation and

incubation of hexaminolevulinate for one hour, and the

fluorescent signal fades within the next hour, narrowing the

imaging time window (41). Additionally, BL cystoscopy with

hexaminolevulinate is known to enhance some of the adverse

effects associated with bladder cystoscopy and TURBT such as

hematuria, dysuria, and bladder spasms (38, 42).

We have shown that fluorescent pHLIP-ICG targets

urothelial carcinoma in ex-vivo human bladder specimens with

excellent 98% sensitivity and 100%, specificity. Fluorescent

pHLIP-ICG stains neoplastic cells after intravesical incubation,

without targeting normal tissues. Histopathology of the

unstained control areas revealed variable morphological

features including cystitis cystica et glandularis and

inflammation, indicating that pHLIP has low sensitivity to

inflammation. Low-grade inflammation may be less acidic

compared to cancer and therefore not targeted by pHLIP-ICG.

Low sensitivity to inflammation may open an opportunity for

the treatment of patients on hormonal therapies including 5-

alpha reductase or androgen deprivation therapy (ADT), which
TABLE 2 EC50 values were calculated for MDA-MB-231 WT (POLR2A+/+) and isogenic (POLR2A+/-) cell lines treated with pHLIP-Am at different
conditions (cell viability data are shown on Figure 6).

Treatment conditions EC50 (nM)WT cell line EC50 (nM)Isogenic cell line Fold difference

pHLIP-Am, pH7.4, 2.0 hrs 1031.1 ± 62.7 325.6 ± 18.6 3.2

pHLIP-Am, pH6.0, 2.0 hrs 770.6 ± 22.9 198.4 ± 26.1 3.9

pHLIP-Am, pH6.0, 1.5 hrs 2705.7 ± 706.4 772.5 ± 78.8 3.5

pHLIP-Am, pH6.0, 0.5 hrs 2834.9 ± 1183.1 1284.4 ± 75.2 2.2
The fold difference is the ratio of EC50 for WT to EC50 for isogenic cells.
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FIGURE 7

Urothelial cancer cells viability after treatment with pHLIP-Am. Normalized urothelial cancer cell viability data obtained when cells were treated
with pHLIP-Am at pH 7.4 and 6.0 for 2 hrs. The data were fitted by dose-response functions (curves) to calculate the EC50 values presented in
Table 3.
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reduce levels of male hormones and their immuno-suppressive

signals (43, 44). The fluorescent pHLIP allowed identification of

invasive and non-invasive carcinomas with different

architectures (flat, solid, or papillary), grades (high or low),

and subtypes (squamous, micropapillary, sarcomatoid and

neuroendocrine carcinomas). The fluorescent pHLIP-ICG

effectively identified urothelial CIS and dysplasia – non-

invasive lesions which may be difficult to detect and treat

using traditional white light techniques.

pHLIP-ICG has been translated to clinical trials at the

Memorial Sloan Kettering Cancer Center, where a Phase I/IIa

clinical trial (NCT05130801) has been initiated for fluorescence-

guided surgery in breast cancer patients undergoing breast-

conserving surgery. In phase I the patients receive pHLIP-ICG

(a bolus IV injection on the day before surgery), and upon

surgery the next day NIRF imaging using a Stryker Spy device is

used to examine tumor tissue and margins. Several escalating

doses of pHLIP-ICG will be tested in phase I, and safety

assessments will be performed. The study performed with the

lowest dose is completed and the data indicate tumor targeting

and safety. After phase I is complete, pHLIP-ICG can be used in

clinical trials for NIRF imaging in the diagnosis and treatment

on other tumor indications, including urological tumors. For

bladder cases, pHLIP-ICG could be administrated intravenously

on the day before the procedure (NIRF cystoscopy or TURBT),

or pHLIP-ICG could be administered to the bladder by

intravesical instillation (for 15-30 min) before the procedure.

The imaging window is expected to be wide: up to 24 hours after

agent administration.

Specific targeting of malignant urothelial lesions by pHLIP

peptides opens not only the possibility of improving imaging

and resection of these lesions, but also supports the idea of

treatments by pHLIP-targeted delivery of cytotoxic agents to

bladder cancer cells. Therapeutic agents are administered

systemically, for treatment of metastatic disease, or via

intravesical instillation for treatment of superficial NMIBC.
Frontiers in Urology 10
We tested a highly toxic agent, amanitin, for targeted delivery

with pHLIP for potential intravesical treatment of bladder

cancers. Alpha-amanitin is a highly selective allosteric

inhibitor of eukaryotic polymerase II (Pol II), which induces

the degradation of Pol II resulting in cell death. Amanitin is one

of the deadliest toxins known, exhibiting toxicity against both

dividing and quiescent cells, which has made it an attractive

payload for antibody drug conjugates (45–48). Amanitin is a

polar molecule and exhibits limited permeability across cell

membranes by itself, except in liver cells, which have a special

transporting system for the uptake of small cyclic molecules like

phallo- and amanita toxins (49). Recent success was achieved

with targeted delivery of amanitin by Her2 antibody (50), and

the agent entered clinical trials. Also, urothelial cancers are

expected to be more sensitive to a-amanitin, which inhibits

RNA Pol II encoded by POLR2A, since urothelial cancers

frequently exhibit heterozygous loss of chromosome 17p (51–

53), associated with deletion of the tumor suppressor TP53 and

POLR2A (50, 54).

We have demonstrated that pHLIP-amanitin cytotoxic

activity is 3-4x higher in cancer cells with 17p loss compared

to WT when cells are treated for 2 hrs at pH 6.0. Our

experiments on cultured urothelial cancer cells of different

grades ranging from 1 to 4, when cells were exposed to

pHLIP-amanitin for 2 hrs, mimic the conditions that might be

used for intravesical treatment of superficial BC in humans.

Grade is a good indicator for NMIBC progression and mortality,

because patients with high-grade tumors progress with similar

frequency regardless of whether they were invasive or

noninvasive (55, 56). The maximum concentration of pHLIP-

amanitin was 2-4 mM (in different experiments), which is

comparable to the pHLIP concentration used in the imaging

study, where a solution containing 4 mM of fluorescent pHLIP

was sufficient for targeting of malignant lesions. It is expected

that systemic exposure, and thus the systemic toxicity of pHLIP-

amanitin could be lower compared to small molecule drugs
TABLE 3 EC50 values were calculated for each urothelial cancer cell type treated with pHLIP-Am at physiological (pH7.4) and low (pH6.0) pHs
for 2 hrs (cell viability data are shown on Figure 7).

Cells EC50 (nM) pH6.0 EC50 (nM) pH7.4 TI

5637 cells 78.5 ± 13.9 284.7 ± 41.6 3.6

J82 cells 45.1 ± 6.9 408.6 ± 40.0 9.1

UMUC3 429.8 ± 204.6 2128.8 ± 525.5 5.0

SCaBER 67.7 ± 4.7 768.2 ± 70.3 11.3

T24 79.3 ± 8.0 339.5 ± 22.2 4.3

TCCSUR 28.3 ± 2.7 211.1 ± 22.1 7.5

RT4 79.5 ± 10.8 390.0 ± 92.5 4.9

HT-1197 77.1 ± 22.2 527.4 ± 80.8 6.8

HT-1376 293.9 ± 47.2 2027.3 ±182.9 6.9

SW780 92.2 ± 31.9 900.2 ± 138.9 9.8
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applied via intravesical instillation, since the adsorption of

pHLIP-amanitin (molecular weight ~5 kDa) is expected to be

significantly lower compared to drugs that are 10x smaller. We

also note that the volume and pH of urine can be controlled and

kept at pH 7.4 by supplying bicarbonate drinks and antidiuretics

several days prior to and after intravesical instillation:

alkalization of urine is a practice adopted in the clinics and

widely used (57, 58). Thus, even if some amount of urine is

drained into bladder during a 1 hr intravesical instillation

period, the drained urine will not alter the pH of the buffered

solution used for instillation to avoid targeting of all cells in the

bladder. The results we report here are encouraging, and the

therapeutic efficacy, potential system exposure and overall

toxicity of pHLIP-based agents are now under study in

transgenic bladder cancer mouse models.

A therapeutic trial is in progress using a different therapeutic

conjugate, pHLIP-exatecan (CBX-12) (59), where exatecan is a

cytotoxic inhibitor of Topoisomerase I. The pHLIP construct

was systemically administrated to patients with advanced

metastatic cancer in phase I/II clinical trials (NCT04902872)

with very promising initial results. Systemic administration of an

agent leads to its exposure to a highly dynamic system with fast

blood circulation and clearance. However, intravesical

instillation for bladder cancer would result in a relatively

stationary exposure of an agent to the entire bladder. In the

latter case, the use of a polar, cell-impermeable therapeutic

payload such as an amanitin, as opposed to a more

hydrophobic drug like exatecan, is preferable since it will

reduce adsorption and potential uptake of pHLIP-amanitin by

normal cells. Also, if any amanitin is released in the lumen, it

would be unlikely to cause serious toxicity, since amanitin is

cell-impermeable.

The pHLIP technology may present several opportunities for

improved management of urothelial cancer. Imaging and

treatment of superficial bladder cancers might be performed

via intravesical instillation of pHLIP-ICG (for diagnosis and

TURBT) or pHLIP-amanitin (to kill tumor cells). Furthermore,

the pHLIP-Zr PET imaging agent, therapeutic pHLIP-exatecan

and other pHLIP-based therapeutic agents that are currently

under development, might be used for imaging and treatment of

metastatic disease via systemic administration of the agents.
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SUPPLEMENTARY TABLE 1

Summary of malignant lesions (n=58). All data reported as n (%).

SUPPLEMENTARY TABLE 2

Results of Sensitivity and Specificity tests for malignant lesions.

SUPPLEMENTARY FIGURE 1

Imaging of malignant bladder lesion with pHLIP-IR800. Caase #22 with

high grade invasive (HGI) small cell carcinoma (A, white light; H, pHLIP-

IR800 NIRF with white light; B, H&E 10x).
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SUPPLEMENTARY FIGURE 2

Randomly chosen negative control areas. (A–C) Case #17 showing
mucosal hemorrhage and cystitis cystica et glandularis (A, white light; B,
pHLIP NIRF; C, H&E 10x). (D–F) Case #22 (D, white light; E, pHLIP NIRF; F,
H&E 10x). (G–I) Case #27 (G, white light; H, pHLIP NIRF; I, H&E 10x).

SUPPLEMENTARY FIGURE 3

Urothelial cancer cells viability after treatment with pHLIP or amanitin.

Normalized urothelial cancer cell viability data obtained when cells were

treated with pHLIP or amanitin at pH 7.4 and 6.0 for 2 hrs.

SUPPLEMENTARY FIGURE 4

Urothelial cancer cells viability after treatment with pHLIP-Am at
different pHs. Normalized urothelial cancer cell viability data obtained

when cells were treated with pHLIP-Am at pH 7.4, 6.0 or 5.0 for 30 min in

10 mM phosphate buffer containing 150 mM NaCl, 1 mM CaCl2, 0.5
mM MgCl2.
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