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Role of glutamine metabolism in
tuberculosis pathogenesis: a mini
review

Sadiya Parveen* and William R. Bishai*

Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine,

Baltimore, MD, United States

Mycobacterium tuberculosis (Mtb) has remained one of the major infectious

disease killers for generations and generations. In 2023 alone, this ancient disease

was responsible for the death of 1.4 million individuals and has infected 10.6

million people. With the ever-evolving multi- and extremely resistantMtb strains,

the need for novel and e�ective drugs requiring shorter treatment regimens

represents an urgent medical need for the development of new drugs. Over

the last two decades, the field of host-directed therapy as a potential novel

avenue for new approaches to TB treatment, either as a mono or adjuvant

therapy, has garnered increasing attention. Among many host-directed targets,

host immunometabolism has emerged as one of the most attractive targets for

developing new host-directed therapies. As one of the most successful bacterial

pathogens, Mtb has evolved several mechanisms to modulate numerous

host metabolic pathways, including glycolysis, glutaminolysis, Kreb cycle, and

oxidative phosphorylation. This mini review will focus on glutamine metabolism

and its emergence as a potential target for treating tuberculosis (TB). In the last

several decades, the role of glutamine metabolism in cancer and neurological

disorders has been extensively studied. However, the association of glutamine

metabolism with infectious disease has remained underappreciated. The aim of

this review is to not only discuss the current knowledge in the field but also the

existing knowledge gap that needs further exploration.
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Introduction

Mycobacterium tuberculosis (Mtb) is one of the most successful infectious agents
worldwide. In the year 2023 alone, Mtb infected 10.6 million individuals and killed
1.3 million individuals (1). Mtb, the ancient pathogen, is known to modulate
several host pathways to aid its own establishment, progression, and dissemination.
These host pathways include various metabolic pathways such as glycolysis, pentose
phosphate pathway, glutamine metabolism, fatty acid oxidation, Kreb cycle, and oxidative
phosphorylation (2–5). Over the past several decades, glutamine metabolism has garnered
increasing attention as a therapeutic target in the field of cancer and neurological disorders.
However, there is a fundamental gap in the knowledge of how glutamine metabolism
contributes to tuberculosis pathogenesis. Over the last few years, several researchers have
published data that strongly supports the notion that glutamine metabolism plays a critical
role in TB pathogenesis. This review attempts to compile all the studies and present them in
the context of TB pathogenesis. The mini-review also discusses the unanswered questions
in the field and potential strategies (including pitfalls) to find the answers.
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Glutamine is the most abundant
amino acid in the human body

Glutamine is the most abundant amino acid of all 20 amino
acids in the human body. The average human plasma contains
∼500–800 µM/L glutamine (after 12 h fasting), which is 20%
of the total amino acid pool in the plasma (6). In tissues
like skeletal muscles and liver, glutamine concentration can
account for as much as 40%−80% of the total amino acid pool,
further reinforcing the status of glutamine as the most abundant
amino acid in the body (7, 8). Despite this heavy abundance,
glutamine supplementation remains non-essential under normal
physiological conditions. As a versatile amino acid, glutamine
participates in a variety of metabolic pathways, such as synthesis
of amino acids (e.g., asparagine), purines, pyrimidines, amino
sugars, nicotinamide adenine dinucleotide phosphate (NADPH),
glutathione, in addition to providing substrates for tricarboxylic
acid (TCA) cycle. In short, glutamine serves as a fuel and nitrogen
donor via ammonia for the pathways critical for cellular growth,
proliferation, differentiation, and maintenance.

Glutamine transport and its cellular
fates

As shown in Figure 1, Glutamine enters the cells via one
of the several glutamine transporters like SLC1A5 (ASCT2),
SLC38A1, or SLC38A2 present in the plasma membrane (9).
Once inside the cell, glutamine may either stay in the cytosol
and participate in the synthesis of purines, pyrimidines, amino
sugars, or non-essential amino acids. Alternatively, glutamine can
be transported to the mitochondrial matrix via a mitochondrial
glutamine transporter (a SLC1A5 variant), where it undergoes
glutaminolysis. First, glutaminases (GS) convert glutamine to
glutamate, and then glutamate dehydrogenase (and several other
aminotransferases) convert glutamate into alpha-ketoglutarate (A-
KG), which then serves as a substrate for the Kreb’s cycle, eventually
fueling the oxidative phosphorylation and ATP generation. Under
hypoxic conditions, SLC25A11-driven transport of A-KG from
mitochondria to cytosol plays a critical role in mTROC1 activation
and epigenetic modification via A-KG-dependent dioxygenases
(10). In addition to A-KG, mitochondria can also export glutamine-
derived glutamate to the cytosol via SLC25A18/22, which drives the
synthesis of glutathione and non-essential amino acid synthesis in
addition to cystine import (11).

Glutamine distribution in the tissues

Glutamine concentration in various organs and tissues is
driven by its synthesis, release, and uptake. Tissues like brain,
skeletal muscles, lungs, adipose tissue, and liver exhibit high
de novo glutamine synthesis activity. Glutamine synthesis is
driven by an ATP-dependent glutamine synthetase (GS) that
produces glutamine from glutamate and ammonia. De novo

Glutamine synthesis serves two important functions; first, it
provides glutamine required for rapid cell growth and proliferation.
Second, it aids pH homeostasis by removing excess ammonia

from the cells. Alterations in GLS activity have been associated
with various pathologies like cancer, hyperammonemia, and
neurological disorders, including behavior abnormalities, as well as
cognitive and motor deficits (12). Tissues like intestinal mucosa,
kidney, leukocytes, and vascular endothelial cells tend to heavily
rely on glutamine consumption by upregulating the expression
of glutaminase (GLS), the enzyme that catalyzes the conversion
of glutamine to glutamate. There are two distinct GLS isoforms,
(1) kidney-type glutaminase (GLS1) and (2) liver-type glutaminase
(GLS2), encoded by genes located on chromosome 2 and 12
respectively (13–18). GLS1 has three additional isoforms; GLS or
KGA (which corresponds to a longer transcript isoform), GLS
C or GAC (which corresponds to a shorter transcript isoform),
and GAM (with no catalytic activity). While GLS1 upregulation
causes tumor progression in most cancers, the role of GLS2 seems
more context specific. While GLS2 acts as a tumor-suppressor gene
and prevents metastasis in many cancers (19), its upregulation
has been shown to potentiate the occurrence and development of
neuroblastoma tumors (20, 21).

Glutamine as a conditionally essential
immunonutrient

Under normal physiological conditions, glutamine remains
non-essential as the human body can endogenously produce
from 40 to 80 g/L glutamine (22, 23). However, under catabolic
conditions such as infections, glutamine becomes conditionally
essential. Additionally, by virtue of working under these harsh
and nutrient-deprived/restricted conditions, immune cells tend to
heavily rely on glutamine as both the fuel and nitrogen source
(24, 25). Paradoxically, under such highly catabolic conditions,
several tissues increase their glutamine consumption while skeletal
muscles tend to decrease their contribution to the serum glutamine
concentration, further limiting glutamine availability for the
immune cells. Such glutamine-depleted conditions often diminish
the ability of the immune system to optimally combat the
pathological agent/condition and lead to the worsening of the
pathology. Hence, glutamine has long been considered a critical
nutrient for the immune system, “an immunonutrient.” Depending
upon the pathological condition, glutamine supplementation
has been shown to improve clinical outcomes and prevent
life-threatening conditions (26, 27). Almost all immune cells,
including T-cells, macrophages, B-cells, and neutrophils, depend
on glutamine uptake and utilization for their proliferation,
differentiation, and activation (28). This heavy reliance of the
immune system upon glutamine is a critical immune vulnerability.
It is possible that pathogens may have evolved mechanisms
to exploit this vulnerability to promote their own replication
and dissemination.

Glutamine as one of the drivers of
immunosuppression

During pathological conditions such as cancer and infections,
the immune cells driving immunosuppression include myeloid-
derived suppressor cells (MDSCs), regulatory T-cells (Tregs),
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FIGURE 1

Schematic representation of glutamine metabolism and its inhibitors: Glutamine enters the cytosol and then either engages in various biosynthetic

pathways or enters the mitochondria wherein it undergoes glutaminolysis. The resulting alpha-ketoglutarate (αKG) either enters Kreb’s cycle leading

to oxidative phosphorylation and ATP generation. Alternatively, it can lead to the mTORC1 activation and epigenetic modifications. The resulting

glutamate when transported to the cytosol, generates glutathione and non-essential amino acids. All the inhibitors are indicated in red; dark blue

indicates the important components of glutamine metabolism. The schematic was created using Biorender.com (Tornonto, Canada) by SP.

and M2 macrophages (29–32). These immunosuppressive cells
create an artificial scarcity of glutamine by ramping up the
import and utilization of this amino acid. The artificial scarcity
of glutamine hampers T-cells’ ability to proliferate, activate,
and differentiate into helper T-cells. Glutamine-deprived T-
cells have also been shown to differentiate into FoxP3+ Tregs
instead of Th1 helper cells, a defect that could be circumvented
by simply feeding cells the cell-permeable A-KG (33). L-
glutamine also fuels the maturation process of MDSCs and is
essential for their immunosuppressive activity (34). Additionally,
glutamine favors the activation of M2 macrophages through
the glutamine–UDP-N-acetylglucosamine pathway and glutamine-
derived A-KG (28, 35). Additionally, B-cells, especially the IL-
10 expressing regulatory B-cells, which are critical for immune
tolerance, have been shown to upregulate glutaminolysis (36, 37).
Accordingly, in murine cancer models, blockade of glutamine
metabolism has been shown to deplete MDSCs and Tregs
populations and to metabolically reprogram M2 macrophages,

alleviating immunosuppression and enhancing anti-tumor T-cell
immunity (38–40).

Glutamine metabolism in infectious
diseases (bacterial, viral, and fungal)

The speculation that glutamine plays a substantial role in
infectious diseases dates back to 1975 when depletion of skeletal
muscle Glutamine pool was detected under stress conditions like
surgery, trauma, and inflammatory conditions. Several studies
have shown that glutamine supplementation improved clinical
outcomes and decreased mortality of severely ill patients with
sepsis. In prolonged abdominal sepsis patients (n = 14), muscle
glutamine concentration was identified as the single most reliable
factor that effectively discriminated survivors from non-survivors
(6, 8). The survivors exhibited higher glutamine and lower
branched-chain amino acid levels in their muscles. In another
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study, low plasma glutamine concentration in critically ill patients
was directly correlated with higher mortality rates (41). However,
this initial enthusiasm was modestly dampened by the studies that
found no correlation between plasma glutamine concentration and
favorable outcomes in critically ill patients (41, 42). Despite these
contradictory findings, several studies have observed substantial
derangements in the glutamine distribution, transport, and
synthesis in the tissues of patients carrying severe infections
(43). During infections, skeletal muscles release two-fold as much
glutamine, indicating a substantial increase in the de novo GS-
mediated glutamine synthesis.

Alterations in glutamine metabolism have also been observed
in several bacterial, viral, and fungal infections, including Human
Immunodeficiency Virus (HIV), Mycobacterium tuberculosis

(Mtb), COVID-19 and Aspergillus fumigatus. In 2017, Djoko
et al. (44) demonstrated that Escherichia coli alters its glutamine
metabolism and may utilize glutamine to overcome host-
imposed metal toxicity. More recently, Turner et al. (45) showed
that glutamine supplementation can protect host tissues from
cholesterol-dependent cytotoxin secreted by pathogenic bacteria.
HIV infection elevates glutamine levels and alters several key
glutamine metabolism enzymes in human T-cells (46). In addition,
the blockade of Glutamine metabolism was also shown to
reverse a cognition deficit in the mouse model of HIV-associated
neurocognitive disorders (47). In COVID-19 patients, a decline
in circulatory glutamine levels directly correlates with the disease
severity (48–54). In another meta-analysis study performed with
West African cohorts, high plasma glutamine concentration was
associated with a lower risk of COVID-19 infections and disease
severity (55). Blocking glutamine metabolism was also reported to
check the progression of Aspergillus fumigatum in macrophages
and in the experimental model of Aspergillosis (56). These studies
strongly support that alterations in the host glutamine metabolism
may be a unique metabolic signature of several bacterial, viral, and
fungal infections.

Glutamine metabolism alterations as
the potential driver of TB pathogenesis

In the majority of patients who present with TB, the lung is
the primary organ affected. The lung is also the organ with the
second most abundant glutamine levels, with hitherto de novo

glutamine synthesis activity. Alterations in lung glutamine levels
and metabolism have been observed in several critical illnesses.
For example, the lungs of septic surgical patients had 850%
higher glutamine levels compared to the preoperative controls.
Exogenous glutamine supplementation is still used in the Intensive
Care Unit to prevent post-operative complications. Glutamine
supplementation has also exerted beneficial effects on several
respiratory and pulmonary ailments, such as asthma and acute
respiratory distress syndrome. However, the impact of exogenous
glutamine supplementation on TB progression has not been
investigated so far.

Nonetheless, several studies have linked glutamine metabolism
to TB pathogenesis. Glutamine is the primary nitrogen donor
in Mtb-infected macrophages (57). With one exception (58),
several studies have identified decreased levels of glutamine in

serum/blood as one of the prominent diagnostic markers that
distinguish active TB patients from latent TB patients and healthy
controls (59–62). Mtb infection has also been shown to affect the
expression of several genes associated with glutamine metabolism
in both human macrophages and TB patients (63). The same
study also demonstrated that perturbing glutamine pathway either
via glutamine depletion or by using specific chemical inhibitors
or due to genetic polymorphism (e.g., GLS2, SLC7A5, and
SLC1A5), decreased T-cell associated cytokine production by the
macrophages (PMID: 30541099).

Similarly, Vreiling et al. (64) demonstrated substantial
alterations in the expression of multiple glutamine metabolism
pathway transcripts in Mtb-infected M2 macrophages. More
recently, Jiang et al. (65) using stable isotope labeling of
glutamine and glucose followed by metabolomics, reported
that M1 macrophages preferentially utilize glutamine, and the
chemical or genetic ablation of glutamine synthase perturbs
M1 polarization of the macrophages. Parveen et al. (66, 67)
have reported that inhibiting glutamine metabolism in a murine
model of TB has dual immunomodulatory and antibacterial
activities. The study demonstrated that glutamine metabolism
inhibition causes early recruitment of activated T-cells, reduced
frequency of immunosuppressive myeloid cells, and enhanced
antimycobacterial activity of macrophages concomitant with
upregulation of host-protective metabolic pathways. Eventually,
glutamine metabolism inhibition was also shown to reduce lung
bacillary burden and improve lung histopathology and survival in
murine hyperacute models of TB (66, 67).

Overall, these studies demonstrate that Mtb infection alters
glutamine metabolism in infected macrophages, mice, and TB
patients, and hence modulation of the glutamine levels and/or
metabolism has the potential as an effective host-directed therapy.

Glutamine supplementation as an
adjunctive therapy for TB

Several studies performed with patient cohorts from Africa,
Indonesia, and Georgia have identified lower circulatory glutamine
levels as a potential diagnostic signature of TB patients. The
lower glutamine levels could be due to either decreased GLS-
mediated synthesis or increased glutamine utilization/uptake.
Further studies need to be performed to dissect the mechanism
driving the lower glutamine levels in TB patients. Regardless of
the mechanism, however, glutamine supplementation to restore
circulatory glutamine levels should be tested as an adjunctive
therapeutic approach. It is also clear that glutamine facilitates host-
protective M1 polarization of the infected mouse macrophages,
enhancing their antimycobacterial and inflammatory properties
(65). In HIV patients, glutamine supplementation (20 g/day for 7
days) has improved serum glutamine levels (68).

While glutamine supplementation may represent a promising
approach, the ex-vivo macrophage infection model is unsuitable
for these studies as the macrophage culture media already contains
milli-molar concentrations of glutamine. Testing glutamine
supplementation in murine models of TB as an adjunctive therapy,
despite being non-trivial, holds promise.
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Glutamine metabolism inhibition as a
host-directed therapy for TB

Several strategies have been employed to target glutamine
metabolism in cancer models. These strategies can be majorly
classified into four categories; (1) glutaminase inhibitors, (2)
glutamine transporter inhibitors, (3) glutamine synthetases
inhibitors, and (4) pleiotropic glutamine antagonists (Table 1,
Figure 1) (98–100). While numerous studies have tested these
approaches in various cancer models, only a handful of such
studies have been performed in experimental models of TB. In
a study by Koekan et al. (63) pharmacological inhibitors such as
GPNA, BPTES, C968, and DON were shown to adversely impact
the cytokine production by Mtb-stimulated peripheral blood
mononuclear cells, particularly T-cell cytokines such as IFNy,
IL-22, and IL-17. However, the impact of these inhibitors on the
bacillary burden was not explored. More recently, Roca et al.
(69) have demonstrated that TNF-treated infected macrophages
upregulate glutaminolysis to induce pathogenic mitochondrial
reactive oxygen species production (mROS). The pathogenic
mROS production in macrophages could be successfully perturbed
by BPTES and CB-839 (GLS1 inhibitors) and R162 (GLUD1
inhibitor) (69). Interestingly, the effect of GLS1 inhibitors was
limited to the infected macrophages with excess TNF. A more
recent report has shown that the glutamine metabolism antagonist
prodrug, JHU083, significantly reduced the lung bacillary burden,
improving lung histopathology and survival of Mtb-infected mice.
The authors also noted significant immunological and metabolic
reprogramming in the infected lungs, potentially driving the
therapeutic benefit. As the drug was administered early after
infection, future studies in acute and chronic models of TB
infections will be required to assess the true translational potential
of the drug (66, 67). All these early studies suggest that glutamine
metabolism inhibition has the potential to be developed as an
effective host-directed therapy option for TB.

Future of glutamine metabolism in TB
pathogenesis

More studies are required to demonstrate the precise link
between glutamine metabolism and TB pathogenesis. Several
research avenues need further investigation. First and foremost,
what signals/factors trigger the upregulation of glutamine
metabolism during Mtb infection? Are these signals/triggers host-
derived or secreted byMtb? Is glutamine metabolism upregulation
an early event during Mtb infection or a sustained phenotype
of infected lungs? Does glutamine metabolism upregulation
contribute to granuloma formation? And if yes, how does
glutamine metabolism upregulation contribute to granuloma
formation? How, why, and when do granulomas undergo
metabolic reprogramming during different phases of infection?
What are the differences in the metabolic profile of granuloma vs.
non-granulomatous regions of Mtb-infected lungs? Do all lung
cells undergo similar metabolic reprogramming, or is the effect
driven by a handful of cell types? Do non-immune lung cells also
undergo metabolic reprogramming upon Mtb infection? While

numerous questions can be asked in the context of glutamine
metabolism and TB pathogenesis, a solid first step could be
investigating the impact of Mtb upon the metabolic profiles of
the immune cells and using the knowledge to block glutamine
metabolism mindfully and selectively. One of the important
considerations will be to strike a delicate balance of selective and
targeted inhibition of the problematic immunosuppressive cell
populations while maintaining the wellbeing of host-protective cell
types (38).

Challenges of the new field and
potential solutions

Investigating the impact of glutamine metabolism on TB
pathogenesis will require extensive deployment of metabolomics
tools. There are a few unique challenges specific to TB research:
first and foremost, as single-cell metabolomics is still in the initial
phases of development, metabolomics of individual cell types
remains challenging. Worldwide, most TB researchers (including
those in developed countries) do not have access to a flow sorter
in a BSL3-containment facility, making it harder to work with
individual cell types. While immortalized immune cell lines are
an option, magnetic bead-based enrichment of the primary lung-
derived cells may be helpful in several cases. Over the years,
there has been tremendous development and expansion of bead-
based kits. However, these kits need extensive standardization
and optimization when working with complex tissue samples.
The second challenge will be distinguishing the host vs. bacterial-
derived metabolites in the infected samples. Novel isotope labeling
methods may need to be developed to circumvent this issue.
Third, metabolite fluxes tend to be extremely sensitive to their
milieu and are potentially affected during tissue collection,
processing, sorting, and metabolite extraction, causing extensive
batch-to-batch variations and processing artifacts. Fast, efficient,
and homogenous processing of the infected samples, while not
impossible to achieve, all these factors can be challenging in
a BSL3 containment facility. Such processing artifacts can be
avoided using stable isotope-labeled nutrients (e.g., [13C] glucose
or [13C] glutamine) to probe the metabolic fluxes within the intact
lungs in vivo. This method was recently developed by Faubert
et al. (101) and was used to investigate the metabolic activity of
tumors in vivo using the [13C] glucose label. Despite the unique
challenges faced by TB researchers, the glutamine metabolism and
TB pathogenesis field holds tremendous promise and needs our
immediate attention.

Conclusion

In conclusion, sufficient data supports the claim that glutamine
metabolism is a promising host-directed mechanism that can be
targeted to perturb TB pathogenesis. Several inhibitors, originally
identified by cancer researchers, can be tested as potential host-
directed therapy. However, several missing pieces in the puzzles
must be placed to successfully predict and implement these
therapies and evaluate their therapeutic potential.
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TABLE 1 List of glutamine metabolism inhibitors used in various pathological conditions.

Drug Host target Condition Reference

CB-839 (Telaglenastat) GLS1 Melanoma, renal cell carcinoma, NSCLC, CRC, head & neck
squamous carcinoma,M. marinum/Zebrafish

(69, 70)

C968 Glutaminase C Ovarian cancer, NSCLC, breast cancer,Mtb-stimulated PBMCs (63, 71, 72)

Epigallocatechin gallate (R162) GLUD1 and GLUD2 Neuroblastoma, glioma, and CRC cells (73)

Bis-2-(5-phenylacetamido-1,2,4-
thiadiazol-2-yl) ethyl
(BPTES)

GLS1 but not GLS2 Aspergillosis, lymphomas, breast cancer, CRC and, ovarian
cancers,M. marinum/zebrafish

(56, 74)

Purpurin analog R162 GLUD1 Breast, NSCLC, and glioma cancer,M. marinum/Zebrafish (75, 76)

Sulfasalazine SLC7A11 Triple-negative breast cancer (TNBC) (77)

Erastin SLC7A11 Pancreatic ductal adenocarcinoma (78, 79)

Imidaole Ketone Erastin, and
Peperazine Erastin

SLC7A11 Large B-cell lymphoma and fibrosarcoma (80, 81)

Sorafenib SLC7A11 Hepatocellular carcinoma (82, 83)

Benzylserine SLC1A5 (non-specific) Breast cancer (84)

Benzylcysteine SLC1A5 (non-specific) Gastric cancer (85)

L-γ-Glutamyl-p-nitroanilide (GPNA) SLC1A5 (non-specific) TNBC, Lung and neuroblastoma cancers, aspergillosis,M.

marinum/zebrafish
(56, 86–88)

Synthetic Monoclonal Antibodies
(KM4008, KM4012, and KM4018)

SLC1A5 CRC (89)

V-9302 SLC1A5, (non-specific binding to
SLC38A2 & SLC7A5)

Lung cancer, oral mucosa carcinomas, osteoporosis (90, 91)

N-methyl-aminoisobutyric acid
(MeAIB)

SLC38A1 and/or SLC38A2 Cervical and osteosarcoma cancer cells (92, 93)

6-diazo-5-oxo-norleucine (DON) Glutamine antagonist Aspergillosis, cancer, TB (56, 66, 94)

Sirpiglenastat (DRP-104) and its analog
(JHU083)

Glutamine antagonist Prodrug Breast, pancreatic and renal cancers, TB, EcoHIV (39, 40, 95)

PF-04859989 GOT1 (Glutamic oxaloacetic
transaminase 1)

Pancreatic ductal adenocarcinoma (96)

Aspulvinone O GOT1 Pancreatic ductal adenocarcinoma (97)

M. marinum, Mycobacterium marinum; C968, 5-(3-bromo-4-(dimethylamino) phenyl)-2,2-dimethyl-2,3,5,6-tetrahydrobenzo[a]phenanthridin-4(1H)-one; NSCLC, non-small-cell Lung
cancer; CRC, colorectal cancer; PBMCs, peripheral blood mononuclear cells.
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