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Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the sole globally licensed
vaccine against tuberculosis despite its relatively moderate protection of acute
disease through adolescence. We hypothesize that vaccine e�cacy from
a mucosal BCG vaccination will be directly influenced by Mycobacterium

tuberculosis (M.tb) strain and mouse background. Here we investigated the
e�ectiveness of mucosal BCG vaccination via the intranasal route, in resistant
and susceptible mouse strains, to protect against laboratory strain H37Rv and
clinical strain HN878 M.tb aerosol challenge. We evaluated both pulmonary and
disseminated CFU at 4-weeks post-infection in addition to survival endpoints
in C57BL/6, SWR, and C3HeB/FeJ mice. Antigen specific T cell responses
in the lung post-infection were also evaluated. We observed that in each
case intranasal BCG a�orded a significant reduction in pulmonary CFU at 4-
weeks post-infection compared to matched untreated controls. However, only
susceptible mouse strains, SWR and C3HeB/FeJ, demonstrated similarly robust
control from bacterial dissemination when CFU in the spleen was evaluated at
the same timepoint. In the case of both M.tb H37Rv and M.tb HN878 challenge,
intranasal BCG significantly improved survival of each mouse cohort compared
to unvaccinated controls. Together these data suggest that there is still much to
be learned from the century old vaccine, BCG, and how it drives protection.
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Introduction

Mycobacterium bovis Bacille Calmette-Guérin (BCG) remains the sole licensed vaccine
against Mycobacterium tuberculosis (M.tb), despite noted waning protection from disease
(1–3). This is in part due to mixed efficacy reporting that may be due to factors like which
BCG strains are used for vaccination (4, 5), composition of host genetics or prior exposures
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to other environmental mycobacteria (6–8) or other variables
related to M.tb virulence (9, 10). Studies of outbreaks with known
exposures to M.tb suggest BCG vaccination can result in reduced
risk of test conversion in a gamma interferon release assay, T-
SPOT R©.TB-test, including in a school setting in the UK (11).
Therefore, BCG is still deployed in nations with endemic M.tb.
BCG alone has been unable to halt the population-level progression
of tuberculosis disease (TB) that ravages low and middle income
countries disproportionately (12, 13). Novel TB vaccine candidates
have stalled through clinical and preclinical pipelines due to a
lack of robust and tangible immune correlates for stage-gating
advancement (14–16). Preceding novel vaccine candidates, the
research community needs to leverage novel vaccine systems,
routes of delivery and host genetics to identify the requirements for
durable protection from TB disease.

While BCG does not provide durable immunity from TB
disease or prevent infection, there are still ample ways in which
immunologists and vaccine developers can leverage this century old
vaccine to winnow down the most critical features of protective
immunity, including in preclinical models. After the Lübeck
disaster (17, 18), less effort was focused on mucosal BCG delivery
as a mechanism for correlates of protection discovery. However,
over the last two decades a trove of data has been shared in
this regard. For example, Perdomo and colleagues demonstrated
that lung resident memory T cells were induced by intratracheal
immunization with BCG in a C57BL/6 mouse model (19).
Intranasally (i.n.) delivered BCG is a standard control group for
mycobacterial growth inhibition assays (MGIA) using ex vivo

mouse samples for surrogate efficacy endpoints (20–22) and has
been shown to protect BALB/c mice partially via accelerating IFNγ

production at the pulmonary site (23). Others have shown that
protection induced by mucosal BCG vaccination in susceptible
DBA/2 mice is partially IL-17-dependent (24), and in other studies
specifically drives critical cell homing to the lungs [reviewed here
(25)]. The purpose of this study is to expand the understanding of
the protective effect of i.n. vaccination with BCG against laboratory
and clinical strains ofM.tb across three different mouse strains with
varying susceptibility to infection, C57BL/6, SWR, and C3HeB/FeJ.

Recent advancements in interrogating host genetics include
the development and sharing of collaborative cross (CC) mice,
which are genetically diverse but tractable, enabling identification
of loci that correlate with protective responses to infection (26, 27).
In CC and conventional mouse strains, a spectrum of sensitivity
to M.tb infection is observed. In these studies, C57BL/6 mice
are relatively resistant (low bacterial burden in tissues) to an
intravenous (i.v.) challenge withM.tb H37Rv vs. other strains (28).
However, when examining the protection afforded by subcutaneous
(s.c.) BCG vaccination, male C57BL/6 were protected (>0.5 log10
CFU reduction) in both the lung and spleen 4 and 14 weeks post
aerosol challenge with M.tb H37Rv [Figure 3 here (29)]. Despite
their relative resistance to M.tb, C57BL/6 have been extensively
used as a base challenge mouse strain when evaluating different
M.tb strains, TB vaccines and immunity (30–32). Swiss inbred SWR
mice, conversely, are well-known for being particularly sensitive
to M.tb challenge which seems partially linked to defects in
complement C5, inclusions in alveolar macrophages and worse
disease progression due to accumulation of less functional effector

T cells (30, 33–35). The C3HeB/FeJ mouse model is another
canonically leveraged mouse strain given that they more faithfully
recapitulate specific types of human-like necrotic TB lesions
(36–39). C3HeB/FeJ mice (also referred to as Kramnik mice)
have unique pulmonary pathology and are highly susceptible to
M.tb challenge, making them well-utilized for vaccine and drug
therapy studies (40–42) and immune cell influx evaluation to
areas of infection (43). Using these three differentially susceptible
mouse strains we executed a head-to-head evaluation of i.n. BCG
vaccination on bacterial burden and survival after aerosol infection
with a lab-adapted and clinicalM.tb strains.

Results

Cohorts of C57BL/6, SWR, and C3HeB/FeJ mice were either
vaccinated with 5 × 105 CFU BCG intranasally or left untreated
and 12 weeks later challenged with a low dose aerosol (LDA)
using either laboratory M.tb H37Rv strain or clinical and highly
virulent M.tb HN878 strain. Regardless of mouse strain or
M.tb challenge strain, aerosol delivery of M.tb resulted in 20–
67 CFU per mouse at 24 h (Table 1), in line with conventional
LDA parameters.

At the 4-week post-infection timepoint we assessed cellular
responses to M.tb H37Rv lysate (Figure 1). Antigen experienced
(CD44+) CD4+ and CD8+ T cells were evaluated for CD154,
CD107a, IL-2, IL-17, IL-21, IFNγ, and TNFα expression (gating
strategy is presented in Supplementary Figure 1). We observed
no significant differences between mouse strain or vaccination
regimen in the cases of CD4+ T cells expressing IL-21, or TNFα
after ex vivo stimulation with M.tb lysate (data not shown).
Interestingly, by 4-weeks post-infection CD4+ T cells from
SWR mice vaccinated with BCG demonstrated a significantly
higher IL-17 response than unvaccinated controls (Figures 1G,
H) and this pattern was similarly observed in the case of
C3HeB/FeJ mice infected with M.tb HN878 (Figure 1H). When
polyfunctional CD4+ T cells were evaluated for expression of two
or more TH1 cytokines (IFNγ, IL-2, or TNFα), no statistically
significant increases in BCG vaccinated cohorts were observed
(Supplementary Figures 2A, B). However, in the case of mice
infected with M.tb HN878, there was an increase in SWR BCG
vaccinated mice with more CD4+ T cells co-expressing IL-17
and IL-2, and in BCG vaccinated C3HeB/FeJ mice having more
CD4+ T cells co-expressing IL-17 with TNFα than matched
unvaccinated cohorts (Supplementary Figures 3A, B). Otherwise,

TABLE 1 Bacterial counts at 24 hours postM.tb infection.

Mouse strain 24h CFU average

M.tb H37Rv M.tb HN878

C57BL/6 23.5 20.3

SWR 40.3 66.7

C3HeB/FeJ 30.3 41.4

N= 3 mice per group used for average counts.
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FIGURE 1

CD44+ CD4+ T cell proinflammatory cytokine expression after ex vivo M.tb H37Rv lysate stimulation. Percent frequency of CD44+ CD4+ cytokine
expressing cells post stimulation with 10µg/mL of M.tb H37Rv lysate from lung homogenates of n = 4 mice per group from either (A, C, E) M.tb

H37Rv or (B, D, F) M.tb HN878 challenged cohorts 4 weeks post-infection. Untreated (open circles) cohorts were compared with i.n. BCG vaccinated
(closed circles) cohorts of C57BL/6 (blue) SWR (green) or C3HeB/FeJ (red) mice. Expression of (A, B) CD154, (C, D) IFNγ, (E, F) IL-2, and (G, H) IL-17
were evaluated. One-Way ANOVA with multiple corrections for paired tests within mouse strain and between vaccination regimens used Šídák’s
multiple comparisons test. Significant di�erences noted in the figure where *p < 0.05, **p < 0.01, and ***p < 0.001.

there are no notable trends of proinflammatory cytokine expression
from CD4+ T cells across cohorts post-infection (Figure 1).

We next evaluated CD8+ T cell cytotoxic activity and cytokine
expression after ex vivo M.tb lysate stimulation by flow cytometry.
We used CD107a as a marker of CD8+ T cell degranulation.
Only in the case of C57BL/6 mice challenged with M.tb H37Rv
did we observe a significant increase in CD107a staining in the
BCG vaccinated group (Figure 2A), no significant differences were
observed in M.tb HN878 challenged cohorts (Figure 2B). In the
case of CD8+ T cells expressing proinflammatory cytokines we
observed nomajor trends for IFNγ, where all cohorts had extremely
low percent frequencies which did not change with M.tb strain or
mouse strain (Figures 2C, D). Although not significant, there was
a trend of higher CD8+ T cell IL-2 and TNFα expression in each
mouse strain given i.n. BCG vaccination compared to untreated

controls, 4-weeks after M.tb H37Rv challenge (Figures 2E, G). No
similar trends were observed post-infection with M.tb HN878 for
CD8+ T cell cytokines (Figures 2F, H).

In addition to total responses after ex vivo stimulation withM.tb

lysate, antigen specific responses were evaluated. This included
antigen Rv3874 (CFP-10) which is only expressed by M.tb as it
is located in a region of deletion within BCG. At 4-weeks post-
infection lung homogenate samples were assessed as described
above for both CD4+ and CD8+ T cell cytokine expression.
For CD4+ T cells, SWR mice with BCG vaccination consistently
expressed significantly higher IL-2, IL-17 (Supplementary Figure 4)
IL-21, and TNFα (data not shown) cytokines ex vivo compared
with unvaccinated SWR controls following challenge with M.tb

H37Rv, but this pattern was not observed in immunized SWR
mice challenged with M.tb HN878. We observed BCG vaccinated
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FIGURE 2

CD44+ CD8+ T cell proinflammatory cytokine expression after ex vivo M.tb H37Rv lysate stimulation. Percent frequency of CD8+ cytokine
expressing cells post stimulation with 10µg/mL of M.tb lysate from lung homogenates of n = 4 mice per group from either (A, C, E) M.tb H37Rv or
(B, D, F) M.tb HN878 challenged cohorts 4 weeks post-infection. Untreated (open circles) cohorts were compared with i.n. BCG vaccinated (closed
circles) cohorts of C57BL/6 (blue) SWR (green) or C3HeB/FeJ (red) mice. Expression of (A, B) CD107a, (C, D) IFNγ, (E, F) IL-2, and (G, H) TNFα were
evaluated. One-Way ANOVA with multiple corrections for paired tests within mouse strain and between vaccination regimens used Šídák’s multiple
comparisons test. Significant di�erences noted in the figure where *p < 0.05.

SWR mice had a statistically higher percent frequency of CD4+
T cells co-expressing IL-2 and TNFα than unvaccinated SWR
mice challenged with M.tb H37Rv (Supplementary Figure 2C). In
addition, BCG vaccinated SWR cohorts demonstrated significantly
higher CD4+ T cells co-expressing IL-17 with IL-2 than matched
unvaccinated cohorts (Supplementary Figure 3C). C57BL/6 and
C3HeB/FeJ mice were consistently low responders in each
condition and no significant differences were observed between
unvaccinated vs. BCG vaccinated comparisons for single or
polyfunctional TH1 CD4+ T cells. Cohorts vaccinated with i.n.
BCG and challenged with M.tb H37Rv generally trended higher in
CD8+ T cell responses with ex vivo Rv3874 antigen stimulation.
CD8+ T cells from SWR mice prophylactically immunized with

i.n. BCG expressed significantly more IFNγ and IL-2 after ex

vivo Rv3874 stimulation compared with unvaccinated controls
(Supplementary Figure 5).

At 16-weeks post-vaccination and 4-weeks post-infection,
bacterial burden was evaluated in each cohort. Lung Log10
CFU as well as spleen Log10 CFU were enumerated to evaluate
the primary site of infection and representative organ for
dissemination, respectively. Across each mouse and M.tb strain,
prior i.n. vaccination with BCG resulted in significant protection
in the lungs compared to untreated controls (Figures 3A, B).
As expected, untreated susceptible mouse strains SWR and
C3HeB/FeJ harbored significantly higher pulmonary bacterial
burden than relatively resistant C57BL/6 in both infection schemes.
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FIGURE 3

Pulmonary and disseminated bacterial burden and pathology 4 weeks post-infection. (A, B) Lung and (C, D) Spleen homogenate Log10 CFU counts
and (E, F) percent lung lesion area from H&E stained accessory lobe slides evaluated 4 weeks post-infection with a LDA of (A, C, E) M.tb H37Rv or (B,
D, F) M.tb HN878. Untreated groups are open circles and BCG vaccinated groups are noted as closed circles. One-Way ANOVA with multiple
corrections for paired tests within mouse strain and between vaccination regimens used Šídák’s multiple comparisons test. Significant di�erences
noted in the figure where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. n = 5–7 per group.

Interestingly, unvaccinated C3HeB/FeJ mice had significantly
higher lung bacterial burden than unvaccinated SWR mice at
4-weeks post-infection with M.tb HN878 but not M.tb H37Rv
(Tables 2, 3). In the spleen, SWR mice with BCG vaccination were
protected from both M.tb H37Rv and M.tb HN878 dissemination
compared to unvaccinated controls, and C3HeB/FeJ mice showed
significantly reduced bacterial burden compared to unvaccinated
controls in the case of virulent M.tb HN878 infection (Figures 3C,
D and Table 3). Unvaccinated cohorts infected with M.tb HN878
contained more heterogeneity and higher total percent lung lesion
area, measured from accessory lobes stained with H&E, than
unvaccinated controls infected with M.tb H37Rv by this 4-week
post-infection timepoint (Figures 3E, F). There was a consistent
trend of less lung lesion area induced by M.tb HN878 infection
in BCG vaccinated groups, but this was only significantly lower
in C3HeB/FeJ cohorts (Figure 3E). While C57BL/6 mice received
the relatively lowest infection at the time of infection (Table 1),
this cohort experienced nearly identical dissemination to the spleen
across each M.tb challenge by 4-weeks post-infection (Table 3),

TABLE 2 Comparison of bacterial burden in unvaccinated mouse strains.

Mouse strain M.tb H37Rv M.tb HN878

Lung Spleen Lung Spleen

C57BL/6 x SWR <0.0001∗∗∗∗ 0.6014 (n.s.) 0.0001∗∗∗ 0.9592 (n.s.)

C57BL/6 x C3HeB/FeJ <0.0001∗∗∗∗ 0.9998 (n.s.) <0.0001∗∗∗∗ 0.2800 (n.s.)

SWR x C3HeB/FeJ 0.8986 (n.s.) 0.6436 (n.s.) 0.0007∗∗∗ 0.1809 (n.s.)

Log10 CFU compared between cohorts using ordinary One-Way ANOVA with Tukey’s

multiple comparisons test, adjusted p-values reported.

n.s., not significant. ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001 denote degrees of significant differences

by One-Way ANOVA.

suggesting the lack of protection in the BCG vaccinated animals
fromM.tb dissemination in this mouse strain was not due to initial
M.tb deposition.

Lastly, durability of vaccine-mediated protection from
morbidity was evaluated in n = 10 animals per group which
were weighed weekly post-infection. Animals were observed
for moribund characteristics or behaviors and met objective
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TABLE 3 Bacterial burden 4 weeks post-infection.

Mouse strain Vaccination Log10 CFU ± SD M.tb H37Rv Log10 CFU ± SD M.tb HN878

Lung Spleen Lung Spleen

C57BL/6 Untreated 5.66± 0.28 4.90± 0.43 6.03± 0.20 5.15± 0.37

BCG 4.30± 0.12 4.53± 0.31 4.72± 0.24 4.82± 0.33

SWR Untreated 6.78± 0.10 4.63± 0.46 7.01± 0.21 5.10± 0.42

BCG 5.58±.047 3.59± 0.47 5.71± 0.35 3.72± 0.32

C3HeB/FeJ Untreated 6.83± 0.23 4.90± 0.67 7.83±.051 5.47± 0.31

BCG 5.91± 0.41 4.65± 0.24 6.30± 0.21 4.61± 0.21

Mean Log10 CFU from n= 5–7 per group.

TABLE 4 Median survival days with and without mucosal BCG vaccination.

Mouse strain M.tb H37Rv median
survival (d)

Log-rank p between
M.tb H37Rv curves

M.tb HN878 median
survival (d)

Log-rank p between
M.tb HN878 curves

Untreated BCG Untreated BCG

C57BL/6 330 > 458 0.236∗ 242 >368 0.0070∗∗

SWR 153 246 0.0002∗∗∗ 88 130 0.0022∗∗

C3HeB/FeJ 202 231 0.0035∗∗ 57 134 0.0032∗∗

Log-rank (Mantel-Cox) test. Study terminated at 458 days post-infection. Within challenge cohort differences were evaluated with a Log-rank test where ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p <

0.001.

euthanasia criteria when weight loss exceeded 20% of maximum.
We compared virulence of M.tb strains by median survival days
across challenges as well as Log-rank hazard ratio evaluation of the
full survival curves. For unvaccinated SWR and C3HeB/FeJ mice
challenged withM.tbHN878 the median survival days was roughly
half or worse of that for the same untreated cohorts challenged
withM.tb H37Rv (Table 4). Overall, we observed thatM.tb HN878
infection was more virulent over time by Log-rank Mantel-Cox
test in unvaccinated SWR (p < 0.0001) and C3HeB/FeJ (p =

0.0001) mouse backgrounds compared to similarly challenged
unvaccinated M.tb H37Rv cohorts, but not in unvaccinated
C57BL/6 cohorts by the same test (p = 0.1477). In each mouse and
M.tb challenge combination, i.n. BCG vaccination afforded greater
cohort median survival days compared to untreated controls
(Table 4) and provided durable protection from morbidity by
probability of survival log-rank tests in eachM.tb infection scheme
within each mouse strain tested (Figure 4).

Conclusions/discussion

Here we demonstrate that mucosally delivered BCG affords
significant protection from pulmonary bacterial burden and
enhances survival in all mouse background and M.tb challenge
settings evaluated in this study. However, protection from
dissemination was variable as was the rate of decline with respect
to survival outcomes. In the case of both SWR and C3HeB/FeJ
mice challenged withM.tbHN878 there is a stark and rapid decline
of the group, possibly suggesting a more uniform sensitivity than
other combinations. These data serve as a reference for those
needing survival as an endpoint, who may need to execute studies
in shorter windows of time (SWR or C3HeB/FeJ x M.tb HN878)
or examine the natural or vaccine-induced heterogeneity of an

infection (C57BL/6 x M.tb H37Rv). Furthermore, we observed a
significant reduction in percent lung lesion area in BCG-vaccinated
C3HeB/FeJ mice compared to matched unvaccinated cohorts by 4-
weeks post-infection with M.tb HN878 which is a fairly early time
point for pathology assessments. These data are important given the
power of translational pathological outcomes in C3HeB/FeJ mice.

Additionally, there is a significant and expected contribution
of M.tb challenge strain on outcomes, where highly virulent
M.tb HN878 infection resulted in higher bacterial burden, more
immunopathology by 4-weeks post-infection and reduced survival
and yet did not result in blatantly higher CD4+ or CD8+ T cell
responses with ex vivo stimulation. While surprising, this is in
line with prior observations where infection with M.tb Beijing
strains, includingM.tb HN878, over time induced an expansion of
regulatory FoxP3+ T cells, downregulating effector-led immunity
driven by BCG vaccination (44). The relatively weak and sometimes
reduced expression of CD107a on CD8+ T cells derived from lung
samples after ex vivo stimulation with M.tb lysate or recombinant
antigen Rv3874 is congruent with human clinical studies which
also observed reduced CD107a staining from lymph node samples
compared to peripheral blood samples obtained from tuberculous
lymphadenitis patients (45). Together these data may indicate a
M.tb induced regulatory profile that is more acute closer to the site
of infection.

Interestingly, BCG vaccinated SWR mice demonstrated a
consistent increase in CD4+ T cells expressing IL-2 or IL-17 or
both after ex vivo stimulation, which is notably lacking from the
other two mouse strains. It is of interest in follow on studies
to evaluate whether this contribution from IL-2 and IL-17 also
contribute or correlate with reduced systemic and disseminated
bacterial burden which was also observed in the SWR cohorts that
received BCG vaccination. Aguilo et al. showed IL-17 dependent
protection following pulmonary delivery of BCG, measured by a
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FIGURE 4

Survival of challenged cohorts and durable protection from mucosal BCG vaccination. Probability of survival, where n = 10 animals per group were
weighed weekly and assessed for morbidity criteria post-infection with either (A, C, E) M.tb H37Rv or (B, D, F) M.tb HN878. Untreated (dashed line)
cohorts were compared with i.n. BCG vaccinated (solid line) cohorts of (A, B) C57BL/6 (blue) (C, D) SWR (green) or (E, F) C3HeB/FeJ (red) mice.
Comparisons with or without BCG vaccination within a mouse and M.tb challenge used a Log-rank (Mantel-Cox) test, significant di�erences are
labeled accordingly *p < 0.05, **p < 0.01, and ***p < 0.001.

reduction in lung and spleen bacterial burden, and survival against
M.tb H37Rv in the M.tb susceptible DBA/2 mouse strain (24).
Interestingly, in this same study, BCG given by the i.d. route did
not result in protection in the susceptible DBA/2 mice, but did
protect wildtype C57BL/6 mice (24). Our group has also shown
that mucosal delivery with a subunit vaccine is capable of inducing
a skewed T helper 17 (TH17) immune response (46). Although
we saw robust pulmonaryM.tb protection following mucosal BCG
immunization regardless of mouse background or M.tb strain in
our current study, less consistent protection against M.tb was
observed in the spleen. A limitation of all TB vaccine studies
is that the field has not delivered discrete immune correlates of
protection, and indeed we hypothesize that it is more likely that
a suite of responses (47) are working together to limit M.tb in

vivo and that many immune pathways together can garner similar
results. It is unclear from these studies whether the CD4+ or
CD8+ T cell responses from 4-weeks post-infection across mouse
strains are meaningful toward protection and survival responses
mediated by i.n. BCG vaccination or other immune parameters
are driving those responses, such as T resident memory cells,
humoral immune responses or specific trained innate immunity
in the airway. The studies presented here are limited in that flow
panels did not includemarkers that allow the discrimination of lung
tissue-resident CD4+ and CD8+ T cells from those in the lung
vasculature, which may further resolve differences in protection
mediated by BCG vaccination. It has been observed that monocyte
recruitment to the lungs after intradermal (i.d.) BCG vaccination
correlated with protection in C57BL/6 mice, rather than T cell

Frontiers in Tuberculosis 07 frontiersin.org

https://doi.org/10.3389/ftubr.2024.1417939
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org


Larsen et al. 10.3389/ftubr.2024.1417939

recruitment (48). These data together with CC models suggest
that different host genetics in combination with BCG vaccination
may pave different paths toward immune protection. All of these
endpoints are worth pursuing.

Historically, oral BCG and i.d. BCG were evaluated for use in
humans and ultimately i.d. was adopted. However, the oral route
generates high-quality mucosal responses which has been observed
in both mice and humans (49–51). Studying the unconventional
administration of BCG (25) is making a resurgence in the TB
vaccine community as a means to help define immune correlates
of protection. This includes the notable use of intravenous (i.v.)
delivery in non-human primate models that resulted in protection
and robust immune endpoints across cohorts (52–55). In a diversity
outbred mouse model, i.v. BCG enhanced survival but did not
significantly reduce pulmonary M.tb burden compared to cohorts
vaccinated via the i.d. route (56). Indeed, this may be due in part to
the breadth of antigen-specific responses in i.v. vaccinated cohorts
being larger than traditionally immunized i.d. mouse cohorts (57).
While i.d. delivered BCG is controlled and cleared from the host
overtime [in as little 12 weeks in mice as reported here (29)], it is
unclear whether mucosal i.n. or systemic i.v. delivery of the vaccine
would present novel niches for more long term persistence. This is
part of ongoing discussions and preclinical studies about the safety
of administering BCG i.v. clinically (25, 58). In addition to route,
vaccine dose is known to be critical in meeting specific thresholds
of protection against M.tb challenge in both mice (59) and other
preclinical models (25, 53). Further work could compare routes
and doses in mice, including i.n. and i.v. with traditional s.c./i.d.
BCG, to obtain meaningful correlates that drive protection in the
mouse model of TB. Cumulatively, these data suggest there is still
much we can glean from BCG vaccination strategies if we vary the
route or dose of delivery and carefully interrogate the interplay with
different host or pathogen genetics.

Materials and Methods

Mouse vaccination and challenge

Female C57BL/6, SWR, and C3HeB/FeJ mice were purchased
from Charles River Laboratories at 5–8-weeks old. Mice were
housed at (renamed post-receivership) the Infectious Disease
Research Institutes (IDRI) biosafety level 3 (BSL-3) animal facility
under pathogen-free conditions and were handled in accordance
with approved protocols from the IDRI Institutional Animal Care
and Use Committee (IACUC). The institute, formerly known
as IDRI, operated under USDA Certificate # 91-R-0061 and
PHS Assurance # A4337-01. All methods were carried out in
accordance with animal welfare guidelines and regulations. For
vaccination, mice were given an intranasal immunization of 5
× 105 colony forming units (CFU) of BCG Aeras Pasteur [as
previously reported in (19)] in a total of 50 µl, 25 µl per nare,
while under ketamine/xylazine anesthesia. The sequenced genome
of BCG Aeras Pasteur propagated by our lab and maintained as
vaccination stocks can be found at GenBank ID: SAMN38797945.
Twelve weeks later, mice were challenged with a low dose aerosol
(LDA, 25-100 CFU permouse upon infection) of eitherM.tbH37Rv
orM.tb HN878 (BEI Resources) using a Madison aerosol infection

chamber. Delivery and deposition of M.tb dose was confirmed
24 h post-infection by evaluating bacterial burden from the lungs
as described below. Ten mice per group were followed after
M.tb infection for survival analysis. Animals with >20% weight
loss, or moribund condition, were euthanized. The survival study
was prematurely ended with C57BL/6 animals still not meeting
endpoint criteria on day 458 post-infection, due to the Authors’
prior institution (IDRI) abruptly entering receivership.

Intracellular cytokine staining and flow
cytometry

Intracellular staining and flow cytometry was performed on
lung homogenates 4 weeks post-M.tb infection with either M.tb

H37Rv or M.tb HN878. Samples were incubated in red blood cell
lysis buffer (eBioscience), washed and resuspended in RPMI 1640
(Life Technologies) + 10% fetal bovine serum (FBS; BioWhittaker,
Inc.) and subsequently aliquoted in 96-well round bottom plates.
Cells were then stimulated with media alone, 10µg/mL M.tb

H37Rv whole cell lysate, 10µg/mL of recombinant M.tb antigens
Rv3478 (PPE60 Mtb39c), Rv3874 (CFP10), Rv3875 (ESTAT6), or
1µg/mL phorbol myristate acetate (PMA; Calbiochem)+ 1µg/mL
ionomycin (Sigma) and incubated at 37◦C. During the stimulation
fluorochrome-conjugated anti-mouse CD107a antibody (LAMP-1,
clone 1D4B, BioLegend) was also added to the plates. After 1–2 h 1
µg/µl of GolgiPlug (BD Biosciences) was added and samples were
incubated at 37◦C for an additional 8 h. Samples then remained at
4◦C until staining (<12 h). Samples were first surface stained with
fluorochrome-conjugated antibodies against mouse CD4 (clone
RM4-5, BioLegend), CD8 (clone 53-6.7, BioLegend), and 1µg/mL
of Fc receptor block anti-CD16/CD32 (clone 93, eBioscience)
in PBS with 1% bovine serum albumin (BSA) for 10–15min at
room temperature (RT). Cells were then washed and fixed using
BD Biosciences Fix/Perm reagent for 20min at RT. Subsequently
samples were washed with BD Perm/Wash followed by intracellular
staining in Perm/Wash reagent with anti-mouse IFN-γ (clone
XMG1.2, Invitrogen), IL-2 (clone JES6-5H4, eBioscience), IL-
17A (clone Tc11-1BH10.1, BioLegend), TNF-α (clone MP6-XT22,
eBioscience), CD44 (clone IM7, BioLegend), IL-21 (clone mhalx21,
ThermoFisher Scientific), and CD154 (clone MR7, eBioscience) for
10min at RT. All antibodies were used at 10 µl/mL. The samples
were then incubated in 4% paraformaldehyde for 20min to fix,
decontaminate, and remove from the containment facility before
washing and resuspension in PBS + 1% BSA. An LSRFortessa flow
cytometer (BD Bioscience) was used for sample acquisition, and
analysis was performed using FlowJo v10 (BD Biosciences).

Cross section evaluation of bacterial
burden

To enumerate bacterial burden in infected animals, organs
were homogenized at 24 h (n = 3, lung only) or 4 weeks (n
= 5–8, lung and spleen) post-infection as previously described
(60, 61). Lung and spleen tissue from infected animals was strain
and homogenized in 2–5mL of either RPMI + FBS (lung) or
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PBS + Tween-80 (Sigma-Aldrich) CFU buffer (spleen) using an
Omni tissue homogenizer (Omni International, Kennesaw, GA).
Homogenized tissue was plated neat or across a series of dilutions
on Middlebrook 7H10 agar plates (Fisher Scientific, Waltham,
MA) and subsequently incubated at 37◦C and 5% CO2 for ∼ 3
weeks before colonies were counted. For CFU plating, 5µg/ml of
thiophene-2-carboxylic acid hydrazide (TCH) was supplemented
to 7H10 agar to inhibit the growth of BCG and to allow the
growth of M.tb in duplicate plates. Bacterial burden as CFU/mL
was calculated per organ and is presented here as Log10 values.
Reduction in bacterial burden was calculated as the difference in
mean Log10 values between groups assessed.

Histopathology

Lung accessory lobes from 4 weeks post M.tb infection
were collected and temporarily stored in 10% normal
buffered formalin. Hematoxylin and eosin (H&E) slides were
generated at the Benaroya Research Institute Histology Core
facility (Seattle, WA, USA). Blinded slides were analyzed by
veterinary pathologist (Dr. Brendan Podell, Colorado State
University). Image analysis and lesion area identification and
percent lesion area was performed as previously described
(35, 61).

Statistical analysis

For 4-week CFU, percent lesion area and ICS data comparing
groups with or without BCG vaccination within a mouse andM.tb

challenge, a One-Way ANOVAwithmultiple corrections for paired
tests within mouse strain using Šídák’s multiple comparisons test
was used. The flow cytometry data were assessed using FlowJo v10
(BD), and SPICE (NIH, https://niaid.github.io/spice/). For survival
comparisons with or without BCG vaccination within a mouse and
M.tb challenge a Long-rank (Mantel-Cox) test was used andmedian
days of survival for each group are reported in the text. Statistical
analyses were performed using GraphPad Prism 10.2.2 software
(GraphPad Software, San Diego, CA). Grubbs tests were run to
identify potential outliers within cohorts. Significant differences are
labeled accordingly in the figures where ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p
< 0.001, and ∗∗∗∗p < 0.0001.
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