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Background: Non-sputum based predictive biomarkers capable of identifying

individuals with high risk of progression to active tuberculosis (TB) are critical

for global TB control. MicroRNAs (miRNAs) are significant regulators involved in

TB pathogenesis and hence we aimed to identify a miRNA signature capable of

predicting progression to TB disease.

Methods: We compared the di�erential miRNA expression profile of

QuantiFERON supernatants of TB Progressors, defined as healthy household

contacts (HHCs) of TB patients, who developed active TB disease during a

2-year follow-up period, and Non-progressors defined as HHCs from the

same longitudinal cohort who did not develop TB disease during the entire

follow-up period, using the nanostring nCounter platform. Receiver Operator

Characteristic (ROC) analysis was performed to evaluate the diagnostic accuracy

of the identified miRNA biomarkers, followed by random forest analysis to

determine the best predictive model.

Results: We identified 30 di�erentially regulated miRNAs between the two

groups. Of these, hsa-miR-585-3p and hsa-miR-92a-3p were up-regulated with

a maximum fold change of 1.74 and 1.71 respectively, while hsa-miR-223-3p

and hsa-miR-451a were down-regulated by −2.05 and −2.04 fold respectively.

Random forest analysis revealed that hsa-miR-181a-5p, hsa-miR-204-5p, hsa-

miR-197-3p, hsa-miR-92a-3p, hsa-miR-451a, hsa-miR-24-3p, and hsa-miR-

487a-3p exhibited 100% accuracy in identifying Progressors. This panel of 7

miRNAs demonstrated excellent diagnostic performance characteristics with

100% sensitivity and specificity.

Conclusion: We propose that the identified miRNA signature has the potential

to serve as a very useful tool for early identification of individuals who bear
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the highest risk of progression to TB, so that they can be targeted for

timely intervention.
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1 Introduction

Tuberculosis (TB) remains one of the leading causes of death

from a single infectious agent. Although one-fourth of the world’s

population is infected withMycobacterium tuberculosis (Mtb), only

about 5%−10% will go on to develop active TB, while the rest

will continue to harbor Mtb in a controlled state, referred to

as Latent Tuberculosis Infection (LTBI) (1). Reduced notification

and missed diagnosis during the recent COVID-19 pandemic (2)

has contributed to an enriched pool of latent TB reservoirs that

constitute a potential source of new cases. The poor positive

predictive value (PPV) of the currently available diagnostic tests

for LTBI [viz. the tuberculin skin test (TST) and interferon gamma

release assay (IGRA)] results in high numbers-needed-to-treat

(NNT) making it extremely challenging to cater preventive therapy

to the large LTBI pool, particularly in TB endemic countries, and

in most cases unnecessarily (3). This calls for the identification of

easily detectable non-sputum-based biomarkers that can precisely

identify individuals with high risk of progression to TB disease

with an optimal sensitivity and specificity of ≥90% or minimum

sensitivity and specificity of≥75% as per the Target Product Profile

(TPP) proposed by World Health Organization (4).

The immune response to TB is multifaceted and highly

complex. Small, non-coding RNAs called microRNAs (miRNAs)

have emerged as critical regulators in orchestrating the TB disease

pathogenesis (5). It is evident from recent studies that many

of the immune responses elicited by the host, and the immune

modulation strategies effectuated by Mtb to subvert them, are

facilitated by miRNAs (6, 7). The differential expression pattern of

circulatingmiRNAs in healthy, latent and active TB cases highlights

their potential to serve as useful biomarkers (8, 9). Added to

this, the remarkable stability and ease of detection of miRNAs in

body fluids make them amenable to translation as point-of-care

(PoC) tests.

In this study, we proposed to identify miRNA

biomarkers/biosignatures that can predict risk of progression

from Mtb infection to active disease. Considering that biomarkers

based on antigen-specific responses enhance the specificity

of a biomarker-based test, we for the first time used Mtb

antigen stimulated QuantiFERON (QFT) supernatants for

miRNA profiling.

2 Material and methods

2.1 Ethical approval

The study was conducted with the approval of the Institutional

Ethics Committees of ICMR-National Institute for Research in

Tuberculosis (ICMR-NIRT), Chennai, India, Byramjee Jeejeebhoy

Government Medical College (BJGMC), Pune, India, and Johns

Hopkins University (JHU), Baltimore, MD, United States. The

Ethical approval number of the study is 2020021.

2.2 Study subjects

A cohort of HHCs of newly diagnosed pulmonary TB (PTB)

patients was established at two sites, ICMR-NIRT and BJGMC,

India, in collaboration with JHU, USA, as part of the Cohort for

Tuberculosis Research by the Indo-US Medical Partnership (C-

TRIUMPH) study (10), and the enrolled participants were followed

up for approximately 2 years during August 2014 to December

2017. The definitions used for classifying study participants are

provided in Table 1. All HHCs underwent clinical and laboratory

assessment for TB at baseline and during each follow-up visit. TST

and IGRA were performed at baseline and repeated at every visit

if the previous test was negative. A HHC was confirmed to have

active TB disease if he/she became positive for TB by culture or

GeneXpert/MTB Rif during follow-up.

2.3 Diagnostic tests for active TB

Sputum samples were collected from all the participants and

subjected to GeneXpert MTB/RIF assay, followed by culture

in Löwenstein-Jensen (LJ) medium and Mycobacterial Growth

Indicator Tube (MGIT). Samples testing positive forMtb using any

of these methods were categorized as confirmed TB cases.

2.4 QuantiFERON-TB gold-in tube assay

Whole blood was collected and incubated in stimulated

(TB antigen), positive control (mitogen), and unstimulated

(Nil) tubes and processed as per the manufacturer’s instructions

(QIAGEN, Germany). After incubation, supernatants were

harvested to measure the IFN-γ response (IU/mL). Individuals

were considered QFT-positive or negative based on the analysis

using the QFT-GIT analysis software (version 2.62). The remaining

QuantiFERON supernatants were immediately stored at −80◦C

for further analysis.

2.5 RNA isolation

Total RNA was extracted from unstimulated and Mtb antigen-

stimulated QuantiFERON supernatants using TRIzol reagent

(Invitrogen, Waltham, MA, United States). RNA was quantified
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TABLE 1 Definitions used for classifying study participants.

Classification Definition

Household contacts (HHCs) Adults and children residing in the same house

with a TB patient during 3 months before TB

diagnosis in the index case.

Progressors HHCs who developed TB at any time after 2

months of TB diagnosis in the index case. TB

diagnosis was based on chest X-ray (CXR),

positive sputum smear and culture.

Non-progressors HHCs who remained healthy and did not

develop TB during the follow-up period of 2

years. Negative for symptom screen, CXR, TST

and IGRA.

using the Qubit microRNA assay kit (Invitrogen) and the quality

was assessed using the Agilent 2100 Bioanalyzer Pico chip (Agilent,

Santa Clara, CA, United States).

2.6 NanoString miRNA assay

Three microlitres of extracted QuantiFERON supernatants

containing 100 ng of total RNA was used for miRNA analysis

using the NanoString Human v3A miRNA assay kit (NanoString

Technologies, Seattle, WA, United States). miRNAs were then

ligated to miRTag with ligase in ligation buffer supplied in the kit.

The ligated product was diluted with 15 µl of nuclease-free water

and denatured at 85◦C for 5min. Five microlitres of the mixture

was hybridized overnight at 65◦Cwith reporter and capture probes.

Post hybridization, the samples were analyzed on a NanoString

nCounter SPRINT machine.

2.7 miRNA expression analysis

miRNA profiles were analyzed in Mtb antigen-stimulated

QuantiFERON supernatants collected at baseline (enrolment) for

Non-progressors and at the timepoint closest to TB activation

for Progressors using the nCounter Analysis System (NanoString

Technologies) and the nCounter Human v3 miRNA panel

having 799 unique clinically relevant miRNA barcodes for

detecting endogenous miRNA, besides house-keeping genes, spike-

in miRNAs, positive and negative controls to assess the overall

efficiency of the run. The raw miRNA data in RCC (Reporter

Code Count) format was analyzed using nSolver, v4.0 (NanoString

Technologies). Normalization of the raw data was performed

using the geometric mean of positive controls and top 100 highly

expressed miRNAs (11–13). The use of highly expressed miRNAs

for normalization provides robustness and consistency which helps

to reduce the impact of outliers and low-abundance miRNAs that

might introduce variability (14). Difference in miRNA expression

between the groups was analyzed using the build ratio utility

(foldchange). The threshold for significance for the differentially

expressed miRNAs were foldchange ≥1.2 or ≤−1.2, FDR adjusted

p-value ≤ 0.05 and count ≥15.84, which is the average of the

negative control.

2.8 Target prediction and functional
enrichment analysis

Genes targeted by at least five of the significantly differentially

regulated miRNAs were identified using the miRTarBase database

in MIENTURNET tool (15). Functional pathway enrichment of

the identified targets was performed using DAVID (16) with an

EASE threshold of 0.05. A miRNA-target gene-pathway network

displaying the top enriched pathways was built and visualized using

Cytoscape (17). Further, the identified target genes were mapped in

the TB pathogenesis pathway derived from Kyoto Encyclopedia of

Genes and Genomes (KEGG) to understand their significance in

TB pathogenesis (18–20).

2.9 Statistical analysis

Statistical analyses for this study were conducted using

various R (21) packages including randomForest, caret, factoextra,

combiroc, rstatix, readxl and ggplot2. Mann-Whitney test was

used to compare between Progressors and Non-progressors, with

a significance threshold set at p < 0.05.

The diagnostic potential of each miRNA was assessed using

Receiver Operating Characteristic (ROC) analysis, with the area

under the ROC curve (AUC) serving as a critical diagnostic

index. ROC curves and AUC values were utilized to evaluate the

specificity, diagnostic ability, and sensitivity of each miRNA, both

individually and in combination.

The significance of dysregulated miRNAs was determined

through Random Forest (RF) analysis. The dataset was split into

training (75%) and test (25%) subsets for model training and

evaluation. An iterative refinement process was applied to optimize

classification accuracy. The initial RF model, which included all

30 dysregulated miRNAs, achieved an accuracy of 85%. In each

iteration, miRNAs were sequentially removed based on their Gini

Importance scores, reflecting their contribution to the model’s

performance. This process continued until the model attained a

classification accuracy of 100%.

To evaluate the predictive performance of the trained model,

Balanced Accuracy was used. Balanced Accuracy, which integrates

both Sensitivity (true-positive rate) and Specificity (true-negative

rate), is particularly useful for imbalanced datasets. It ranges

from 0 to 1, with higher values indicating better overall model

performance. Thus, Balanced Accuracy was chosen as the final

performance evaluation metric. The accuracy of the selected

miRNAs was further validated using an external validation cohort.

Subsequently, Principal Component Analysis (PCA) was applied

to the selected miRNAs to perform dimensionality reduction and

identify underlying classification patterns.

3 Results

3.1 Characteristics of the study participants

The clinical characteristics of the participants who contributed

samples for the miRNA analysis are provided in Table 2. Among

the 1,051 HHCs from 442 households who were enrolled
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and followed-up for 2 years as part of the parent study, 20

individuals developed microbiologically confirmed TB within

2 years and were identified as Progressors; unfortunately, 6

of them did not have stored QuantiFERON supernatants and

had to be excluded from the study. The duration between

enrolment and diagnosis of active TB in the Progressors ranged

from 3–21 months. An equal number of HHCs who did

TABLE 2 Clinical and demographic characteristics of the study

population.

Participant
characteristics

Progressors
(n = 14)

Non-progressors
(n = 14)

Age in years, median

(IQR)#
32 (23–39) 35 (21–44)

Sex, n (%)∗

Male 5 (36) 4 (40)

Female 9 (64) 10 (60)

#p-value by Mann-Whitney test: 0.8121. ∗p-value by Fisher’s Exact test: 0.1283.

not develop active TB during the entire period of follow-

up, matched for age and gender with the Progressors, were

identified and selected as controls (Non-progressors) for the

study. Figure 1 provides the flow chart depicting the selection of

study participants.

3.2 Di�erentially expressed miRNAs in
Progressors, Non-progressors, and TB
cases

Of the 799 miRNAs analyzed using NanoString, 30

miRNAs showed significantly differential expression between

the Progressors and Non-progressors. Of these, 20 miRNAs

were up-regulated and 10 were down-regulated. Figure 2

represents the fold change of the significantly altered miRNAs

between the two groups. Among the upregulated miRNAs,

hsa-miR-585-3p and hsa-miR-92a-3p showed the maximum

fold change of 1.74 and 1.71 respectively. Among the

downregulated miRNAs, hsa-miR-223-3p and hsa-miR-451a

FIGURE 1

Participant selection from two sites of the C-TRIUMPh cohort study. A total of 1,051 adults and children were recruited in the C-TRIUMPh study.

Participants were classified based on their baseline Mtb-infection status as positive for QFT (≥0.35 IU/ml) and/or positive for TST (induration diameter

≥5mm) or negative for both. Among the enrolled participants who went on to develop TB during follow-up were identified as Progressors, and

those who remained healthy were defined as Non-progressors. Progressors were matched to Non-progressors for age and gender.
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FIGURE 2

Volcano plot depicting upregulated (red dots) and downregulated (green dots) miRNAs between the Progressors and Non-progressors. Fold change

of the 30 significantly dysregulated miRNAs in the study groups. The threshold considered for significance was fold change ≥1.2 or ≤ −1.2 with FDR

adjusted p-value ≤ 0.05. The top 10 upregulated and downregulated miRNAs are labeled. Blue dots represent miRNAs expressed below the average

count of the negative control.

exhibited the maximum fold change of −2.05 and −2.04

folds respectively.

3.3 Identification of miRNA targets and
altered biological pathways

We explored the role of the 30 miRNAs that were significantly

different between the Progressors and Non-progressors in the

pathogenesis/progression of TB. For this, we set a minimum

interaction threshold of five in the MIENTURNET tool and

identified 234 mRNA targets from the miRTarBase database. The

identified targets were uploaded on DAVID database with an EASE

threshold of 0.05 for pathway analysis. The analysis revealed that

the miRNA targets were significantly enriched in autophagy, TGF-

beta signaling, FOXO signaling, apoptosis and Interleukin signaling

pathways (Figure 3A). Supplementary Table 1 provides a list of all

the pathways identified using DAVID database. Very interestingly,

12 of these miRNAs were found to target previously reported TB

susceptibility-associated genes. For example, five miRNAs viz. hsa-

miR-340-5p, hsa-miR-199a-3p, hsa-miR-223-3p, hsa-365a-3p, and

hsa-miR-107 were found to target the proinflammatory cytokine

gene IL6 (Figure 3B).

3.4 Diagnostic performance of the
significantly dysregulated miRNAs

ROC analysis was performed to determine the diagnostic

accuracy of the 30 significantly different miRNAs between the

Progressors and Non-progressors. hsa-miR-181a-5p demonstrated

maximum accuracy with an area under the curve (AUC) of

0.86, sensitivity of 73.68% (95%CI 54.43–90.85) and specificity

of 100% (95% CI 66.37–100.00). Additionally, hsa-miR-204-5p,

hsa-miR-197-3p, hsa-miR-340-5p, hsa-miR-145-5p, and hsa-miR-

29a-3p demonstrated >75% sensitivity and specificity (Figure 4,

Table 3).

Random forest analysis was performed using R package

randomForest with default settings. The data set was split into

75/25 for training and testing. This analysis ranked the 30 miRNAs

based on their importance. The results of the RF analysis was

found to be in accordance with the ROC analysis where the top 10
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FIGURE 3

Pathways targeted by the significantly altered miRNAs. (A) The top 5 hub genes (blue ellipses) targeted by the 30 di�erentially expressed upregulated

(red) and downregulated (green) miRNAs with a minimum interaction of five and their corresponding pathways (purple hexagons). (B) Previously

reported TB predictive genes (blue ellipses) targeted by the significantly upregulated (red) and downregulated (green) miRNAs.

significantly different miRNAs exhibited an AUC >0.7. The overall

predictive accuracy of the 30 miRNAs according to RF analysis was

85% (Figure 5).

In order to enhance the predictive accuracy of the shortlisted

miRNAs and to identify the optimal predictive miRNA model,

dimensionality reduction was performed using Principal
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FIGURE 4

Performance of the 30 significantly dysregulated miRNAs in predicting TB progression. Area under the receiver operator curve (AUC) for all the 30

miRNAs.

Component Analysis using default settings in the R package.

Notably, hsa-miR-181a-5p, hsa-miR-204-5p, hsa-miR-197-3p,

hsa-miR-92a-3p, hsa-miR-451a, hsa-miR-24-3p, and hsa-miR-

487a-3p exhibited a remarkable 100% predictive accuracy in the

analysis. The amalgamation of these seven miRNAs showcased

a perfect 100% sensitivity, specificity and positive predictive

value, underscoring their potential as a robust predictive model

(Figure 6).

3.5 External validation of the 7-miRNA
signature

To further validate the results obtained from the Random

Forest Analysis, we employed an external dataset from Duffy

et al. (22) as a test cohort, while utilizing our study dataset for

model training. In this validation process, we concentrated on

three microRNAs common to both datasets: hsa-miR-181a-5p, hsa-

miR-197-3p, and hsa-miR-24-3p. The analysis of these miRNAs,

when integrated into the predictive model, demonstrated a high

accuracy rate of 90% (Figure 7). This high level of accuracy not only

confirms the robustness of our predictive model but also highlights

the potential of these miRNAs as key biomarkers for tuberculosis

pathogenesis and prognosis.

3.6 Implication of the seven predictive
miRNAs in TB pathogenesis

To fully understand the significance of the identified 7-miRNA

signature in the pathogenesis of tuberculosis, their respective

targets were analyzed in the KEGG pathway for Tuberculosis.

Very interestingly, except for hsa-miR-487a-3p, all the other

miRNAs were found to target multiple genes implicated in different

pathways pertaining to the pathogenesis of tuberculosis (Figure 8).

4 Discussion

Several recent studies have established the fact that miRNAs are

among the critical modulators of the immune response toMtb (23–

25). Altered miRNA expression profiles that differentiate active TB

from latent TB have been reported in several studies, suggesting
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TABLE 3 Diagnostic performance of the significantly dysregulated miRNAs.

miRNA Sensitivity % (95% CI) Specificity % (95% CI) PPV % (95% CI) NPV % (95% CI) AUC % (95% CI)

hsa-miR-181a-5p 73.68 (54.43–90.85) 100.00 (66.37–100.00) 100.00 (76.84–100.00) 64.29 (41.90–87.24) 86.84 (76.67–97.01)

hsa-miR-204-5p 90.91 (71.51–99.77) 76.47 (56.67–93.19) 71.43 (49.20–91.61) 92.86 (76.84–99.82) 83.69 (70.00–97.38)

hsa-miR-197-3p 90.91 (71.51–99.77) 76.47 (56.67–93.19) 71.43 (49.20–91.61) 92.86 (76.84–99.82) 83.69 (70.00–97.38)

hsa-miR-340-5p 84.62 (63.97–98.08) 80.00 (59.54–95.67) 78.57 (57.19–95.34) 85.71 (66.13–98.22) 82.31 (67.68–96.93)

hsa-miR-33a-5p 100.00 (54.07–100.00) 63.64 (45.13–82.80) 42.86 (23.04–71.14) 100.00 (76.84–100.00) 81.82 (71.53–92.11)

hsa-miR-584-3p 100.00 (54.07–100.00) 63.64 (45.13–82.80) 42.86 (23.04–71.14) 100.00 (76.84–100.00) 81.82 (71.53–92.11)

hsa-miR-888-5p 100.00 (54.07–100.00) 63.64 (45.13–82.80) 42.86 (23.04–71.14) 100.00 (76.84–100.00) 81.82 (71.53–92.11)

hsa-miR-145-5p 84.62 (63.97–98.08) 76.47 (56.67–93.19) 73.33 (51.91–92.21) 86.67 (68.05–98.34) 80.54 (65.98–95.11)

hsa-miR-29a-3p 76.47 (56.57–93.19) 84.62 (63.97–98.08) 86.67 (68.05–98.34) 73.33 (51.91–92.21) 80.54 (65.98–95.11)

hsa-miR-610 88.89 (66.37–99.72) 68.42 (48.80–87.42) 57.14 (35.14–82.34) 92.86 (76.84–99.82) 78.65 (63.36–93.95)

hsa-miR-487a-3p 65.00 (45.72–84.61) 87.50 (63.06–99.68) 92.86 (76.84–99.82) 50.00 (28.86–76.96) 76.25 (59.97–92.53)

hsa-miR-451a 87.50 (63.06–99.68) 65.00 (45.72–84.61) 50.00 (28.86–76.96) 92.86 (76.84–99.82) 76.25 (59.97–92.53)

hsa-miR-365a-3p+

hsa-miR-365b-3p

87.50 (63.06–99.68) 65.00 (45.72–84.61) 50.00 (28.86–76.96) 92.86 (76.84–99.82) 76.25 (59.97–92.53)

hsa-mir-496 87.50 (63.06–99.68) 65.00 (45.72–84.61) 50.00 (28.86–76.96) 92.86 (76.84–99.82) 76.25 (59.97–92.53)

hsa-miR-649 87.50 (63.06–99.68) 65.00 (45.72–84.61) 50.00 (28.86–76.96) 92.86 (76.84–99.82) 76.25 (59.97–92.53)

hsa-miR-24-3p 81.82 (58.72–97.72) 70.59 (50.10–89.69) 64.29 (41.90–87.24) 85.71 (66.13–98.22) 76.20 (59.85–92.56)

hsa-miR-19b-3p 76.92 (54.55–94.96) 73.33 (51.91–92.21) 71.43 (49.20–91.61) 78.57 (57.19–95.34) 75.13 (58.51–91.75)

hsa-miR-223-3p 73.33 (51.91–92.21) 76.92 (54.55–94.96) 78.57 (57.19–95.34) 71.43 (49.20–91.61) 75.13 (58.51–91.75)

hsa-miR-486-3p 73.33 (51.91–92.21) 76.92 (54.55–94.96) 78.57 (57.19–95.34) 71.43 (49.20–91.61) 75.13 (58.51–91.75)

hsa-miR-423-5p 73.33 (51.91–92.21) 73.33 (51.91–92.21) 73.33 (51.91–92.21) 73.33 (51.91–92.21) 73.33 (56.95–89.71)

hsa-miR-133a-5p 80.00 (55.50–97.48) 66.67 (46.52–86.66) 57.14 (35.14–82.34) 85.71 (66.13–98.22) 73.33 (56.12–90.55)

hsa-miR-92a-3p 68.75 (47.62–88.98) 75.00 (51.59–94.51) 78.57 (57.19–95.34) 64.29 (41.90–87.24) 71.88 (54.52–89.23)

hsa-miR-1281-5p 75.00 (51.59–94.51) 68.75 (47.62–88.98) 64.29 (41.90–87.24) 78.57 (57.19–95.34) 71.88 (54.52–89.23)

hsa-miR-106b-5p 71.43 (49.20–91.61) 71.43 (49.20–91.61) 71.43 (49.20–91.61) 71.43 (49.20–91.61) 71.43 (54.06–88.79)

hsa-miR-20a-5p+

hsa-miR-20b-5p

66.67 (46.52–86.66) 75.00 (51.59–94.51) 80.00 (59.54–95.67) 60.00 (38.38–83.66) 70.83 (53.83–87.84)

hsa-miR-107 77.78 (51.75–97.19) 63.16 (43.45–83.71) 50.00 (28.86–76.96) 85.71 (66.13–98.22) 70.47 (52.26–88.68)

hsa-miR-134-3p 72.73 (48.22–93.98) 64.71 (44.04–85.79) 57.14 (35.14–82.34) 78.57 (57.19–95.34) 68.72 (50.62–86.82)

hsa-miR-199a-3p+

hsa-miR-199b-3p

64.71 (44.04–85.79) 72.73 (48.22–93.98) 78.57 (57.19–95.34) 57.14 (35.14–82.34) 68.72 (50.62–86.82)

hsa-miR-585-3p 72.73 (48.22–93.98) 64.71 (44.04–85.79) 57.14 (35.14–82.34) 78.57 (57.19–95.34) 68.72 (50.62–86.82)

hsa-miR-370-3p 64.71 (44.04–85.79) 69.23 (46.19–90.91) 73.33 (51.91–92.21) 60.00 (38.38–83.66) 66.97 (49.43–84.51)

that miRNAs have the potential to serve as reliable biomarkers for

TB (24). Based on the order of predictive importance, hsa-miR-

181a-5p, hsa-miR-204-5p, hsa-miR-197-3p, hsa-miR-92a-3p, hsa-

miR-451a, hsa-miR-24-3p, and hsa-miR-487a-3p were identified as

the most promising biomarkers exhibiting superlative sensitivity

and specificity for predicting risk of progression to infectious

TB disease.

Since miRNAs circumvent many of the disadvantages of the

currently available prognostic tests for TB, we attempted to explore

the regulatory role of miRNAs in TB disease progression and

identified highly promising TB-specific miRNAs with excellent

predictive ability. Mapping the mRNA targets of these miRNAs

in the TB pathogenesis pathway provided an insight into the

possible underlying regulatory role of these miRNAs in disease

progression. Apoptosis is an important host defense mechanism

in the pathogenesis of several diseases including tuberculosis.

Several miRNAs identified in our analysis were found to target

key genes in the apoptotic pathway. Up-regulation of hsa-miR-

197-3p and hsa-miR-24-3p causes down-regulation of CASP10,

an initiator of the caspase cascade leading to inhibition of

apoptosis. Increased expression of hsa-miR-92a-3p leads to BID

activation, which leads to inhibit the Bax-Bak mediated intrinsic
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FIGURE 5

Random forest analysis of the 30 significantly dysregulated miRNAs. (A) miRNAs ranked by the order of their predictive importance. (B) PCA plot of

the 30 di�erentially expressed miRNAs in the Progressors and Non-progressors (FDR-adjusted p ≤ 0.05).

FIGURE 6

Best predictive model generated by Random forest analysis. (A) Predictive accuracy of the best model generated by Random forest analysis. (B) PCA

plot of the 7 di�erentially expressed miRNAs in Progressors and Non-progressors (FDR-adjusted p ≤ 0.05).
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FIGURE 7

Predictive accuracy of the combination of 3 common miRNAs from the external dataset. Du�y et al. (22) as a testing cohort and our study dataset for

model training. (A) Predictive accuracy of the model generated by Random forest analysis. (B) PCA plot of the 3 common dysregulated miRNAs in

Progressors and Non-progressors.

apoptotic pathway (26). Up-regulation of hsa-miR-24-3p causes a

reduction in the expression of APAF1, a subunit of a multiprotein

complex called casposome often referred to as the “death-inducing

signaling complex” (DISC) (27). Decreased expression of hsa-

miR-451a promotes the phosphorylation of AKT which leads to

the suppression of BAD, a pro-apoptotic factor (28). A major

gene targeted by three of the seven significantly altered miRNAs

is BCL2, which is an anti-apoptotic regulatory element. Up-

regulation of hsa-miR-181a-5p, hsa-miR-451a, and hsa-miR-204-

5p increases BCL2 expression. A recent study demonstrated that

MCL-1 and BCL-2 inhibitors induce apoptosis to control Mtb

growth in macrophages and suggests that MCL-1 and BCL-2 may

be promising targets for host-directed therapy for tuberculosis

(29). Put together, our findings reveal a key role for the identified

predictive miRNAs in inhibiting apoptosis thereby contributing to

progression ofMtb infection to infectious TB disease.

The other two crucial pathways targeted by the identified

miRNAs include the Toll-like receptor pathway and MAPK

pathway. MiRNA hsa-miR-92a-3p dampens the expression of five

important genes in these pathways. Nuclear factor kappa B (NF-κB)

is known to play a unique role in mediating the proinflammatory

response against Mtb by promoting the activation of macrophages

and secretion of cytokines like TNF-α, IL-1, IL-6, and IL-12,

that play a crucial role in keeping the granuloma intact and

the bacteria contained. Targeting of the IL-1 receptor-associated

kinase 1 and 2 (IRAK1 and IRAK2) genes by hsa-miR-92a-

3p inhibits the phosphorylation of tumor necrosis factor (TNF)

receptor-associated factor (TRAF) and interferes with the NF-κB

signaling pathway (30), which is important for pro-inflammatory

responses and containment of TB disease, thereby contributing to

TB reactivation and disease progression.

Increased expression of has-miR-92a-3p as seen in Progressors

may lead to increased binding to the Nuclear transcription Factor Y

(NFY) complex, consisting of the NFYa, NFYb, and NFYc subunits,

and thereby impede MHC class I antigen presentation (31). On

the other hand, downregulation of hsa-miR-204-5p in Progressors

leads to the increased expression of cyclic AMP Response Element

Binding Protein 1 (CREB1) which has been shown to play a key role

in immune evasion ofMtb in human macrophages (32).

Three of the identified miRNAs target key cytokine genes.

Hsa-miR-197-3p targets IL18 and decreases its production, while

hsa-miR-181a-5p and hsa-miR-204-5p up-regulate IL1A and IL1B

production. The anti-inflammatory cytokine, TGF-β is down-

regulated by the regulatory effect of hsa-miR-24-3p which targets

TGFB1, TGFB2, and TGFB3. IFNG is targeted by both an up-

regulated miRNA, hsa-miR-24-3p, and a down-regulated miRNA,

hsa-miR-181a-5p. This might indicate a tilt in the fine balance

in IFN-γ production and downstream responses during disease

progression. A C-type lectin receptor called Dectin-1 (CLEC7A),

which recognizes Mtb glucan is negatively regulated by hsa-miR-

24-3p which impairs the production of inflammatory cytokines that

are crucial for protection againstMtb (33, 34).

A number of miRNAs involved in the phagosome maturation

pathway are dysregulated in Progressors. Hsa-miR-204-5p and hsa-

miR-451a target RAB5A, RAB5B, RAB5C, and abrogate phagosome

maturation (35). Hsa-miR-24-3p down-regulates the lysosome

marker Cathepsin D encoded by the CTSD gene and hsa-

miR-92a-3p down-regulates the lysosome-associated membrane
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FIGURE 8

Significance of the dysregulated miRNAs in TB pathogenesis. The mRNA targets of the identified seven miRNAs were mapped in the KEGG pathway

for tuberculosis. The upregulated (red) and downregulated (green) miRNAs and mRNAs in the QuantiFERON supernatants of Progressors vs.

Non-progressors are mapped. The mRNA in yellow boxes are targeted by both an upregulated and downregulated miRNA. mRNAs in purple boxes

are not targeted by any of the seven identified miRNAs.

proteins encoded by LAMP1 and LAMP2 (36). Hsa-miR-24-3p,

hsa-miR-181a-5p, and hsa-miR-204-5p are known to regulate

PPP3C (Calcineurin A) and PPP3R (Calcineurin B) thereby

preventing phagosome-lysosome fusion (37). Though there is

no in vitro data to support the role of hsa-miR-24-3p in the

pathogenesis of tuberculosis, a recent study that elucidated the

interactive network of hsa-miR-24–3p-NEAT1 [a long non-coding

RNA (LncRNA)]-Adrenomedullin (ADM)-CEBPB (a transcription

factor), found it to be a critical pathway in the regulation of TB

pathogenesis (38).

As much as the host tries to contain the bacterium, it is

intriguing to note that Mtb can re-pattern the entire host immune

system in order to set up a favorable niche for its survival

and growth. The shift in macrophage polarization from M1 to

the immune compromised M2 phenotype which is characterized

by the production of Th2, Treg, and Th17 cytokines, gives

Mtb an upper hand to persist and reactivate (39, 40). It is

evident from our findings that the significantly dysregulated

miRNAs in Progressors mainly target pathways that produce

Th2, Treg, and Th17 cytokines which play a crucial role in

TB reactivation.

Interestingly earlier studies have also described the utility of

three of the miRNAs shortlisted in our study as biomarkers for

TB. Significantly increased serum levels of hsa-miR-197-3p has

previously been reported in TB patients as compared to healthy

controls with an AUC of 0.84 (41). Hsa-miR-451a has been

suggested as a promising biomarker in combination with body

mass index (BMI) and prior history of TB, with a sensitivity of

80.82% and a specificity of 79.22% for identifying individuals at risk

of developing TB in a Chinese population (42). Hsa-miR-204-5p

has been identified as a putative prognostic marker in non-small

cell lung cancer (43, 44).

Duffy et al. published the first report on a circulating miRNA

signature for TB progression based on published literature and
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showed that a 3 miRNA signature comprising of hsa-miR-148b-

3p+hsa-miR-21-5p+hsa-miR-484 could predict TB progression

within 6 months prior to development of disease with an AUC of

0.74 and up to 24 months before disease break-out with an AUC of

0.66 (22).

We for the first time analyzed QuantiFERON supernatants of

Progressors and identified a set of seven highly promising TB-

specific circulating miRNA biomarkers (hsa-miR-181a-5p, hsa-

miR-24-3p, hsa-miR-92a-3p, hsa-miR-204-5p, hsa-miR-451a, hsa-

miR-197-3p, and hsa-miR-487a-3p) capable of predicting risk

of progression to active TB with excellent predictive accuracy

reaching the Target Product Profile (TPP) recommended by

WHO for tests for predicting progression from TB infection

to disease (4). There are however a few limitations in our

study. To support the validity of our findings, we examined

the correlation between our PC1 scores with clinical and

demographic variables, including gender, age, body mass index,

IGRA results, Mantoux test results, BCG vaccination status,

current and past smoking status, alcohol consumption, diabetes,

and HIV status. But we could not observe any significant

association with any of these variables probably because of the

small sample size. Hence, this miRNA signature needs validation

in multiple independent cohorts to assess their clinical utility

and predictive performance. We could not validate this signature

in an independent cohort as part of this study due to non-

availability of a similar well-characterized longitudinal cohort from

our population.

Once validated, the miRNA biosignature can be translated

into an easy to use point-of-care test using advanced technologies

like microfluidics, nanotechnology, and biosensors which are

driving the development of more sophisticated Point-Of-Care tests

(45). Integrating this miRNA signature as a predictive test in

clinical settings can aid in the accurate identification of high-risk

individuals and orienting them for treatment.

5 Conclusion

In summary, our study presents the first investigation of

miRNAs fromQuantiFERON supernatants as potential biomarkers

for TB progression. Herein, we identified 30 differentially regulated

circulating miRNAs in TB-antigen stimulated QuantiFERON

supernatants of Progressors using the nanostring platform and

identified a highly promising TB-specific 7 miRNA signature (hsa-

miR-181a-5p + hsa-miR-24-3p + hsa-miR-92a-3p + hsa-miR-

204-5p + hsa-miR-451a + hsa-miR-197-3p + hsa-miR-487a-3p)

that can predict progression from tuberculosis infection to active

TB disease. The identified miRNA signature warrants further

validation in diverse multi-country cohorts for their performance

in identifying individuals with the highest risk of progression to

active TB, so that it can be developed into a rapid screening

test that would be useful for planning targeted interventions for

TB control.
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