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The COVID pandemic and tuberculosis (TB) endemicity is double trouble

to much of the world. SARS-CoV-2 and Mycobacterium tuberculosis (Mtb),

causative agents of COVID and TB, respectively, are both infectious respiratory

pathogens involving close communities and individuals. Both pathogens can

cause lung disease, involving unbalanced inflammatory cell immune responses

that can lead to a syndemic impact. Moreover, dual infection is common in

certain settings. In low- and middle- income countries, most individuals with

SARS-CoV-2 infection or COVID-19, in fact, will have been exposed to or

infected with Mtb and some will develop active TB. Here we review the literature

examining the diverse interactions of M. tuberculosis infection and of BCG

vaccination with SARS-CoV-2. We discuss areas in which contradictory results

have been published and conclude that there are still several unresolved issues

that warrant further study on the co-pathogenesis of SARS-CoV-2 and Mtb and

BCG- mediated heterologous protection against COVID-19.
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Introduction

The clinical, epidemiologic, and biologic interactions of Mycobacterium tuberculosis

(Mtb) infection (MTBI), and of BCG vaccination with SARS-CoV-2 infection and may

be substantial, diverse and bidirectional. SARS-CoV-2 and Mycobacterium tuberculosis

(Mtb), causative agents of COVID and TB, respectively, are both infectious respiratory

pathogens involving close communities and individuals. Both pathogens can cause lung

disease, involving unbalanced inflammatory cell immune responses that can lead to a

syndemic impact. (1). Moreover, dual infection is common in certain settings. In low-

and middle- income countries, most individuals with SARS-CoV-2 infection or COVID-

19, in fact, will have been infected with Mtb by adolescence (2, 3) and some will develop

active tuberculosis (TB). COVID-19 also may occur before TB particularly with the nearly

ubiquitous frequency of SARS-CoV-2 in the population (3, 4). Therefore, it is important to

consider interactions that may be impacted by the order of acquisition of these pathogens

and the stage and severity of the resultant infection and disease.
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There may be relevant lessons from the interactions of Mtb

and HIV-1 (5). The pandemic of HIV-1 infection had profound

impact on TB (6). A surge in new cases of TB was the harbinger of

a new, at the time, unknown infectious agent spreading in Africa.

HIV-1 affected the natural history, manifestations, and course of

TB. It soon became apparent that TB also affected the course

of HIV-1 infection, promoting viral replication and accelerating

progression to immunodeficiency (7, 8). The impact on TB on other

co-infections such as malaria, Middle East respiratory syndrome

(MERS), and severe acute respiratory syndrome (SARS) has been

addressed (5, 9–11).

There are similarities and overlap in the pathogenic

mechanisms of Mtb and of SARS-CoV-2. Each is spread by

the aerosol route and engages receptors prominent in type II

pneumocytes, making the lungs the primary initial target of

infections. SARS-CoV-2 binds to the receptor-binding domain

(RBD) of angiotensin-converting enzyme 2 (ACE2) (12); and

although alveolar macrophages are recognized as the primary host

entry point for Mtb (13, 14), the pathogen also targets type II

pneumocytes (15). Another similarity is the activation of Type I

interferons (IFNs). The role of IFNs in driving TB pathogenesis is

well-described (16–18). Likewise, IFNs stimulate the expression

of SARS-CoV-2 entry receptors and mediate endocytosis of the

virus (19). Given the strong evidence of the involvement of IFNs in

the pathogenesis of both TB and COVID-19 (20, 21), the impact

of heightened IFNs may be detrimental to the host. Leukopenia

and lymphocytopenia are hallmarks of both TB and COVID-19

with concomitant perturbation in the numbers and function of T

cells, B cells, NK cells and neutrophils (22–24). These similarities

in pathogenesis suggest that there may be synergistic impact of

co-infection on immunopathogenesis. As of December 2023,

PubMed lists 1,830 publications on TB and COVID-19. We are

aware of only two general reviews of the interaction, one published

early in 2021 and the other focused on immune mechanisms

(25, 26). We will discuss various facets of SARS-CoV-2 and Mtb

interactions subsequent outcomes in the co-infected host based on

the currently available data.

Impact of SARS-CoV-2 on TB disease

Public health/epidemiology

The pandemic of SARS-CoV-2 destabilized TB control

programs because personnel and laboratory resources were shifted

to address the COVID-19 pandemic (27). As a result, the diagnosis

of TB was delayed. TB treatment completion was affected, as well,

by reduced mobility of both patients and health care professionals.

This was superimposed on a general decline in health care access

and an increase in poverty (28). The WHO Global TB Report

released in October 2022 (29), showed a decrease in the number

of persons reported with TB from 7.1 million in 2019 to 5.8 million

in 2020 (18%) and 6.4 million in 2021; there was a major global

recovery in 2022 with 7.5 million reflecting a “back-log” (30). In

fact, deaths attributed to TB were 1.4 million in 2019, 1.5 million in

2020; 1.6 million in 2021 and 1.4 million in 2022. The COVID-19

pandemic was estimated to cause 500,000 additional deaths from

TB. Other consequences of the pandemic were a 17% decline in

people provided treatment for drug resistant TB, a 21% decline in

provision of preventive therapy. and a decrease in global spending

for essential TB services. COVID-19 also was associated with

increased food insecurity worldwide; the attendant malnutrition

no doubt will further increase TB prevalence in countries with a

high TB burden (31). A recent thematic scoping review addressed

the global public health impact of COVID-19 on TB including

discussions of mental health and stigma (32).

Clinical manifestations

Co-infection with TB and COVID complicates the diagnosis

and management of each because of similar transmission routes,

clinical symptoms and involvement of the lungs (33, 34).

Pulmonary disease and pathology are a hallmark of acute COVID-

19 and usually takes the form of viral pneumonia and adult

respiratory distress syndrome (ARDS). Patients with COVID-

19 are at risk for additional lung damage due to subsequent

infections with other respiratory pathogens including TB. SARS-

CoV-2 infections also are associated with hyperinflammation and

multi-system inflammatory syndrome. Theoretically, there could

be a failure to modulate the inflammatory response in TB co-

infection with more extensive lung involvement and damage.

COVID-19 patients with hyperinflammation may be treated

with immunosuppressive treatment such as dexamethasone and

Tocilizumab (monoclonal antibody against IL-6 receptor) which

may in turn promote progression from Mtb infection to disease.

In addition to TB prevalence these immunosuppressive therapies

may well-impact TB presentation (late-stage presentation/more

severe disease), treatment outcomes: i.e., increased mortality

and treatment failure, and TB sequelae: i.e., more post TB

pulmonary dysfunction. In the first published report from the

Global Tuberculosis Network of 49 patients with TB and COVID-

19 (35), 43 (88%) were symptomatic and hospitalized, 20 needed

oxygen supplementation and six died. In this cohort (35), 26 (53%)

had TB diagnosed before COVID-19, seven of whom had post-

TB pulmonary sequelae. Fourteen cases (28.5%) had COVID-19

first and nine (18.3%) had both diseases diagnosed within the

same week (35). Pulmonary, compared to extra pulmonary TB

was predominant in co-infected cases as in TB alone; both drug-

susceptible and drug-resistant mycobacterial strains were reported

equally (35). Two cohort studies indicated that co-infection was

more common in migrants and in males (35, 36). Among patients

with TB and COVID-19 both unilateral pulmonary and bilateral

infiltrates have been reported (35, 36). A meta-analysis of 20

studies, with a total of 205,702 patients found that patients with

TB had an increased risk of mortality during a co-infection

with SARS-CoV-2 (37). This may be explained, in part, by the

reduced frequency of Mtb-specific CD4T cells in COVID-19

patients (38).

Treatment outcomes

COVID-19 had a moderate effect on the prognosis and

clinical response to antituberculosis treatment (ATT) in the short
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term (39). In a systematic review that examined the impact of

COVID-19 co-infection with TB there was, however, no significant

association between SARS-CoV-2 coinfection and un-favorable TB

treatment outcomes (40). Completion of the long-term outcome

evaluations of the global TB and COVID-19 co-infection cohort

of 767 patients found that death was the outcome in >10%

of the coinfected patients (41). Furthermore, among survivors,

success of TB-treatment was reduced (41). A retrospective cohort

study conducted in New York City reported significantly higher

mortality risk over a 2-year period among those diagnosed with

TB/COVID-19 within 120 days of each other compared to those

diagnosed with TB alone (adj. HR 2.69, 95% CI: 1.66–4.13)

(42). Age-adjusted mortality rates were higher among California

residents diagnosed with TB/COVID-19 (74.2 per 1,000 persons)

compared to those diagnosed with TB during the pre-pandemic

period (56.3 per 1,000 persons) (43). An important finding in the

global co-infection cohort was that greater numbers of COVID-

19 cases did not recover if SARS-CoV-2 was acquired after the

end of TB treatment (26.8%) than in those with COVID-19

diagnosis before or during TB treatment (10.3%) (41, 44). This

suggests that post-TB lung disease negatively impacts COVID-19

disease outcome.

Impact of SARS-CoV-2 on MTBI

COVID-19 may promote reactivation of TB by triggering type

1 IFN signaling which is permissive for mycobacterial growth

(45) and through local effects such as lung inflammation and

fibrosis (46, 47). Immunosuppression caused by SARS-CoV-2

infection could lead to activation and progression of existing TB

foci (33) and progression from MTBI to TB. There is a decrease

in the numbers as well as functional exhaustion of T cells in

response to COVID-19 infection (48) and COVID-19-induced

cytokine storm (49). Rajamanickam et al. (50), in fact, found

increased baseline and Mtb antigen induced cytokine responses in

persons with MTBI in the presence of SARS-CoV-2 seropositivity.

Despite biologic plausibility there are no direct data concerning

how often SARS-CoV-2 leads to TB. In addition to direct effects

of SARS-CoV-2 infection, corticosteroids administered to treat

COVID-19 patients creates an immunosuppressive state and an

opportunity for reactivation of latent TB (51, 52). Treatment of

COVID-19 may attenuate inflammatory processes required for

host containment of MTBI (1, 53). Case reports have described

activation of latent TB to active TB and development of TB

in patients with no history of exposure to TB during their

post-COVID period (54, 55), as seen in past viral pandemics

(56). In one instance, a 40 year old female with possible

latent TB developed active tuberculosis 7 weeks after her initial

infection with COVID-19 (57). In another report, a 29-year-old

healthy male with no prior exposure or history to Mtb, was

diagnosed with miliary pulmonary TB after COVID-19 infection.

The prolonged usage of corticosteroids for the treatment of

COVID-19 can lead to reactivation of TB and also reduces the

permeability of anti-TB drugs into lung epithelium impacting their

effectiveness (58).

Impact of TB on SARS-CoV-2

In the global cohort described above of 767 TB/COVID-19

co-infected patients from 34 countries covering the period from

March 2020 to June 2021, the mortality rate was 11.1% and

hospitalization due to COVID-19 was 61.7% (59). The authors

suggest that TB, either active or inactive, is an important risk factor

for the development of more severe forms of COVID-19 disease.

In an updated meta-analysis that included 36 studies and 60,103

COVID-19 patients fromAsia, Africa, Brazil and USA, covering the

period of January 2020 toMay 2021, the authors found an increased

risk for severe COVID-19 infection (OR = 1.56, 95% CI: 1.13–

2.16) and death (OR = 1.94, 95% CI: 1.28–2.93) among patients

with TB compared to those without TB (60). Therefore, TB is a

significant risk factor that increases morbidity andmortality among

COVID-19 patients.

Although experimental data on the immunopathology of

TB/COVID-19 co-infection are limited, TB (past or current)

induces lung damage by the proinflammatory response in the

lung parenchyma that, in turn, may increase susceptibility to

other airborne pathogens, such as SARS-CoV-2. The immune

responses implicated in TB and COVID-19 pathogenesis are

similar, involving local expression of TNF and IFNγ, cytokines

which contribute to inflammation and accumulation of active cells

in the lung. During TB and COVID-19 co-infection, inflammatory

stimuli may add up, leading to further lung tissue damage (1, 61).

A systemic manifestation of TB/COVID-19 co-infection is T-cell

exhaustion. The Th-1 immune response intensified by SARS-CoV-

2 infection in patients with pre-existing TB may cause depletion

and dysfunction of T-cells (CD4+ and CD8+), and immune

dysregulation increased expression of pro-inflammatory cytokines

and cytokine storm (62) potentially acute disease and long-term

sequelae. Another mechanism by which TB may increase the

susceptibility to and severity of COVID-19 is through activation

of myeloid-derived suppressor cells (MDS), the known suppressors

of T cells in viral infections (25). Further, in cases of TB with

cavitary lesions, the distorted pulmonary architecture could result

in increased susceptibility to SARS-CoV-2-induced pneumonia and

respiratory failure. As a consequence, patients with co-infection

have severe disease and poorer prognosis (1).

Impact of MTBI on SARS-CoV-2

MTBI may itself be associated with immune activation (63–

65) providing a potential mechanism for co-pathogenesis, and,

further, inflammation may be prolonged following an episode of

TB despite apparent clinical “cure” (66). Regarding the relationship

between latent TB infection (LTBI) and COVID-19, a study which

used observational case-control design involving 36 TB/COVID-

19 patients from multiple primary care hospitals in China reported

that COVID-1 was twice as likely to occur in those with latent TB

infection (LTBI)+, determined through interferon-gamma release

assay (IGRA), compared to the general population (61). This

finding suggests that LTBI was a risk factor for susceptibility to

COVID-19. There also was a significantly higher proportion of

Frontiers in Tuberculosis 03 frontiersin.org

https://doi.org/10.3389/ftubr.2024.1378068
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org


Salgame et al. 10.3389/ftubr.2024.1378068

LTBI among severe and critical COVID-19 cases compared to

those with mild and moderate disease (78 vs. 22%; p = 0.0049).

Studies from the Philippines and the Global Tuberculosis Network

also suggested a potential increase in susceptibility to SARS CoV-

2 and increase in COVID-19 severity among patients with active

or past TB or LTBI (35, 67). These cohort studies however lacked

adjustment for potential confounders such as comorbidities.

There is a theoretic possibility, in fact, that LTBI may

protect against or ameliorate SARS-CoV-2 infection through

trained immunity. Trained immunity is defined as epigenetic

and metabolic reprogramming of innate immune cells leading

to enhanced non-specific antimicrobial response to a secondary

infection (68, 69). This phenomenon as manifest in monocytes of

individuals recently exposed to Mtb (70) conceivably would lead to

heterologous protection and protection against or a milder course

of SARS-CoV-2 infection. In a study conducted in India, severely

ill patients with COVID-19 were less like to be IGRA+ although it

was not possible to discern whether IGRA+ status was protective

or severely ill patients lost their IGRA response (71). In a study of

76 patients with COVID-19 in Turkey a positive tuberculin skin test

(TST) was associated with milder disease (72); again it is not clear

whether COVID-19 suppressed the TST response. These results are

contradictory to those reported from China and the Philippines

as discussed above and raise the possibility that LTBI under

certain circumstances may compromise the induction of trained

immunity. In this regard, a study performed in the mouse model

showed that Mtb indeed impaired the development of protective

trained immunity by uniquely reprogramming haematopoietic

stem cells (HSCs) via type I interferon (73). Despite its ability

to repress trained immunity, Mtb infection induced resistance

to secondary infection with SARS-CoV-2 in two different mouse

models, (K18-hACE2 (ACE2) mice infected with SARS-CoV-2 and

C57BL/6 mice infected with a mouse-adapted SARS-CoV-2) (74).

Clearly, additional studies are required to fully comprehend the

impact of LTBI induced host immune response on SARS-CoV-

2 infection.

Bacillus Calmette-Guérin and
heterologous protection against
COVID-19

There is evidence, as well, that BCG vaccination of infants

protects them from pathogens other than Mtb resulting in

heterologous protection (75). Subsequent studies showed that

vaccine-induced heterologous immunity was mediated by

durable epigenetic modifications to the innate immune response,

ergo, trained immunity (76, 77). In BCG-vaccinated adults,

circulating monocytes and NK cells acquired a trained phenotype,

characterized by increased production of proinflammatory

cytokines (68, 69). Members of the IL-1 family play an important

role in trained immunity (78). Importantly, a randomized placebo-

controlled human challenge study showed that BCG-induced

trained immunity provided protection in vivo in a pathogen

agnostic manner (79). Subjects were challenged with attenuated

yellow fever virus vaccine strain and the BCG-vaccinated showed

lower viremia compared to controls. The decreased viremia

strongly correlated with genome-wide epigenetic reprogramming

of human monocytes and associated increased IL-1β production

(79). Mechanistically, BCG induces trained immunity by

reprogramming haematopoietic stem cells (HSCs) in the bone

marrow via a type II interferon pathway (80).

These findings provided the rationale for studies of whether

BCG-induced trained immunity could serve as a tool against

COVID-19 (81, 82). Early in the COVID-19 pandemic, several

observational studies and small clinical trials suggested that trained

immunity induced by BCG vaccination might have a protective

effect against SARS-CoV-2 infection. For example, in a study

from Turkey the decreased mortality in health care workers with

COVID-19 might have been due to increased Mtb exposure

history and BCG vaccination (83). In a unicentric, randomized-

controlled clinical trial, revaccination of health care workers with

BCG Moscow was associated with a lower incidence of COVID-19

positivity, though the results did not reach statistical significance

(84). Prior BCG vaccination of health-care workers was associated

with decreased SARS-CoV-2 IgG seroconversion (85).

Sixty-five randomized controlled trials of BCG to prevent

or ameliorate COVID-19 have been registered to date. In a

phase 3, randomized, double-blind, multicenter clinical trial in

healthy elderly volunteers, vaccination with VPM1002, a genetically

modified BCG, prevented severe respiratory disease including that

due to COVID-19 (86).

However, data from recent clinical trials fail to show a

protective role for BCG against SARS-CoV-2 infection. Meta-

analyses of 7,963 participants from nine randomized controlled

trials as of November 2022, showed no efficacy of BCG against

COVID-19 infection (OR, 0.96; 95% CI: 0.82–1.13); COVID-

19 related-hospitalization (OR, 0.66; 95% CI: 0.37–1.18); ICU-

admission (OR, 0.25; 95% CI: 0.05–1.18) or mortality (OR,

0.64; 95% CI: 0.17–2.44) (87). Two, more recent, randomized,

placebo-controlled trials in healthcare workers (BCG-Corona

Study Group and BRACE Trial Consortium Group) showed

that BCG vaccination did not reduce SARS-CoV-2 infections,

symptomatic COVID-19 or severe COVID-19 in individuals with

sero-confirmed infections as well as self-reported positive SARS-

CoV-2 tests (88, 89). Further, BCG vaccination, despite enhancing

cytokine and antibody responses to SARS-CoV-2, had no effect on

the incidence of SARS-CoV-2 infection in older adult volunteers

(90). Nor did BCG protect health-care workers in South Africa

from SARS-CoV-2 infection or related severe COVID-19 disease

and hospitalization (91). During the COVID-19 pandemic, BCG-

vaccination of HCW exposed to COVID-19 patients did not reduce

unplanned absenteeism nor documented COVID-19 (92). In a

multi-center, randomized, double-blind, placebo-controlled study

on a group of 695 health care workers aged 25 years and over in

Poland, statistical analysis did not reveal any significant correlation

between the frequency of incidents suspected of COVID-19 and

BCG-10 vaccination, the result of the tuberculin test or the number

of BCG scars (93).

There seems to be a disconnect between the early observational

studies and experimental models and the results of randomized

clinical trials. Possible explanations are: (i) inclusion of trial

participants with active TB and LTBI; (ii) variance in protective

efficacy and immunogenicity across BCG strains; (iii) age and

gender driven differential non-specific effects of BCG; and (iv)
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FIGURE 1

Schematic representation of lung pathology in (A) COVID-19 disease; (B) Mtb infected individual (MTBI) coinfected with SARS-CoV-2; (C) Individual

with TB disease and SARS-CoV-2 coinfection; (D) SARS-CoV-2 infection in individual post-TB disease.

impact of recent vaccination history (94, 95). An important factor

to be considered is whether BCG was administered at birth so that

the trial dose represented a vaccine boost; and also, that efficacy

may vary against individual SARS-CoV-2 strains. BCG vaccination

could, in fact, be effective in certain populations. In a high-risk

population, a multi-center quadruple-blind study showed that BCG

had protective effect and reduced the incidence of acute respiratory

illness in symptomatic COVID-19 infection and the severity of the

disease (96). In a randomized, double-blinded, placebo-controlled

phase 2/3 trial conduced in the USA, the safety and efficacy of a

multi-dose (BCG) vaccine for the prevention of COVID-19 was

evaluated in a COVID-19-unvaccinated population of adults with

type 1 diabetes. The study found that BCG vaccinated group had

fewer cases of confirmed COVID-19 in comparison to the placebo

group, with vaccine efficacy at 92% (97). The severity of COVID-19

was also significantly lower in the vaccinated group compared to

the placebo. It is of interest that blood immunoglobulin G (IgG)

levels specific to SARS-CoV-2 were higher in the BCG group,

albeit without statistical significance (98). BCG also could have

an immunomodulatory effect potentially increasing the efficacy of

specific vaccines or prior SARS-CoV-2 infection.

In experimental models the efficacy of BCG against MTB

is greater when administered intravenously (80, 99, 100). In

mice, intravenous BCG immunization provided significant cross-

protection against subsequent influenza A virus infection through

the induction of trained immunity mediated by IFNγ secreted

from CX3CR1hi effector memory T cells (101). Intravenous BCG

vaccination also elicited strong protection against SARS-CoV-2.

For example, in the golden Syrian hamster model, intravenous BCG

vaccination reduced viral load and SARS-CoV-2 severity (102).

Intravenous administration of BCG also protected mice against

lethal SARS-CoV-2 challenge (103, 104) via BCG-specific Th1 cell

mediated prolonged innate antiviral resistance (104). Although

there are unresolved issues, the impetus to use BCG vaccine

for non-specific protective effects should be pursued, especially

given that the iv approach can be used with the development of

“suicide” BCG strains that are cleared in immunocompetent and

immunocompromised hosts (105).

Conclusions

The available data as reviewed support synergism in the co-

pathogenesis of TB and COVID-19 in dually infected persons

(Figure 1). There are, however, several areas in which contradictory

results have been published. The complexity of obtaining clearcut
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FIGURE 2

Schematic representation of the varied outcome of SARS-CoV-2 following BCG vaccination.

results is explained by considering that the natural history of

infection with MTB and of SARS-CoV-2 each represents a

continuum so that there is marked heterogeneity in the stage of co-

infection at the individual level. There too are compounding effects

of host demographics and co-morbidities, the infecting strain of

SARS-CoV-2 and of Mtb and the level of protection conferred by

prior COVID-19, vaccination and both. This leaves the possibility

that several areas of uncertainty may never be resolved.

The impact of the COVID-19 pandemic on TB control

measures and consequently on epidemiology and lethality of TB

is clear-cut and well-documented. Also, the lung damage of both

diseases is at least additive andmay impact on short- and long-term

outcomes including survival. The mechanism of co-pathogenesis

appears to involve modulation of ACE on pneumocytes, Type 1

interferons, immune activation, inflammation and the cytokine

storm. Although there is no evidence to date that SARS-CoV-

2 vaccinations affects the incidence or prevalence of TB, it may

modify co-pathogenesis.

Perhaps the area of greatest uncertainty is whether MTBI

or revaccination with BCG confers heterologous protection

against SARS-CoV-2 (Figure 2). The evidence from ex vivo and

experimental studies indicates that BCG vaccination confers

training of the immune response and/or protection from

heterologous challenge. The results of randomized controlled trials,

however, have not shown that BCG revaccination impacts on

the incidence or severity of COVID-19. The myriad of potential

confounders is difficult to address. There may, however, be greater

efficacy of BCG vaccination in subpopulations (high-risk groups,

pre-existing Type 1 diabetes mellitus. It will be of interest to

determine whether BCG modifies the immune response to other

vaccines including SAR-CoV-2 vaccines. These unresolved issues

assume additional importance as revaccination with BCG is under

investigation for prevention of TB. The possibility that this

approach will provide some level of non-specific protection against

current and future pathogens is intriguing. Hopefully data from the

trials that are completed or in progress will shed light on this issue.
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