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Vaccination is crucial for the control of tuberculosis (TB), and safe, more e�ective,

and accessible vaccines against Mycobacterium tuberculosis (Mtb) infection are

critically needed to achieve TB control milestones envisioned in the End TB

Strategy. TB vaccine research and development faces numerous challenges

including, but not limited to, insu�cient knowledge of the most informative

antigens to prioritize as potential vaccine candidates, lack of defined correlates of

protection, and incomplete knowledge of anatomical and cellular locations of the

Mtb-infected cell in vivo, among others. To take stock of the progress, challenges,

and opportunities in TB vaccine R&D, the Stop TB Partnership Working Group

on New TB Vaccines (WGNV), in partnership with the National Institute of Allergy

and Infectious Diseases (NIAID) cohosted a two-day virtual workshop on 13–14

June 2023 with experts from all over the world. In this report, we summarize key

themes and discussions from the meeting, highlighting progress and gaps in the

TB vaccine research.

KEYWORDS
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1 Introduction

Under the theme “Recognition and control of Mycobacterium tuberculosis (Mtb)-

infected cells: from basics to the clinic,” the objectives were to: (i) Elucidate the mechanisms

by which the immune system recognizes Mtb-infected cell, (ii) Explore when, where, how,

and the degree to which recognition can lead to control of the intracellular microbe, (iii)

Discuss the translational implications of current developments in the field, and (iv) Foster

discussions to address gaps in our understanding of the immune response toMtb, to enable

identification of correlates of protection and development of novel interventions like new

TB vaccines.
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1.1 Antigens displayed by the infected cell

The first session explored mechanisms by which the host

immune system recognizes the Mtb-infected cell. Paul Ogongo

(University of California San Francisco) discussed the evidence

for disease-specific antigens. Ogongo shared a report by Musvosvi

et al. (1), which identified antigenic peptides targeted by T-cell

receptor similarity groups associated with control or progression,

demonstrating that distinct Mtb antigens are associated with

infection outcomes. In a second report by Meier et al. (2)

cytokine responses to distinct Mtb antigens differentiated TB

progressors from non-progressors 2 years prior to TB progression.

Finally, Ogongo described his unpublished work in the Ernst Lab,

illustrating immunodominantMtb antigens that have conserved T-

cell epitopes induced a predominant Th1 response, while rare Mtb

antigens with variable T-cell epitopes were skewed toward Th17

responses. Overall, Ogongo highlighted that distinct Mtb antigens

are associated with infection outcomes, induce functional responses

that precede progression to TB disease, and can determine human

T-cell differentiation.

Next, Sam Behar (University of Massachusetts Chan Medical

School), highlighted evidence suggesting that poor T-cell

recognition of infected cells is a barrier to protective immunity.

T-cell recognition ofMtb-infected cells may depend on the number

of bacteria or the amount of antigen present (3), and further

evidence indicates murineMtb-specific CD8 T-cells only recognize

infected macrophages with high bacterial burden (4). Thus, high

intracellular numbers of Mtb may induce macrophage death,

release of bacterial antigens or exosome production, leading to

acquisition of antigens and cellular debris by uninfected bystander

cells that can cross-present antigens. It is therefore important

to understand how antigen presentation by bystander antigen

presenting cells (APC) and the consequent T-cell activation affect

disease pathogenesis.

Cecilia Lindestam Arlehamn (La Jolla Institute for

Immunology), finally highlighted differentially recognized

T-cell epitopes in the spectrum of Mtb infection. Lindestam

Arlehamn et al. (5) identified ∼400 CD4 T-cell epitopes in IGRA+

individuals, with vast heterogeneity of epitope-specific responses

toMtb. Recently, Panda et al. (6) provided evidence for differences

in T-cell reactivity against Mtb antigens between TB active and

IGRA+ individuals. Using longitudinal cohorts and sequential

sampling, future investigations should determine when T-cells

begin to respond to these differentially recognized peptide antigens

and potentially identify signatures of progression and correlates

of protection. The anatomical location of differentially recognized

antigens, species specificity, and differences in the antigenic

repertoire within an individual are unknown. Furthermore, HLA

diversity as a source of heterogeneity should be investigated

to identify HLA alleles that are associated with TB disease or

containedMtb infection.

During the panel discussion, it was appreciated that TB vaccines

are largely based on secreted protein antigens. It was suggested that

secreted Mtb antigens are likely processed via class II and class I

pathways, although only some of these antigens are preferentially

taken up by bystander cells. Since certain antigens are more likely

to be presented or secreted by an infected cell, multiple antigens

in TB vaccines are necessary to confer protective immunity. The

tissue microenvironments were also discussed as important for

shaping immune responses with regard to antigen presentation

and recognition. The granuloma has different microenvironments

with cells in different immune states that influence patterns of

antigen expression, which ultimately need to be considered and

further explored in vivo. Since the field lacks a comprehensive

understanding of where Mtb persists in humans, consideration

of alternate concepts of where Mtb persists (anatomic and

cellular locations) has important implications for vaccine design

and delivery. Consequently, mechanisms of extracellular bacteria

killing via cytotoxic effectors need consideration. Together, the

complexities of tissuemicroenvironments,Mtb strain diversity, and

Mtb location remain bottlenecks to experimentally evaluate antigen

recognition in vivo.

1.2 Immune control of intracellular
infection

The second session focused on immune control of intracellular

infection. Mihai Netea (Radboud University Medical Center)

presented on BCG-induced trained immunity that elicits an

antigen-agnostic response through mechanisms involving

immunological pathways, metabolic rewiring, and epigenetic

processes in responding cells. BCG-induced control of Mtb

infection is associated with enhanced myeloid- and innate-

associated responses (7). Regarding trained immunity, Moorlag

et al. (8) showed that administration of β-glucan prior to Mtb

infection induced higher functional responses by monocytes in

vitro, reduced bacterial burden in vitro and in vivo, and conferred

longer survival in infected mice. During the panel discussion, it

was noted that the superior efficacy of intravenous BCG (9–11)

may be due to the effect of the vaccine on bone marrow progenitor

cells (central trained immunity). Importantly, trained immunity

involves innate cells beyond myeloid subsets, including non-

conventional T-cells, NK cells, and other innate lymphoid cells

(ILCs). Trained immunity is improved when there is interaction

with the cells of the adaptive immune system which secrete IFN-γ

to amplify trained immunity. The panel noted that natural mucosal

immunity demonstrates “tolerance-associated” features. For

example, lung NK cells generally lack evidence of activation as a

protective mechanism to prevent inflammation-induced pathology

[reviewed in Cong and Wei (12)]. Therefore, TB vaccine research

should consider harnessing the combined induction of classical

adaptive immunity and trained immunity in novel vaccination

strategies to elicit responses distinct from mechanisms favoring

tolerance in the tissues.

The second speaker, David Lewinsohn (Oregon Health and

Science University), presented data and efforts aimed at addressing

a fundamental: Where is Mtb located in the human host?

Lewinsohn proposed that studies should consider vaccine-induced

responses in the airways, since favorable airway immunity may

provide early control and facilitate the development of adaptive

immunity (13). Non-classical, MR1-restricted,Mtb-reactive CD8+

T-cells (mucosal-associated invariant T-cells - MAIT) were

enriched in the upper airways and efficiently enhanced IFN-γ

production in response to Mtb-infected epithelial cells (14),
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suggesting that although epithelial cells are generally poorly

infected by Mtb, they may provide a niche for Mtb persistence.

Lewinsohn also presented recent evidence demonstrating that T-

cell functionality, rather than phenotype, is associated with Mtb

restriction in the non-human primates (NHP) granuloma (15),

and polycytotoxic T-cells can control Mtb (16–18). Thus, new

vaccines and the analysis of vaccine responses should consider

the cytolytic capacity of vaccine-induced responder cells and the

cytolytic molecules that restrictMtb growth.

Finally, Henry Mwandumba (Malawi Liverpool Wellcome

Programme), focused on how innate immune cells in the

human lung shape responses to Mtb infection and explored

reprogramming of the lung myeloid compartment to prevent

the establishment of infection. Boosting early innate responses

in the lung may be necessary to limit Mtb growth and clear

initial infection (19). Upon Mtb exposure, different myeloid cell

populations in the lung are infected by Mtb (20, 21), some of

which are effective at controlling infection, while others provide a

niche for Mtb persistence. However, permissive cells contributing

toward the establishment of infection are not well characterized

and there is limited data on bacterial permissiveness as an immune

function. There is a need for identifying correlates of bacterial

permissiveness, in addition to immune correlates of protection

and/or risk. Mwandumba then discussed macrophage ontogeny

as the primary underpinning to macrophage-associated control

of Mtb infection in the lung, as demonstrated by Huang and

colleagues (21). Specifically, the ability to control Mtb infection

was determined by the metabolic profile of macrophages: glycolysis

predominated in the restrictive recruited interstitial macrophages,

while fatty acid oxidation was the dominant metabolic pathway

of permissive alveolar macrophages in the murine lung. Thus,

the evidence suggests that epigenetic programming and metabolic

rewiring of tissue-residentmacrophage lineages by newTB vaccines

could be a novel strategy to impact Mtb infection, control, and

persistence in humans.

Relevent to TB immunity in the lung, it was recently (22)

demonstrated that tissue-specific activation of T-cells influences

their effector functions. Specifically, IFN-γ in the mediastinal

lymph node skewed T-cells to be Th1-like effector regulatory T-

cells driving their close interaction with type 1 dendritic cells (DCs)

and subsequent suppression of cytotoxic T-cell responses. It is

worth considering whether a similar mechanism applies during TB.

Studying the lung airways provides an opportunity to understand

early events occurring upon exposure to the bacteria. To address

the limitation of obtaining human lung tissue samples, it is possible

to leverage computational approaches to infer the interactions in

the alveolar space to the lung parenchyma.

1.3 Putting antigen recognition in a clinical
context

The third session fostered discussions on translating

basic findings into clinical settings. Stephen Carpenter (Case

Western Reserve University) highlighted the possible causes and

mechanisms of delayed memory T-cell responses to infected

cells in the lung. T-cells are detected in the lungs ∼2 weeks

following aerosol infection (23–25). However, many of the

antigen-specific CD4 T-cells in the lungs do not produce IFN-γ

following infection (26). Carpenter proposed that there may be

a lack of T-cell recognition of infected alveolar macrophages,

which accounts for nearly all Mtb-infected cells during this initial

period (27, 28). Mtb-infected macrophages can evade T-cell

recognition using Type I and Type II evasion. General inhibition

of T-cell recognition (Type I evasion) occurs independent of

TCR/antigen specificity and results from inhibitory cytokines or

impaired pro-inflammatory cytokine and co-stimulatory receptor

expression by Mtb-infected macrophages (29, 30). On the other

hand, Type II evasion of T-cell recognition is TCR-dependent

and/or antigen-specific (31). During Type II evasion, TCR/antigen-

specific recognition can be hindered by Mtb changing its patterns

of antigen expression, antigen export from infected to non-infected

cells (32), or altered antigen repertoires presented by dendritic

cells (DCs) during T-cell priming, which may be different from

peptides presented by infected macrophages in the lung. Indeed,

some studies have identified TCRs that were unable to recognize

infected macrophages and were limited in their ability to control

bacterial infection in mice [reviewed in Yang et al. (33)] and in

human vaccination studies (34). Finally, Carpenter presented

data from his lab showing that the addition of Mtb antigens to

Mtb-infected macrophages can increase the number of activated

human CD4 T-cells in some individuals. Using TCR sequencing,

certain clonally-expanded TCRs were identified as unique to the

addition of exogenous antigens, providing further evidence of the

antigen-specific mechanisms that may govern Type II evasion of

T-cell recognition in humans.

Next, Munyaradzi Musvosvi (South African Tuberculosis

Vaccine Initiative, University of Cape Town), focused on the use

of single-cell TCR sequencing of Mtb-specific T-cells to identify

priority antigens for TB vaccine development. Bertholet et al. (34)

demonstrated that distinct Mtb antigens varied in their ability to

confer a protective response against Mtb. Antigen availability can

determine the quality of T-cell response (35). For example, antigens

expressed at high levels throughout the course of Mtb infection

(e.g., ESAT-6) drive terminal differentiation of T-cells, while

antigens poorly expressed during the chronic phase of infection

(e.g., Ag85B) result in less differentiated T-cells (35). Recently,

Musvosvi clusteredMtb–specific T-cells into TCR similarity groups

based on shared amino acid motifs within CDR3β chains and

identified groups enriched in either progressors or controllers, in

two longitudinal cohorts (1) (also highlighted by Ogongo in his

talk). Further studies using a reporter system to perform Mtb

genome-wide protein screening (36) identified the cognate epitopes

to some of the similarity groups enriched in controllers and

progressors, suggesting the existence of “good” and “bad” antigens

(37, 38). Musvosvi, therefore, presented a platform for identifying

antigens to prioritize for TB vaccine R&D.

Chetan Seshadri (University of Washington) closed the session

by focusing on protection from the perspective of the human

infection model. Seshadri highlighted the concept of “resistors,”

who did not develop evidence of infection or active disease,

despite close contact with active TB cases (39), but exhibit immune

responses to Mtb antigens that were IFN-γ-independent (40).

Seshadri then discussed that the “non-conventional” immune

response to Mtb is mediated, partly, by donor-unrestricted T-cells
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(DURTs) (41), including MR1-restricted T-cells, which recognize

non-peptide antigens (42). Several studies suggest that DURTs may

provide help to other immune cells, rather than acting as primary

effectors (43–45). Seshadri proposed that antigens recognized by

DURTs should be validated and included in pre-clinical and clinical

development. For vaccination strategies, it is worth considering

whether DURTs can be engineered to induce an effector response

and adaptive immunity and whether those responses can be Mtb-

specific. Seshadri suggested that developing a controlled human

Mtb infection model could be considered for evaluating in situ T-

cell clonotypic expansions to discover new antigens for TB vaccines

using approaches developed by Munyaradzi and colleagues.

IFN-γ-independent responses to Mtb antigens was discussed

at length during open forum. While quantifying IFN-γ remains

informative and crucial, other cytokine responses to various Mtb

antigens also provide valuable readouts. Since there is overlap

between antigens and antigen specificity, a combination of immune

response readouts and inclusion of multiple antigens should be

considered in future vaccine studies. The existence of Mtb strain-

specific transcriptional changes in infected macrophages has been

reported (46), andMtb strains are differentially recognized by toll-

like receptors (TLRs) with an impact on the immune response (47).

Furthermore, human macrophage responses to clinical isolates

from Mtb complex can discriminate between ancient and modern

lineages (48). Thus, it is possible that Mtb strain-specific immune

responses could inform whether prior exposure favors subsequent

immune responses that determine the clinical outcome. The

panel discussion also considered the types of antigens used in

immunological assays and how, for example, Mtb lysates and

peptide pools differentially influence the type of cells that respond

in recall assays. Therefore, it is imperative to identify signatures

that encompass a holistic response and include more immune

cells involved in immunity to TB beyond conventional T-cells.

Overall, there is a need to invest in systems that integrate various

mechanisms for detecting novel antigens and exploring existing

antigens, while evaluating the harmonized and interlinked role of

immune cells in containingMtb infection.

1.4 Developing clinical correlates that
reflect recognition of the infected cell

The last session focused on issues regarding the development

of clinical correlates that reflect recognition of the infected cell.

Bryan Bryson (Massachusetts Institute of Technology) presented

FucoID as a technology for identifying antigen-specific T-cells

and cell-cell interactions and discussed the potential of this

technique as an unbiased approach. With FucoID technology,

the fucosyltransferase (FT)-labeled (49) Mtb-infected cell acts

as a “living tetramer,” which in turn, labels interacting T-

cells. Paired with technologies such as CITEseq, FucoID enables

phenotypic characterization of Mtb-specific T-cells. Potentially

all cells interacting with labeled, Mtb-infected cells could be

identified and used to determine the proportion of vaccine-induced

responses. Such tools could also be employed for understanding

early immune interactions occurring in the lung airways following

Mtb exposure.

Simone Joosten (Leiden University Medical Center) presented

on growth inhibition assays as a correlate of protection against

TB. The Mycobacterial Growth Inhibition Assay (MGIA) provides

a measure of growth control by immune cells and gives insights

into mechanisms associated with protective immune responses

against Mtb infection (7). New data from Joosten’s group (in

revision), found that MGIA identified groups of individuals

who could or could not control growth of BCG pre- or post-

vaccination. Moreover, mechanisms of control may be different

between natural and vaccine-induced protection. Since functional

measurements of effector responses are important to evaluate

protective immunity, improvement of the MGIA platform will

provide novel insights into host defense mechanisms associated

with control.

The last speaker of this session was Jacqueline Achkar

(Albert Einstein College of Medicine) who spoke on protective

antigen specificity of antibodies and B cells in TB. Several

studies have provided clear evidence for antibody-mediated

immunity against TB, including FcγR-mediated effects but

knowledge on protective B cell antigens remains limited (50–

56). Recent mucosal and intravenous BCG vaccine studies with

NHPs showed associations of airway IgA, IgG, and IgM with

protection against TB disease (9, 57, 58), highlighting the

potential protective role of antibodies and B cells in the lung

during initial Mtb exposure and infection [reviewed in Boom

et al. (59)]. Ishida and colleagues (Achkar lab, in press) have

identified IgA responses to epitopes of the Mtb surface glycan

arabinomannan prior to Mtb infection that were associated with

the outcome of controlled (LTBI) vs. TB disease outcome in

cynomolgus macaques, suggesting that pre-existing antibodies

can protect against TB. However, despite the evidence for

a protective role of antibodies and B cells in TB, major

knowledge gaps, such as the following, remain: (i) The range

of protective Mtb antigens and their epitopes, including their

expression on infected cells; (ii) Differences between mucosal

and systemic antibodies and their mechanisms of protection;

(iii) The role of antibody isotypes at different stages of Mtb

infection; and (iv) The role of B cells, independent of antibodies,

and their interaction with other immune cells. During the panel

discussion, the role of antibodies was discussed in terms of their

contributions toward the formation of immune complexes that

trigger complement activation, which has been identified as a

correlate of risk in TB progressors and TB patients. However,

it remains to be determined which specific antibody:antigen

complexes contribute toward complement activation and their

associations with disease outcome. Finally, exposure to non-

tuberculous mycobacteria (NTM) and Mtb strains with different

virulence and expressed antigenic repertoires were discussed as

potential contributing factors toward the heterogeneous effects of

B cell and antibody responses.

2 Conclusions

A comprehensive understanding of immune recognition and

control of the Mtb-infected cell is required to accelerate vaccine

development against TB. There is no consensus on the definition

of a functional profile that infers a protective immune response
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to Mtb in humans. Furthermore, whether a functional profile is

determined by the host or driven by the Mtb antigens themselves,

or both is unresolved. These issues are relevant for vaccine

design, where immunogenic antigens are intended to induce

protective (long-lasting) immunity. However, in the absence of

a functional readout reflecting a protective profile in humans,

it is challenging to infer which antigens are ideal for inclusion

in novel vaccine candidates. We propose that investing more

research into developing correlates of protection would be greatly

beneficial and impactful. We also propose that vaccine trials

include an array of readouts, in addition to efficacy and T-

cell immunogenicity endpoints. For example, bacterial killing

to evaluate bacilli clearance by effector cells and quantifying

functional responses beyond conventional cytokines and T-cells.

The use of spatial technologies holds potential for identifying

vaccines with protective efficacy for development of clinical

correlates reflecting recognition of the infected cell. A major theme

of the workshop was to explore T-cell subsets beyond CD4 T-

cell recognition. In this regard, other T-cell subsets, such as CD8

T-cells and DURTs, require more investigation into their antigen

recognition capabilities to discover novel antigens for inclusion as

potential vaccines.

Human TB research relies on studying immune responses

in circulation by flow-based assays. While valuable, these studies

are limited by their inability to mirror the immune responses at

the site of disease. Furthermore, the knowledge of the epitopes

displayed by Mtb-infected cell is limited, thus, there is a need

for better measurements of these responses. Sampling broncho-

alveolar lavage (BAL) fluid enables studying TB immunology in

the airways and alveolar space but interactions in the airways

do not fully represent the lung parenchyma. Although sampling

human tissues is not possible in a clinical setting, postmortem

tissue sampling offers alternatives. Multi-omics approaches in

humans and NHPs hold great potential to develop tools that

accurately infer interactions and responses to bridge the gap

between the periphery, airways, and parenchyma in humans.

Finally, since well-characterized human cohorts are fundamental

to vaccine research, studies that include overlap between different

stages of infection and disease are important to capture the

spectrum of TB disease, and such studies should integrate clinical

data to capture the variability between cohorts and participants.

Additional studies should consider development of controlled

human infection models to provide insights into variability

observed in Mtb infection outcomes. Thus, the key bottlenecks

in advancing TB vaccine research are the absence of immune

correlates of protection for validation of vaccine candidates in

development and the lack of knowledge of where Mtb is located

the human host. However, opportunities exist to accelerate efforts

to develop better TB vaccines through computational approaches

that enable projection of observations in animal models into

humans and the use of multi-species approach to identify correlates

of protection.
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