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Atg8ylation as a host-protective
mechanism against
Mycobacterium tuberculosis

Vojo Deretic*

Autophagy, Inflammation, and Metabolism Center of Biochemical Research Excellence, Department of

Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM,

United States

Nearly two decades have passed since the first report on autophagy acting as a

cell-autonomous defense againstMycobacterium tuberculosis. This helped usher

a new area of researchwithin the field of host-pathogen interactions and led to the

recognition of autophagy as an immunological mechanism. Interest grew in the

fundamental mechanisms of antimicrobial autophagy and in the prophylactic and

therapeutic potential for tuberculosis. However, puzzling in vivo data have begun

to emerge in murine models of M. tuberculosis infection. The control of infection

in mice a�rmed the e�ects of certain autophagy genes, specifically ATG5, but not

of other ATGs. Recent studies with a more complete inactivation of ATG genes

now show that multiple ATG genes are indeed necessary for protection againstM.

tuberculosis. These particular ATG genes are involved in the process of membrane

atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane

stress, damage and remodeling of which canonical autophagy is one of the

multiple downstream outputs. The current developments clarify the controversies

and open new avenues for both fundamental and translational studies.
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Introduction

The most devastating infectious diseases of humans are often the result of novel

encounters between the microbe and the human host, as reflected in the recent, past and

ongoing pandemics caused by coronaviruses, HIV, infleunza, tuberculosis, and others. They

often have history of initial maladaptation between the host and the pathogen causing high

lethality, subsequently moderated by the evolution of lineages that balance transmission

with pathogenicity. The association between tuberculosis and humans is estimated to had

started ca., 50,000–96,000 years ago based on archeological estimates of the most recent

common ancestor, with evidence of continuing co-evolution of the pathogen and the host

still underway as reflected in different lineages ofMycobacterium tuberculosis (Mtb) (1) and

high mortality of tuberculosis globally (2). The present-day host pathogen interactions in

tuberculosis are complex at cell-autonomous and innate and adaptive immunity levels (3–6)

underlying the infectious cycle in human populations, including transmission (7), primary

active, latent and reactivation disease (8). The clinical presentation and disease outcomes

are governed by predisposing conditions, comorbidities, age, coinfections, population

and socioeconomic determinants, further complicated by the notorious emergence of

antibiotic resistance (8). Among the repertoire of host cell-autonomous defenses and

inflammation modulators engaged during Mtb infection (6) is the process of autophagy

(9, 10), which represents one of the outputs of a broader membrane stress response, termed

atg8ylation (11). The topic of this review article is the evolving understanding of membrane
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atg8ylation (Figure 1A), autophagy and other atg8ylation-

dependent processes (12–15) (Figure 1B), with a focus on their

anti-inflammatory and antimicrobial effects during Mtb infection

(Figure 2) and tuberculosis pathogenesis.

Autophagy and Mtb – The early
observations

Canonical autophagy (15) has been implicated in defense

againstMtb (9, 16) contemporaneously with the initial recognition

of the broader roles of autophagy in health and disease

(17–19) which includes its immune functions (20–24). In

principle, autophagy is a homeostatic process that cleanses

host cell cytoplasm, turns over long lived proteins and other

macromolecules, removes defunct or surplus organelles (15),

adjusts cellular metabolic needs (10), and eliminates intracellular

microbes andmicrobial or host products causing inflammation (24,

25). The simplest rendition of autophagy as immune mechanism

is that autophagy acts as a cell-autonomous defense (20, 24),

whereby it seeks out and eliminates pathogens that manage to

penetrate cellular interiors. Autophagy also has a much broader

role in innate and adaptive immunity (21, 23, 24). It is of particular

significance as a versatile process that suppresses inflammation by

removing microbial products collectively referred to as pathogen

associated molecular patterns (PAMPs) and endogenous irritants

collectively referred to as damage associated molecular patterns

(DAMP) or acting upon the signaling platforms that detect PAMPs

and DAMPs, the so-called PRRs or pattern recognition receptors

(24, 25).

Autophagy

The mechanism of autophagosome generation in mammalian

cells is far more complex than in yeast, the model organism

that served to genetically unlock the initial aspects of the

canonical autophagy pathway (26). Recently, major strides have

been made toward understanding molecular mechanisms driving

canonical autophagic membrane formation in mammalian cells

via prophagophore and phagophore stages (27–32), phagophore

reshaping (33, 34) and expansion via lipid transfer (35–37), cargo

capture (38), closure of the nascent phagosomes (39–42), and their

fusion with endolysosomal organelles where the cargo is degraded

as a primary path to elimination or recycling (43) or alternatively

secreted in a process termed secretory autophagy (44).

Atg8ylation

Membrane atg8ylation, also known as mATG8 lipidation,

is the process of covalent modification of various membranes

by mammalian ATG8 proteins (mATG8s) that takes place as a

response to membrane stress, damage, and remodeling signals

(Figure 1A) (11). This process is best understood by analogy to

ubiquitylation: atg8ylation is to membranes what ubiquitylation

is to proteins (11). The principal protagonists of atg8ylation and

ubiqutylation, mATG8s and ubiquitin, are homologous, and the

conjugation cascades that activate them and result in membrane

atg8ylation or protein ubiquitylation are very similar involving

ATP, E1, E2 and E3 ligases (45). The specific factors leading to

atg8ylation include two enzymatic cascades with ATG12-ATG5

and mATG8-phosphatidylethanolamine (PE) conjugates as their

end products. The former protein-protein conjugate combines

with additional proteins to form E3 ligases (46–50) to guide the

latter protein-lipid conjugate resulting in atg8ylation of specific

membrane domains.

The conjugation cascade follows typical ubiqitylation-like steps

(Figure 1A). After proteolytic exposure of the Gly residue at the

C-termini, mATG8s are activated by ATP, and transferred to

ATG7 (E1) to form mATG8-ATG7 conjugate, then transferred to

ATG3 (E2) to form mATG8-ATG3 conjugate and finally to PE in

membranes guided by the E3 enzymes. The known E3 enzymes

consist of the ATG12-ATG5 conjugate associated with ATG16L1

(46) or (thus far) TECPR1 (47–50). The ATG12-ATG5 conjugate

component of the atg8ylation E3 ligases is generated in its own

cascade (46). Of note, ATG12 is, like mATG8s, a ubiquitin-like

molecule. It is activated by ATP, conjugated to ATG7 (E1), then

to ATG10 (E2) and finally to ATG5, forming the ATG12-ATG5

conjugate which then noncovalently associates with ATG16L1 (46)

or TECPR1 (48–50) to form E3 ligases directing atg8ylation of

different membranes, including autophagosomal and others (11).

In preparation for the next step, an ATG12-ATG5 containing

E3 ligase activates its substrate mATG8-ATG3 by exposing the

thioester bond of the ATG8-G-C-ATG3 intermediate for transfer

of the ATG8 to the membrane via formation of an amide bond with

the ethanolamine headgroup of the PE phospholipid (46). There

are additional branches of these conjugation cascades (Figure 1A),

whereby ATG12 can make a non-canonical sidestep conjugate with

ATG3 (ATG12-ATG3) (51, 52) which is enhanced in the absence of

ATG5 (53).

The specialization of atg8ylation for membranes is ensured by

the two extra (relative to ubiquitin) α-helices at the N-terminus of

mATG8s with concealed affinities for membranes actuated during

atg8ylation (54) and intrinsic membrane affinities of the atg8ylation

ligase components ATG3 (55, 56) and ATG16L1 (57, 58). During

canonical autophagy, WIPI2, an effector of phosphatidylinositol-3-

phosphate (PI3P, a stress-signaling phosphoinositide phospholipid)

and a known interactor of ATG16L1 (59–61), helps dock ATG12-

ATG5/ATG16L1 and ATG3 to the PI3P-marked membranes to

present activated mATG8s for conjugation to the phospholipid PE

embedded within the target membrane (58, 62). It is likely that

membrane atg8ylation processes other than canonical autophagy

may employ yet to be identified functional equivalents of ATG16L1

and WIPI2, as already exemplified with TECPR1 (48–50), to guide

atg8ylation on other non-autophagic membranes. Finally, there are

exceptions to a strict separation between membrane atg8ylation

and protein ubiquitylation as evidenced by crossovers such as

atg8ylation of proteins (63–66) and ubiquitylation of membranes

(67, 68).

Manifestations of membrane
atg8ylation

There are six principal mATG8s: LC3A, LC3B, LC3C,

GABARAP, GABARAPL1 and GABARAPL2 (69–71). The

yeast’s sole Atg8 has served to delineate the posttranslational
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FIGURE 1

Membrane atg8ylation. (A) Membrane atg8ylation process. Membrane atg8ylation is a pathway of covalent membrane modification by ubiquitin-like

proteins of the mammalian ATG8 family (LC3A, LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2). Membrane atg8ylation occurs in response to

membrane stress, damage and remodeling signals and participates in various atg8ylation-dependent processes including canonical autophagy as

well as a number of non-canonical and non-autophagy phenomena [listed in (B)]. The cycle of membrane atg8ylation and de-atg8ylation resembles

the process of protein ubiquitylation and deubiquitylation. It involves activation by ATP of the ATG8 C-terminal Gly residue (once it is exposed

following proteolytic processing by ATG4 peptidases) to make a conjugate with E1 enzyme ATG7 via a Gly-Cys high energy thioester bond. ATG8s

are then transferred to the E2 enzyme ATG3, which itself has intrinsic a�nity for membranes. The final step is the transfer of ATG8s from the

ATG8-ATG3 conjugates to form a covalent amide bond with the headgroups of phospholipids such as PE (phosphatidylethanolamine) and

alternatively PS (phosphatidylserine). This final step is catalyzed by E3 ligases, which include as a catalytic component the ATG12-ATG5 covalent

protein conjugate formed in a separate cycle. ATG12-ATG5 conjugation starts with activation of ATG12, which is another ubiquitin-like molecule and

its sequential transfer to ATG7 and ATG10 before making an isopeptide bond between the C-terminal Gly of ATG12 and Lys (K130) of ATG5. The

ATG12-ATG5 conjugate binds to a membrane binding component, such as ATG16L1 or TECPR1, to form the E3 holocomplexes

(ATG12-ATG5/ATG16L1 or ATG12-ATG5/TECPR1). ATG16L1 or TACPR1 serve to bring to specific membrane sites the ATG12-ATG5 conjugate where

it in a spatially restricted manner catalyzes the transfer of ATG8s from the ATG8-ATG3 intermediate to the phospholipids (PE or PS). ATG16L1 recruits

the E3 holoenzyme ATG12-ATG5/ATG16L1 to phosphatidylinositol-3-P (PI3P)-marked membrane sites via its binding to WIPI2 protein which in turn

recognizes PI3P (omitted from the drawing for clarity). TECPR1 performs identical function by recruiting the E3 holoenzyme ATG12-ATG5/TECPR1

to other membranes tagged by sphingomyelin marks, a situation that can occur on the cytofacial side of endomembranes upon stress or damage. It

is postulated here that there are other membrane binding components equivalent to ATG16L1 or TECPR1 that can guide ATG12-ATG5 to other

signals on membranes and perform atg8ylation in response to a variety of membrane damage, stress or remodeling cues. The downstream e�ector

processes resulting from atg8ylation of membranes are listed in panel B, whereas the relationship to M. tuberculosis host-pathogen interactions

including protection of the host are illustrated in the schematic in Figure 2. (B) Membrane atg8ylation outputs and downstream processes. Canonical

autophagy is a process of formation of autophagosomes in the cytoplasm which can capture and remove by digestion, after their fusion with

lysosomal organelles, exogenous or endogenous irritants ranging from microbes or their products to defunct organelles, innate immunity signaling

platforms, protein aggregates and danger-associated molecular patterns. At times of starvation, canonical autophagy also plays nutritional role, for

example by digesting cytosolic macromolecules and replenishing amino acids and nucleoside pools for biosynthetic needs. Secretory autophagy is

an outcome of various canonical and non-canonical autophagy-related processes that lead to exocytosis and release of cargo to the extracellular

milieu rather than digestion in lysosomal organelles. Atg8ylation also participates in membrane repair and other adjustments following damage. A

wide range of atg8ylation processes on cellular endomembranes (delimiting membranes of various organelles) includes: LAP (LC3-associated

phagocytosis), LANDO (LC3-associated endocytosis), LAM (LC3-associated micropinocytosis), CASM (conjugation of ATG8 to single membranes),

and VAIL (V-ATPase-ATG16L1-induced LC3 lipidation) (12–14). Of note, atg8ylation requires only the cytofacial monolayer of phospholipids and

does not need “single membrane” which by definition consists of a lipid bilayer. This is well-illustrated by atg8ylation of lipid droplets (LD), which are

neutral lipid storage organelles delimited by a monolayer of phospholipids that separates the LD core consisting of neutral lipids such as triglycerides

and choleteryl esters from the aqueous phase of the cytosol. Note that canonical autophagy, secretory autophagy, LAP, LD stores, V-ATPase, and

membrane repair have all been implicated in host-pathogen interactions during M. tuberculosis phagocytosis, cytosol invasion, and infection of and

replication in macrophages.

modification at the C-terminus of ATG8s with the lipid

phosphatidylethanolamine (PE) (72, 73), which can also occur with

phosphatidylserine (PS) (74). In mammalian cells, this process,

referred to as “LC3 lipidation” and LC3 puncta formation (46, 75),

has been widely considered as being synonymous with autophagy

and thus has been somewhat indiscriminately used to report

observations and measurements of canonical autophagy (76).

Whereas LC3B continues to be used to monitor autophagy, it

has become evident that it can be present on membranes other

than autophagosomes (77). Thus far, mammalian membranes

that have been reported to be atg8ylated (covalently modified

by mATG8s, typically reported as LC3B but not limited to this

mATG8) include: conventional phagosomes harboring pathogens

or microbial products (78–81), various types of stressed or

signaling endosomal compartments (12–14, 79, 82), lysosomes

(48, 66, 83–86), exocytic compartments releasing exosomes

(52, 87), ER during its piecemeal ESCRT-dependent lysosomal

degradation (88), and lipid droplets (89). Of note, the delimiting

membrane of lipid droplets modified by LC3B is not even a full

lipid bilayer but a monolayer of phospholipids (89). Thus, the

repertoire of cellular membranes that undergo atg8ylation is not

limited to double or not even to single membranes. Apparently,

all that is needed as a substrate is a PE- or PS-containing

phospholipid hemilayer.
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Preceding the unified model for atg8ylation (11, 45), the

phenomena dependent on atg8ylation have been historically

recognized as an assortment of ‘non-canonical autophagy’

processes (77) reflected in various terms describing them

(Figure 1B): LAP (LC3-associated phagocytosis) (78),

LANDO (LC3-associated endocytosis) (90), LC3-associated

micropinocytosis (LAM) (82), CASM (conjugation of ATG8

to single membranes) (86, 91), and “vATPase-ATG16L1

axis xenophagy” (80) that later received an acronym VAIL

(V-ATPase-ATG16L1-induced LC3 lipidation) (12–14).

Despite a growing plethora of “non-canonical” processes and

phenomena that have no autophagic functions and yet engage

mATG8s (11, 77), atg8ylation remains an important aspect of

canonical autophagy (Figure 2) (11). Although the initial stages of

autophagy such as crescent phagophores can form and close in

cells lacking all principal mATG8s (42, 65, 92) or in cells defective

for mATG8 lipidation (93), their size (92) and contents (93) as

well as quality (42) are significantly affected. Among the known

functions of the atg8ylation of the autophagosomal membranes

are membrane remodeling during autophagosome biogenesis (54,

56, 94–96), its kinetic acceleration (97), the enhancement of

selective cargo sequestration into autophagosomes (38), as well

as autophagosome-lysosome fusion (98). Recent studies have

identified a new role of mATG8s in ESCRT-dependent sealing of

autophagic membranes and their maintenance in an impervious

state (42). In the absence of mATG8s, the autophagic membrane

are permeable to solutes and small macromolecules, arrested

at the stage termed amphisome (a hybrid organelles between

autophagosomes and multivesicular body endosomes) and cannot

progress to autolysosomes (42).

Atg8ylation, autophagy and Mtb

Macrophages are the key cell type where Mtb normally

replicates and where many aspects of critical host-pathogen

interactions occur (3, 99–104). The early seminal studies (9,

16, 105) have shown that induction of autophagy by starvation

or IFN-γ, measured by methods available prior to the recent

differentiation between atg8ylation and autophagy (11), can restrict

virulent Mtb in human and mouse macrophages. A number of

subsequent studies, carried out either in vitro with macrophages

and neutrophils or in murine models of tuberculosis, are consistent

with the notion that atg8ylation or autophagy (or both) are involved

in control of Mtb pathogenesis (Figure 2) (53, 106–124). The

in vivo effects of autophagy on bacterial burden in the mouse

models ofMtb infection (110, 111) have been reported as negligible

(120, 121) or fluctuating (122) depending on the experimental

conditions. In vivo, any effects directly on bacterial growth (110)

are overshadowed by the dominant anti-inflammatory effects of

autophagy and atg8ylation as shown in one of the first in vivo

reports (111) and re-affirmed in subsequent studies (120, 121)

(Figure 2). Cell death pathways triggered in infected macrophages

(100, 125), modulated by atg8ylation (111, 122, 123), can be

proinflammatory or non-inflammatory and may contribute to the

inflammation-driven outcomes in vivo.

The increased inflammation, persistent neutrophilic

infiltration, excessive IL-17 production and Th17 polarization

FIGURE 2

Atg8ylation in control of M. tuberculosis pathogenesis. The

atg8ylation process and its outputs, as detailed in Figure 1 and this

figure, and how it a�ects host-pathogen interactions in

tuberculosis. Both canonical and non-canonical outputs of

atg8ylation a�ord protection against extensive cell-autonomous

and tissue inflammation, pro-inflammatory cell death, necrosis, and

excessive tissue damage. These processes also contribute to control

of intracellular bacteria; note that inflammation and cell death

complicate interpretations of the in vivo e�ects on bacterial

elimination vs. intracellular bacterial replication. The significance of

these processes during tuberculosis infection is supported by the

existence of a plethora of M. tuberculosis virulence factors that

counter atg8ylation outputs, as reviewed elsewhere. All of the above

processes, when functional and stimulated by appropriately

sequenced immunological responses while avoiding excess or

prolonged neutrophilic and other inflammation, contribute to

protection of the host reducing tissue damage during M.

tuberculosis infection.

have been initially described in a mouse model of Mtb infection

with murine Atg5 inactivated specifically in myeloid cells (Atg5fl/fl

LysM-Cre mice) (111). A number of studies (126) including those

in mice (127) and human populations (128, 129) have shown that

neutrophils may contribute to protection early in infection with

Mtb (130–132) but when they linger for prolonged periods of

time, i.e., when Th17 does not mature into Th1 response, they can

contribute to tuberculosis pathogenesis (133–138). A study with

depletion of neutrophils (120) affirmed the prior findings (111) and

additionally demonstrated their key role in causing high mortality

ofMtb-infected Atg5fl/fl LysM-Cremice (120).

Revisiting the role of autophagy in
control of Mtb

The 2004 report that autophagy is a new cell-autonomous

defense againstMtb (9) was initially validated in 2012 in vivo by two

groups using mouse models ofMtb respiratory infection (110, 111).

However, these studies used conditional inactivation of only one

Atg gene, i.e., Atg5 (Atg5fl/fl LysM-Cremice). A role for autophagy

as a pathway was subsequently challenged in 2015 (120). Whereas,

the same report confirmed that Atg5fl/fl LysM-Cre mice were

more susceptible to Mtb, the authors reported that inactivating

Frontiers in Tuberculosis 04 frontiersin.org

https://doi.org/10.3389/ftubr.2023.1275882
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org


Deretic 10.3389/ftubr.2023.1275882

additional autophagy genes did not increase susceptibility to Mtb

(120). Worth mentioning is that these were short term studies of

up to 80 days post-infection and the efficacy of inactivation of

other autophagy genes was not fully validated (120). Nevertheless,

this report undercut the burgeoning interest in autophagy as a

defense against Mtb (139). However, a newer well-designed study

demonstrated that dismissal of autophagy was premature and that

a more thorough inactivation of additional canonical autophagy

genes did confer protection against tuberculosis (122). Shortly

afterwards, the same group that initially dismissed autophagy

published a revised conclusion (121) that autophagy does matter

and that autophagy prevents excessive proinflammatory responses

and neutrophil recruitment duringMtb infection.

The trajectory of this line of investigation by different groups

shows that details do matter and that interpretations of the findings

must be scrutinized before making emphatic conclusions. There

were both nuanced and major differences in experimental setups

of the above studies in murine models of Mtb infection deserving

further dissection and discussion. The published studies used

either low dose (110, 111, 120) or in addition high dose aerosol

exposure (111), and the investigators tested chronic (110, 111)

or acute (111, 120) disease. Typically, chronic infection initiated

by low dose aerosol exposure in mice requires observations of

up to 200 days post-infection, dependent on the effect size and

penetrance of genetic alterations (53, 110, 122, 140). Acute effects

are either observed very early in infection with a low dose (53, 110,

111, 120) or require higher doses of aerosol infection (140–142).

The initial analysis (120) of multiple Atg genes with low initial

lung deposition of Mtb was however limited to short-term, acute

disease observations ending at 80 days post-infection. Whereas

that study confirmed that Atg5fl/fl LysM-Cremice were particularly

susceptible to Mtb, i.e., displayed high mortality early on even

during low dose infection due to the strength of the effect of

Atg5, mice with conditional knockouts in other autophagy genes

tested, including Atg14, Ulk1/2 (considered to be the mouse Atg1

orthologs), and LC3-lipidation/atg8ylation enzymatic components

Atg3, Atg7, Atg12, and Atg16L1, did not die within the 80 days of

reported observation following Mtb infection (120). A 2023 study

(122) revisited this issue by monitoring mice over a longer, more

typical time course, and reported that defects in other autophagy

genes, albeit testing only those carrying out atg8ylation (124),

rendered mice susceptible to Mtb. In this well-executed study, the

authors also considered the efficacy of conditional inactivation of

the floxed genes (122). They enhanced Cre-driven LoxP-excisions

by increasing Cre recombinase gene dosage in mice by breading

animals to be homozygous for LysM-Cre (LysM-Cre+/+) instead of

carrying only one LysM-Cre allele (LysM-Cre+/−) used in previous

studies (110, 111, 120). This resulted in better inactivation of

Atg16L1 and Atg7 and in increased susceptibility of Atg16L1fl/fl

LysM-Cre+/+ and Atg7fl/fl LysM-Cre+/+ to Mtb compared to

their Cre− littermates. Even the mice carrying only one LysM-Cre

allele (LysM-Cre+/− Atg16L1fl/fl) displayed increased mortality

when infected with Mtb, illustrating the fact that these effects were

missed in the previous study limited by shorter duration (120). The

Golovkine et al. (122) study reported dynamic changes in bacterial

burden in mice with properly Cre-excised floxed Atg7 and Atg16L1

genes, characterized by an early lung-specific increase. Regardless

of the details on bacterial burden, which fluctuate, all observations

agree on increased lesions and neutrophilic infiltration (110, 111,

120) and have been recapitulated in LysM-Cre+/+ Atg7fl/fl and

LysM-Cre+/+ Atg16L1Fl/Fl mice (122).

Collectively, the above studies indicate that multiple autophagy

genes are needed for disease control in the mouse model of

tuberculosis (Figure 2). They also confirm the well-established

notion that in vivo autophagy primarily manifests as an anti-

inflammatory and tissue-sparing process (21, 24, 25) as reported

in one of the two initial studies with Mtb infection in mice (111).

Ex vivo, autophagy can undoubtedly control multiple intracellular

microbes in infected cells includingMtb and other pathogens (143–

149). However, the in vivo data with Mtb by multiple groups

indicate that changes in bacterial burden in infected murine lungs

are minor relative to the anti-inflammatory power of autophagy

(111), and are not detected at all (121, 150) or fluctuating (122). It

is easy to reconcile these apparent discrepancies as fluctuations or

minor changes in bacillary loads in the lungs given that autophagy

and atg8ylation control inflammation whereas inflammation affects

antimicrobial action (Figure 2; middle box) (24), thus confounding

bacillary load measurements making data highly dependent on

timing and phase of infection. Furthermore as a contributor to

modulation of inflammatory responses, in the absence of autophagy

(or atg8ylation), cell death occurs more readily thus eliminating

cells in which Mtb would have an opportunity to replicate. This is

further underscored by the findings that absence of autophagy or

atg8ylation increases inflammatory responses to microbes (25) and

that this paradoxically and artificially protects the host in certain

mouse models of infection (151), e.g., with Listeria monocytogenes

(152), herpesviruses (153), and influenza (154, 155).

Of further import is the fact that the field of autophagy has in

the meantime evolved in major ways, and it is necessary to view

old and new studies in the broader context of canonical and non-

canonical processes. Whereas, these processes are still being linked

to the catchall term “autophagy,” they do represent a collection

of much wider and disparate membrane stress and remodeling

responses (11, 77).

Separating atg8ylation and autophagy
e�ects on Mtb

Mirroring the growth in appreciation of broader biological

roles of atg8ylation, of which canonical autophagy is one of

the outputs, are the more recent studies with Mtb, attempting

to differentiate between canonical autophagy and atg8ylation in

control of Mtb, both in vitro and in vivo. This is a difficult task, as

atg8ylation and canonical autophagy are intertwined via the protein

conjugation systems (Figure 1A). Furthermore, the full spectrum

and ramifications of diverse processes that are autophagy-unrelated

or only partially overlapping with autophagy (Figure 1B) are not

completely known at this point in time (11, 77).

Interpretation of the available published information is

confounded by the emerging relationships and it is difficult

to deconvolute atg8ylation-dependent mechanisms capable of

controlling Mtb. As discussed above, atg8ylation participates in a

variety of membrane stress and remodeling responses (11), one

of which is LAP (77). Using an Mtb mutant in a gene called

CpsA (Rv3484) which is susceptible to LAP, an apparent role
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in control of Mtb for LAP has been unmasked (117). This was

based on the effects of inactivating/downregulating in murine

macrophages genes selectively implicated in LAP (Rubcn) or shared

with canonical autophagy (atg8ylation factors Atg5, Atg7 and

Atg16L1 and Beclin 1), but not in others that are considered specific

for canonical autophagy (Ulk1 and Atg14). The susceptibility was

observed only during innate immunity responses, as IFN-γ and

adaptive immunity abrogated LAP effects both ex and in vivo (117).

Of note IFN-γ induces classical autophagy (9, 105, 115), so it

is possible that engagement of atg8ylation machinery in LAP is

competing with canonical autophagy for the available atg8ylation

resources, as in the case of CASM competing with other atg8ylation

processes (86, 156). CpsA inhibits NOX2 (117) implicated in

RUBCN (Rubicon)-dependent LAP (157). However, complicating

the issues, CasA also binds NDP52 and TAX1BP1 (117, 158),

two classical receptors involved in selective canonical autophagy

of mitochondria and microbes (149). It is also not known how

CpsA enters the host cytosol and could this be dependent on

permeabilization of phagosomal membranes by ESX-1 (159), a

process that induces canonical autophagy (110). In a SCID mouse

model of aerosol infection the animals were susceptible to Mtb

H37Rv but not to its cpsA mutant in experiments carried out up

to 120 days post-infection (117). It is important to note that while

these studies reveal a hidden role for LAP, this role remains masked

unless cpsA is inactivated and is thus probably not dominant during

infection with wild type virulentMtb.

Another recent study addressed the effects of LAP specifically

on neutrophilic inflammation in the murine model of tuberculosis

(121). Whereas Atg16L1fl/fl LysM-Cre mice infected with Mtb

Erdman showed neutrophilic infiltration akin to the Atg5fl/fl LysM-

Cre mice, Rubcn−/− mice did not. Since Rubcn (Rubicon) is

key to the atg8ylation process known as LAP (77), based on the

above study and its chosen experimental parameters this specific

manifestation (LAP) of atg8ylation was deemed not to be involved

(121). However, the study (121) did not test cpsAmutant, and thus

the role of LAP might have remained masked in these experiments.

Regardless, the identification of CasA as an inhibitor of LAP

and the unmasking of the role of LAP (117) (or perhaps other

atg8ylation processes) in Mtb pathogenesis represent a major step

in deconvoluting different atg8ylation outputs in the context of

Mtb infection.

In yet another study with human iPSC-derived macrophages

(123), the authors aimed to assess the relative contributions of

LAP and canonical autophagy in control of Mtb. For this, they

(123) compared a strain of Mtb (cpsA mutant) that cannot inhibit

LAP with an Mtb strain (esx mutant) that is assumed not to

elicit canonical autophagy. The latter assumption is based on the

notion that esx mutant cannot permeabilize the membrane of

phagosomes harboringMtb, an event necessary to induce canonical

autophagy to counterMtb’s access to the host cell cytosol (110). The

loss of ATG7 (which blocks atg8ylation affecting both canonical

autophagy and non-canonical outputs including LAP) permitted

growth of wild type H37Rv but not of its esx and cpsA mutants.

This affirmed the notion that atg8ylation matters for control of

Mtb ex vivo but could not discern between canonical autophagy

and other non-canonical manifestations of atg8ylation. A loss in

iPSC-derived macrophages of ATG14, believed to be specific for

canonical autophagy, permitted growth of wild type H37Rv Mtb

(123), which can be interpreted as an affirmation of canonical

autophagy’s role in control of Mtb in human macrophages (9).

Loss of ATG14 also promoted replication of the esx mutant

(123), contrary to the expectation that M. tuberculosis incapable

of escaping the phagosome would not be able to induce canonical

autophagy (110). This led investigators to propose a further

branching of processes controlled by ATGs, whereby ATG14 may

affect phagosomal maturation (123) in addition to the conventional

role in canonical autophagy.

Unique e�ects of atg5 on Mtb extend
beyond atg8ylation

The mystery of the uniquely penetrant effects of Atg5 on

susceptibility to Mtb in vivo has recently been partially solved

(53). As a reminder, even the latest analyses with a more complete

excision of floxed Atg alleles in mice and standard long-term

post-infection observations (53, 122) confirmed the uniqueness of

the Atg5 phenotype (110, 111, 120). The Atg5fl/fl LysM-Cre+/+

mice and even Atg5fl/fl LysM-Cre+/− mice infected with Mtb died

much faster compared to Atg16L1fl/fl LysM-Cre+/+ and Atg7fl/fl

LysM-Cre+/+ mice (122). In another independent study, Atg5fl/fl

LysM-Cre+/− mice succumbed much faster to Mtb than Atg7fl/fl

LysM-Cre+/− mice (53). Hence, Atg5 has additional roles, past

the canonical autophagy and even past the atg8ylation processes

(53, 124).

Mechanistically, ATG5 affects exocytosis through multiple

mechanisms underlying excessive neutrophil activation duringMtb

infection (53). In the absence of ATG5, instead of the canonical

ATG12-ATG5 conjugate, ATG12 engages in the formation of the

non-canonical ATG12-ATG3 conjugate (51) (Figure 1A) which in

turn binds the ESCRT protein ALIX (160). This has multiple

effects unrelated to autophagy or atg8ylation and is based on

ALIX’s involvement in maintaining lysosomal membranes intact

thus keeping lysosomes in good repair (142, 161, 162). Stress in

endolysosomal compartments (66, 140, 142, 159, 163–166) and

other membranes (167, 168), which occurs during Mtb infection,

is exacerbated for lysosomes in ATG5 knockout cells since ALIX

is sequestered away by ATG12-ATG3 for the exocytic processes

instead of being available for lysosomal repair (53). The pools of

ALIX, redirected in the absence of ATG5, augment exocytic events

leading to excessive neutrophilic activation and degranulation (53).

Thus, the excessive Mtb pathogenesis encountered in Atg5fl/fl

LysM-Cre+/− mice (111) is caused by hyperactive exocytosis and

degranulation by neutrophils further compounded by the inability

to maintain functional lysosomes (53).

Discussion

The focus on canonical autophagy as a potential anti-Mtb

mechanism has now evolved into a new stage following the

improved understanding of the processes controlled by the ATG

genes. It has become evident that canonical autophagy is merely a

subset of a much broader cellular stress response termedmembrane

atg8ylation. Atg8ylation pathways that do not engage all parts

of the canonical autophagy pathway have many manifestations
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affecting membranes of various intracellular compartments. This

includes variations known under the acronyms LAP, LANDO,

LAM, CASM, and VAIL. There is also a ‘sidestep’ atypical ATG12-

ATG3 conjugation which is enhanced in the absence of ATG5.

This atypical ATG conjugate promotes exocytic events, excessive

activation of neutrophils and their degranulation, as well as ties

up the pools of available ESCRT proteins diverting them away

from repair of cellular endomembranes. Several of these processes

have already been shown to protect the host against Mtb under

certain conditions. The improved understanding of atg8ylation

and its branching outputs, of which autophagy is one of the

best studied but not the only one, offers a new conceptual

framework and beckons for cogent repositioning of the field while

opening prospects for reformulated fundamental, preclinical, and

clinical studies.
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