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The role of protists, nematodes
and mites as natural control
agents of sandfly populations
Slavica Vaselek*

Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
The Phlebotomine sandflies (Diptera, Psychodidae) are hematophagous insects

of immense medical and veterinary importance. Since World War II, the intensive

use of chemicals to suppress and control sandfly populations resulted in

development of insecticide resistance and resurgence among the sandfly

populations worldwide. The use of chemicals also negatively impacted diverse

non-target organisms, overall agroecosystem, crop productivity, human health

etc. Due to the multiple adverse effects of the chemical compounds, more eco-

friendly approaches have been evaluated. The application of entomopathogenic

organisms such as nematodes, protists or mites as biocontrol agents has been

vastly explored and applied in the field of forestry and agriculture. In comparison,

only a little attention was given to blood-sucking insects such as sandflies. This

review summarizes the findings related to the detection and use of

entomopathogenic protists, nematodes, and mites in the field of biological

control of sandflies. It highlights the potential of these organisms to be further

explored and used for biocontrol of immature and adult stages of sandflies.
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Introduction

The Phlebotomine sandflies (Diptera, Psychodidae) are hematophagous insects of

immense medical and veterinary importance. There are approximately 1000 sandfly

species, among which 98 are confirmed and/or suspected vectors of pathogens infectious

to the humans and animals (1). Sandflies can transmit bacteria from the genus Bartonella

(2), various viruses (Rhabdoviridae, Peribunyaviridae, Flaviviridae, Reoviridae, and

Phenuiviridae) (3), and most importantly protozoan parasites from genus Leishmania -

causative agent of leishmaniasis. Leishmaniasis can manifest with plethora of symptoms,

being endemic in more than 100 countries worldwide, with more than 1 million reported

cases and 70.000 deaths annually (4).

Due to the complexity of epidemiological and biological conditions associated with

leishmaniasis transmission (5), the effective leishmaniasis control requires application of well-

planned control strategies addressing multiple aspects such as effective diagnosis and
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treatment of the disease, study of vectors and reservoirs, together with

the development of new approaches for vector management (6).

Combating leishmaniasis proved to be extremely challenging

especially in the field of sandfly vector management, which among

others requires the continuous vector surveillance and

implementation of different control strategies that are mostly

based on insecticide use (7). Chemical strategies for the control of

sandflies have gained massive popularity due to their rapid and

potent effect and have been the main go to approach since the

World War II (8). The emergence of sandfly insecticide resistance,

as well as the immense accumulating negative effect of these

chemicals on the environment and non-targeted organisms,

significantly crippled the use of chemicals as the ultimate solution

for sandfly and leishmaniasis control (8). These limitations strongly

point toward the urgent need for more effective and novel methods

that will have minimal environmental effects.

Among the environmentally friendly insect vector control

strategies, biocontrol approaches have received increasing

attention and popularity over the past 20 years. Biocontrol

explores the potential of (micro)organisms to control the insect

vector populations, and can be based on the predation, parasitism

or pathobiological relationship between the biological control

organism and the targeted insect hosts. As a result, numerous

organisms were incriminated, and new strategies including the

use of entomopathogens have emerged.

Entomopathogens are organisms that cause disease and/or

death of insects (9). Several entomopathogens have been

described in sandflies, including viruses, bacteria, protozoa, fungi,

nematodes, and mites. Some of them are capable of killing the insect

host even within a few hours, while others impact their longevity,

fecundity and/or reproduction potential. The studies of

entomopathogens as biological weapons for the control of sandfly

population commenced early in the 19th century. These studies were

very attractive, and a large number of publications have been

produced targeting the identification of different pathogens.

Unfortunately, under the pressure of commercial insecticides

development, and their great success in controlling the sandfly

populations (8), the exploration and further exploitation of

entomopathogens as biological agents in sandfly control was

neglected. The newly gained interest in the use of biological

agents for the control of sandflies emerged after the encouraging

results from the experiments involving Wolbachia in mosquitoes,

paratransgenic approach for the control of Trypanosoma cruzi in

triatomine bugs and development of sterile tsetse flies (10–12).

Compared to the other insects with medical and veterinary

importance (or other insect pests), where investigations of

biological control agents/approaches have been tested in practice

and showed very promising results (11–13), the field of biological

control of sandflies is still well behind. The majority of studies

related to the biological control of sandflies and diseases they

transmit were focused on the use of bacteria and fungi. The

bacteria have been vastly explored in their role as pathogens (14),

larvicides (15), for the development of paratransgenic approach

(16) etc., while fungi were mainly evaluated as entomopathogens

(17). In comparison to the massive amount of data generated in

relation to the bacteria and fungi, other organisms such as protists,
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nematodes and mites have been neglected. This review focuses on

summarizing the impact, importance and potential of protists,

nematodes, and mites as agents for the biological control of

sandflies, and ultimately leishmaniasis.
Literature search strategy and
publication selection

In total five databases including Science Direct, Scopus,

PubMed, Google Scholar and Web of Science were screened for

the presence of publications related to the protists, nematodes, and

mites in association to different sandfly species. An intensive

literature search was carried out using general terms (in English

language) such as “mite”, “nematode”, and “protist” in combination

with terms “sandfly”, “sand fly”, “Phlebotomine” or general sandfly

genus/species names. As the initial search showed predominance of

very old publications dating back to 1930-ies, that were written in

native language of the corresponding author and available online

only in the form of title record; the search was refined to include

publications available at least in an abstract form regardless of the

written language. After reading all collected publications, final

filtering was performed and all studies that showed duplicate,

insufficient, or not relevant data were removed.
Entomopathogenic nematodes

Nematodes are microscopic, non-segmented, elongated,

colorless roundworms without appendages. Entomopathogenic

nematode parasitize insects and can cause disease within an insect

resulting in its death (18). Entomopathogenic nematodes described

so far belong to more than 40 families, among which

Steinernematidae and Heterorhabditidae have received the most

attention. Members of these two families have many attributes of

effective biological control agents, and have been utilized as

classical, conservational, and augmentative biological control

agents (19).

Entomopathogenic nematodes are highly diverse, complex, and

specialized, and they work in tandem with their symbiont bacteria

in causing rapid mortality within the insect host population. The life

cycle of most nematodes includes an egg, four juvenile stages, and

an adult stage. The third juvenile stage is the infective, or dauer

stage, and is the only free-living stage. Infective juveniles locate,

attack, and infect an insect host. Infective juvenile nematodes

penetrate the insect’s body cavity through natural body openings,

or by breaking hosts cuticle with the dorsal tooth/hook. Once inside

the hosts body, the infective juveniles release bacteria that live

symbiotically within their gut. The nematode-bacterium

relationship is highly specific, and within Steinernematids only

Xenorhabdus sp. bacteria co-exist, while within Heterorhabditids

only Photorhabdus bacteria co-exist (20). Once released into the

host, the bacteria multiply quickly and cause the host to die

generally within 24 to 48 hours. Entomopathogenic nematodes

feed on bacteria that they released, as well as on the insect host

tissue. After nematodes mature, they produce a high number of new
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juveniles that may undergo several life cycles within a single insect

host . For the representatives of Steinernematids and

Heterorhabditids it takes approximately 37 days to complete a life

cycle inside an insect from egg to egg. Emergence of dauers from the

host requires about 6 to 11 days for Seinernematids and 12 to 14

days for Heterorhabditids (18). When the insect host has been

completely consumed, the infective juveniles (containing symbiotic

bacteria), emerge from the empty shell of the host and begin the

search for a new host.

Entomopathogenic nematodes are effective biocontrol

organisms that have potential to infect and kill soil-dwelling

larvae as well as above-ground adult forms of sandflies. The

detrimental effect of nematodes such as Tricephalobus steineri in

combination with Procephalobus sp. has been confirmed under

laboratory conditions on Phlebotomus papatasi (21). This nematode

declined colony productivity within 6 months from over 10.000 flies

per week to less than 100 per week. Nematoda Anandranema

phlebotophaga is a single auto generation nematode that is

causing infertility in Lutzomyia longipalpis (22). Nematodes

belonging to the genus Anandranema were also discovered in

Lutzomyia fischeri but their effect on the insect was not evaluated

(23). Didilia ooglypta was found to be a parasitic nematode of P.

papatasi and P. sergenti (24). Further studies revealed that this

nematode prolonged or stopped the development of larvae, reduced

the longevity of adult flies, hindered the rotation of male external

genitalia preventing them to mate, while adult females refused

opportunities to engorge on blood (25). The nematode from the

family Steinernematidae negatively affected the survival and blood

feeding of Lu. longipalpis females (26). On the other hand, the

presence of Apbelenchoides bicaudatus and Coenorhabditis sp.

nematodes that were recorded in the colony of Lu. youngi,

appeared to maintain the rearing medium in good condition (27).

According to the authors these nematodes formed a useful source of

protein in the food, particularly for the first instar larvae (27). The

effect of Steinernema feltiae, St. abbasi, St. carpocapsae DD136, St.

scapterisci, Steinernema sp., Heterorhabditis bacteriophora HP88,

Heterorhabditis sp., and H. indica was evaluated under laboratory

conditions on two sandfly species – P. papatasi and P. sergenti (28).

It is observed that Heterorhabditis species were generally more

virulent than Steinernema species, and that P. sergenti was relatively

more susceptible than P. papatasi (28). Further on, the effect of

Steinernema carpocapsae DD136, Steinernema sp. SII., St.

carpocapsae, St. abbasi Ab, and H. bacteriophora HP88 were

evaluated on the P. papatasi larvae, and demonstrated 42-94%

mortality rate depending on the nematode (29). Field studies in

Ethiopia showed that nematode found only in Phlebotomus

orientalis females (0.8%) caused insects reproductive organ

destruction (30). In addition to above mentioned nematodes,

presence of Mastophorus muris was recorded in P. ariasi, P.

perniciosus and Sergentomyia minuta larvae (31–33); Rictularia

proni was found in P. ariasi larvae (34); Entomopathogenic

nematode of the genus Howardula were detected in wild collected

Phlebotomus argentipes and Sergentomyia monticola (35);

Nematode belonging to Steinernematidae family were observed in

the hemocoel of one specimen of P. tobbi (36); Natural population

of Pintomyia fischeri was found positive for Tylenchid nematodes
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(37); Not fully identified nematodes were detected in Lutzomyia

cayennensis braci and Lu. cruciata (38, 39). The list of nematodes

found in sandflies is summarized in Table 1.

Many factors can influence the successful use of nematodes as

biological agents. Matching the biology and ecology of the

nematode with the sandfly host is a crucial step towards

successful application. It is proven that nematodes are most

efficient in habitats that provide protection from environmental

extremes, especially in soil (72). This characteristic makes them a

good candidate for the application in control of immature stages of

sandflies that dwell in soil, burrows, and different protected

habitats. Nowadays, nematodes are cultured on a large scale in

laboratories, and are available from many commercial suppliers,

which is an additional incentive for their further exploration.
Entomopathogenic protists

Species from Microspora (Microsporidians), Sarcomastigophora

(Flagellates and Rhizopods) and Apicomplexa (Gregarines and

Coccidians), are referred as entomopathogenic protists (73). These

protists can cause disease in insects and are of interest as agents of

biological control. In the field of sandfly biological control, gregarines

are the only explored entomopathogenic protists. Gregarines are

monoxenous parasites and can be found in the body cavity or

digestive tract of several invertebrate hosts including sandflies. The

life cycle of gregarines, their taxonomy and host specificity are

complex and still poorly understood.

The infective stages of gregarines are oocysts containing

sporozoites. After oocysts dehiscence, sporozoites are released and

they attach to the host epithelium or develop intracellularly into

trophozoites. Detachment of the trophozoites from the host cell is

followed by the sexual phase of the life cycle resulting in the

formation of a gametocyst. Gametocyst containing gamonts

undergoes multiple nuclear divisions leading to the production of

gametes. Further on during sporogony, zygotes differentiate by

mitoses into oocysts with sporozoites.

Ascogregarina chagasi later named Psychodiella chagasi is the

most studied sandfly gregarine. In sandflies, the first instar larvae

are infected by swallowing oocysts. The sporozoites are released

from oocyst into the larval midgut where they attach to the

epithelial cells and develop into trophozoites (74). In larvae, the

gamonts are found mostly in the ectoperitrophic space of the

intestine and in the intestinal lumen, where sexual development

and oocysts production occurs. The gregarines can complete the life

cycle in the larvae, and larval feces containing oocysts serve as a

source of horizontal transmission. In adults, the gregarines form

syzygies and gametocysts with oocysts in the body cavity. The

gametocysts attach to the accessory glands of females, and the

oocysts are injected into their lumen (49). This is a unique

mechanism of vertical transmission supporting the hypothesis

about sandflies and gregarines co-evolution (42). During

oviposition, oocysts are attached to the sandfly egg chorion,

which serves as a source of infection for newly hatched first instar

larvae. The life cycle of most sandfly gregarines is similar to the

above-described general life cycle of As. chagasi, with the exception
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TABLE 1 Entomopathogenic nematodes, protists and mites that were
found in association with sandflies.

Entomopathogen
species

Sandfly host species References

Nematodes

Tricephalobus steineri Phlebotomus papatasi (21)

Anandranema
phlebotophaga

Lutzomyia longipalpis (22)

Anandranema genus Lutzomyia fischeri (23)

Didilia ooglypta Phlebotomus papatasi
Phlebotomus sergenti.

(24)

Steinernematidae family Phlebotomus tobbi
Lutzomyia longipalpis

(26, 36)

Apbelenchoides bicaudatus Lutzomyia youngi (27)

Coenorhabditis sp. Lutzomyia youngi (27)

Unidentified nematode Phlebotomus orientalis
Lutzomyia cayennensis braci
Lutzomyia cruciata

(30, 38, 39)

Mastophorus muris Phlebotomus ariasi,
Phlebotomus perniciosus
Sergentomyia minuta

(31–33)

Rictularia proni Phlebotomus ariasi (34)

Howardula genus Phlebotomus argentipes
Sergentomyia monticola

(35)

Tylenchida order Pintomyia fischeri (37)

Gregarines

Psychodiella mackiei Phlebotomus argentipes,
Phlebotomus papatasi

(40, 41)

Psychodiella chagasi Lutzomyia longipalpis
Lutzomyia sallesi
Lutzomyia flaviscutellata
Lutzomyia townsendi
Lutzomyia sordelli
Lutzomyia cruzi
Lutzomyia evandroi

(42–46)

Psychodiella saraviae Lutzomyia lichyi
Lutzomyia schreiberi

(42, 45)

Psychodiella sergenti Phlebotomus sergenti (47, 48)

Psychodiella tobbi Phlebotomus tobbi (47)

Unidentified gregarine Phlebotomus ariasi
Lutzomyia vexatrix occidentis
Lutzomyia shanonni
Lutzomyia cruciata
Lutzomyia flaviscutellata
Lutzomyia camposi
Lutzomyia gomezi
Lutzomyia hartmanni
Lutzomyia panamensis
Lutzomyia sanguinaria
Lutzomyia trapidoi
Lutzomyia trinidadensis
Lutzomyia ylephiletor
Lutzomyia whitmani
Lutzomyia edwardsi
Lutzomyia firmatoi

(33, 38, 49–53)

(Continued)
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TABLE 1 Continued

Entomopathogen
species

Sandfly host species References

Gregarines

Lutzomyia sallesi
Lutzomyia fischeri
Lutzomyia amarali

Mites

Microtrombidium
hindustanicum

Phlebotomus papatasi
Phlebotomus agentipes
Phlebotomus sergenti
Sergentomyia babu
Sergentomyia indica

(54–56)

Microtrombidium
nigeriense

Phlebotomus martini (56)

Microtrombidium lewisi Sergentomyia clydei (55)

Microtrombidium sp. Lutzomyia furcata (55)

Biskratrombium coineaui Phlebotomus papatasi (57, 58)

Biskratrombium persicum Phlebotomus alexandri
Phlebotomus papatasi
Sergentomyia mervynae

(57, 58)

Kenyatrombium
macfarlanei

Phlebotomus martini (56)

Eustigmaeus dyemkoumai Phlebotomus duboscqi (59)

Eustigmaeus gamma Phlebotomus pius (59)

Eustigmaeus gorgasi Phlebotomus pius (59)

Eustigmaeus lirella Lutzomyia apache (60)

Eustigmaeus parasiticus Phlebotomus sp.
Lutzomyia gomezi

(59)

Eustigmaeus johnstoni Phlebotomus longicuspis
Phlebotomus papatasi
Phlebotomus alexandri
Phlebotomus bergeroti
Phlebotomus sergenti
Sergentomyia africana
Sergentomyia dreyfussi
Sergentomyia magna
Sergentomyia clydei
Sergentomyia sintoni

(61–67)

Stigrnaeus smithi Phlebotomus papatasi (61)

Stigrnaeus sinai Phlebotomus papatasi (61)

Stigrnaeus furcatus Phlebotomus alexandri (61)

Stigrnaeus youngi Phlebotomus martini
Phlebotomus duboscqi
Phlebotomus papatasi
Phlebotomus sergenti
Phlebotomus argentipes
Sergentomyia theodori
Sergentomyia adleri
Sergentomyia tiberiadis
pakistanica
Sergentomyia clydei
Sergentomyia schwetzi
Sergentomyia magna
Sergentomyia sintoni

(59, 61, 68, 69)

(Continued)
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of Ascogregarina mackiei (Psychodiella mackiei). The development

of sporozoites and trophozoites of As. mackei in sandfly larvae is

intracellular, and this is the only sandfly gregarine with intracellular

development (40).

The host specificity studies of gregarines were conducted in

detail in mosquitos, showing rather contradictory results (75, 76).

Unlike extensive studies of mosquitoes, data about sandfly gregarine

specificity is rather limited. Within the study of Wu and Tesh

(1989) (43) seven sandfly species including P. papatasi, P.

argentipes, P. perniciosus, Lu, serrana, Lu. abonnenci, Lu.

columbiana and Lu. longipalpis were infected with oocysts of

Ascogregarina chagasi (now Psychodiella chagasi). It is

demonstrated that trophozoites gregarine life stages can be found

in P. papatasi, Lu. columbiana, Lu. serrana and two strains of Lu.

longipalpis (Brazilian and Columbian) (43). It is also shown that As.

chagasi were able to complete their life cycle only in the Brazilian

strain of Lu. longipalpis, while the infection rate and parasite density

were higher in the Colombian strain. Infection with As. chagasi

significantly reduced adult longevity of the Brazilian strain of Lu.

longipalpis, but it had little effect on fecundity (43). Since As. chagasi

demonstrated the variability in susceptibility toward different

strains of Lu. longipalpis, it is speculated that these gregarines

have strict host specificity (43).

In total, gregarines found in sandflies include 5 species from

genus Psychodiella – Ps. chagasi, Ps. mackiei, Ps. saraviae, Ps.

sergenti and Ps. tobbi (Table 1). Psychodiella chagasi was firstly

described in the hemocoel and accessory glands of the Lu.

longipalpis (44), and it was later found in Lutzomyia sallesi, Lu.

flaviscutellata, Lu. townsendi, Lu. sordelli, Lu. cruzi and Lu. evandroi

(42, 43, 45, 46). Psychodiella saraviae was described from blood-fed

females of Lutzomyia lichyi with gametocysts attached to accessory

glands and oocysts in the lumen (42) and was further detected in

Lutzomyia schreiberi (45). Psychodiella mackiei was described from

Phlebotomus argentipes (40) and later was found in P. papatasi (41).

Psychodiella sergenti and Ps. tobbi are found in laboratory reared
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sandflies (Phlebotomus sergenti and P. tobbi, respectively) (47).

Psychodiella sergenti gamonts are found in the hemocoel of

Phlebotomus sergenti adults, and the sexual development of this

gregarine occurs exclusively in blood-fed females (48). Psychodiella

sergenti have a negative impact on its host, as gregarine infection

significantly decreases the survival of various sandfly stages, but it

does not impact the fecundity and mortality of blood-fed females

(47, 48). Negative impact on the adult sandfly longevity was also

observed in correlation with Ps. chagasi (43), and this species is

known as common pathogen in laboratory-reared colonies of Lu.

longipalpis (77).

Gregarines have been reported from more than 20 sandfly

species but only a few of them were denominated. A number of

studies recorded unidentified gregarine species from sandfly species

such as Lutzomyia vexatrix occidentis (50), Lutzomyia shanonni

(51), Lu. cruciata (38), Lu. flaviscutellata (49). Acephaline

gregarines of one or more species were found in the hemocoel of

ten species of sandflies: Lutzomyia camposi, Lu. cruciata, Lu.

gomezi, Lu. hartmanni, Lu. panamensis, Lu. sanguinaria, Lu.

shannoni, Lu. trapidoi, Lu. trinidadensis, Lu. ylephiletor (52). It is

speculated that gregarines are not common parasites of these

sandflies as only 18 from more than 6.000 females were found

infected (52). Neogregarine were found in the fat body of P. ariasi

(33), while trophozoite forms are found in the gut and/or sporocysts

in the accessory glands of Lu. whitmani, Lu. edwardsi, Lu.firmatoi,

Lu. sallesi, Lu. fischeri and Lu. amarali (53).

Other protist found in sandflies include Adelina sp. that was

reported in Se. minuta and P. perniciosus (78, 79). The mechanisms

of insect host exploitation and disruption by Adelina sp. is not well-

characterized. Studies conducted on Tribolium and several other

insects indicate that Adelina sp. can impact behavioral changes,

have population regulation role and even cause death of the host

insect (80). Adelina sp. are cosmopolitan organisms and the main

transmission pathway for this coccidian parasite is via ingestion of

contaminated food. Some species develop within the gut and

disseminate oocysts through the host feces, while others inhabit

the fat tissue (78).

The gregarine infection reduces the resistance of insects, and

negatively affects their development and reproduction (81). The

studies of sandfly gregarines are unfortunately very rudimentary,

and the potential of these protists as agents of biological control of

sandflies is underestimated.
Entomopathogenic mites

Mites are ectoparasites, and they can be phoretic, parasitic or

both. Mites attach to the insect exoskeleton, which is harmful to the

host, and if they are parasitic, they depend on their insect host for

sustenance, maturation, and multiplication. Mites can parasitize on

different developmental forms of sandflies, and some are known to

affect larvae, while others can be found on adults.

Up to the present moment a total of 15 mite families have been

associated with sandflies and they include Ascidae, Acaridae,

Cheyletidae, Microtrombidiidae, Microdispidae, Trombidiidae,

Erythraeidae, Hydrachnidia, Stigmaeidae, Parasitidae, Phytoseiidae,
TABLE 1 Continued

Entomopathogen
species

Sandfly host species References

Mites

Ledermuelleria sp. Phlebotomus pius
Lutzomyia gomezi
Lutzomyia shannoni

(38, 52)

Unidentified Uropodidae Phlebotomus aclydiferus (52)

Bochartia sp. Sergentomyia falax (56)

Unidentified species from
Eustigmaeus and
Stigmaeus genus

Phlebotomus perniciosus (70)

Typhlodromus evansi or
T. primulae

Lutzomyia shannoni (38)

Tyrophagus sp. and
Stratiolaelaps scimitus

Various sandfly colonies
including: Phlebotomus
argentipes, P. sergenti, P.
perniciosus, P. duboscqi,
Lutzomyia longipalpis

(71)
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Uropodidae, Tenuipalpidae, Pterygosomatidae, and Oribatulidae (61).

Among them, Microtrombidiidae, Trombidiidae, and Erythraeidae,

which are terrestrial parasitengone mites, constitute a large group of

natural enemies and in their larval, deutonymphal and/or adult stage

are ectoparasites on various arthropod groups including sandflies.

The larva of the Biskratrombium coineaui are ectoparasites of

adult P. paptasi, while B. persicum larvae are ectoparasites on the

adults of P. alexandri, P. papatasi and Sergentomyia mervynae (57,

58). Sandfly hosts of Microtrombidium hindustanicum are P.

papatasi, P. argentipes, P. serganti, Sergentomyia babu and Se.

indica (54, 55). Phlebotomus martini is a host for Microtrombidium

nigeriense and Kenyatrombium macfarlanei (55, 56), Sergentomyia

clydei is a host of Microtrombidium lewisi, while Microtrombidium

spp. has been associated with Lutzomyia furcata (55, 56).

Numerous species of the family Stigmaeidae including genus

Eustigmaeus and Stigmaeus are sandfly parasites. From genus

Eustigmaeus species such as Eustigmaeus dyemkoumai, E. gamma,

E. gorgasi, E. johnstoni, E. lirella and E. parasiticus are most

frequently found in association with sandflies. Eustigmaeus

dyemkoumai is ectoparasite of Phlebotomus duboscqi (59); E.

gamma and E. gorgasi are parsiting on P. pius (59); E. lirella on

Lutzomyia apache (60) and E. parasiticus on Phlebotomus sp. and

Lutzomyia gomezi (59). Eustigmaeus johnstoni is by far found in

most sandfly species including Phlebotomus longicuspis, P. papatasi,

P. alexandri, P. bergeroti, P. sergenti, Sergentomyia africana, Se.

dreyfussi, Se. magna, Se. clydei, and Se. sintoni (61–67). Species in

the genus Stigmaeus including St. smithi and St. sinai are found on

P. papatasi, Stigmaeus furcatus was found on P. alexandri (61),

while Stigrnaeus youngi has been associated with P. martini, P.

duboscqi, P. papatasi, P. sergenti, P. argentipes, Sergentomyia

theodori, Se. adleri, Se. tiberiadis pakistanica, Se. clydei, Se.

schwetzi, Se. magna and Se. sintoni (59, 61, 68, 69). Species of the

genus Ledermuelleria, also belonging to family Stigmaeidae, have

been found on Phlebotomus pius, Lutzomyia gomezi, and Lu.

shannoni, while not fully identified members of the Uropodidae

were recorded on Phlebotomus aclydiferus (38, 52). Bochartia sp.

has been recorded on Sergentomyia falax (56). Unidentified species

from Eustigmaeus and Stigmaeus genus were found on P.

perniciosus (70). An adult female of a Phytoseiidae, most likely

being Typhlodromus evansi or T. primulae, was found on a Lu.

shannoni (38). The research of mites in the field of sandflies was

mostly focused on purely reporting the presence of mites (Table 1).

Although relatively high number of mite species has been detected

in association with sandflies, most of them are parasitic with very

limited number of predatory species (38, 71, 82). Their relation and

potential impact on sandflies were only briefly explored within the

study of Dinesh et al., 2014 (82) showing good potential to be used

as agents of biological control. This study evaluated the predatory

ability of mites and spiders living in the same dwellings as sandflies.

The mites and spiders were collected together with sandflies directly

from the field and evaluated under laboratory conditions (82).

Nymph and adult forms of mites were attacking and penetrating

the larval body, damaging, and eating away its content leading to

the death of larvae. The mites caused a decline in sandfly population

within 15 days, with only 5% of the larvae being able to reach adult
Frontiers in Tropical Diseases 06
stage. On the contrary, spiders were found more efficient in

predating adult forms of sandflies (82). The exact species of these

predator mites and spider has not been determined, but it is

demonstrated that they have potential to be used as biological

agents of sandfly control (82). Most recently, Tyrophagus sp. and

Stratiolaelaps scimitus, were recorded among the different species of

laboratory reared sandflies (71). These two mite species impacted

the productivity of various sandfly colonies leading to significant

colony declines (overall colony growth fell drastically by 30.9%-

31,6% depending on the sandfly species). It has been shown that

mites from the Tyrophagus genus can contribute to the sandfly

colony decrease by competing for the food source with sandfly

larvae, and by secreting metabolites that stop larval development

(83). On the contrary, Stratiolaelaps scimitus are predatory mites

that feed on fungus gnats, thrips pupae and other small insects in

the soil (84), and their impact on sandfly colonies needs to be

investigated to a greater extent (71). Mites are generally commonly

observed within sandfly colonies, and if they are present in high

numbers without any control mechanisms in place, they can lead to

sandfly colony decimation (71, 82). The general presence of mites

even more discourages scientists from colonizing sandflies under

laboratory conditions which hinders the progress of further studies.

The use of predatory mites for the control of insect populations has

a long history especially in the agricultural settings (85, 86). Several

species of predatory mites dwelling in soil showed success in insect

control (84), and these species might be considered for the control

of immature forms of sandflies.
Conclusions

Since World War II, the intensive use of chemicals for insect

control resulted in development of insecticide resistance/

resurgence among the insect populations worldwide. The

chemical overuse negatively impacted non-target organisms,

overall agroecosystem, crop productivity, human health etc. Due

to the multiple adverse effects of insecticides, more eco-friendly

approaches that are safe and effective have been developed and

tested. The application of entomopathogenic organisms such as

nematodes, protists or mites as biocontrol agents has been vastly

explored and applied in the field of forestry and agriculture. In

comparison, only a little attention was given to blood-sucking

insects such as sandflies.

Findings herein reported demonstrated that the majority of

studies in the field of sandfly and leishmaniasis control are mainly

focused on pure detection and identification of entomopathogenic

organisms (Table 1), while the deeper understanding of their

interaction with sandflies and overall impact on sandfly

population is lacking. Considering the complexity of the sandfly

life cycle, and the fact that they have below and above the ground

developmental stages, the application of different biological agents

for their control might be beneficial. The exploration of predatory

and pathogenic organisms, along with the development of

paratransgenic approach and the application of green chemistry

must be prioritized.
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