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Due to the continuing large number of malaria-related deaths in tropical Africa,

the need to develop a robust Malaria Early Warning System (MEWS) for effective

action is growing to guide cost-effective implementation of interventions. This

study employs a two-stage hierarchical evaluation technique to evaluate the

ability of the VECTRI malaria model to simulatemalaria dynamics at seasonal time

scale (1 - 7 months) over Nigeria and West Africa. Two sets of malaria simulations

are considered. The first set is based on VECTRI simulations driven by observed

rainfall and temperature datasets (hereafter referred to as control run). The

second is based on malaria simulations driven by the European Centre for

Medium-Range Weather Forecasting (ECMWF) System5 ensemble seasonal

forecasting system (hereafter referred to as Forecast run). Different metrics are

employed to assess the skill of the VECTRI malaria model. Results based on the

control run indicate that the model can reproduce hyper-endemic zones and the

evolution of malaria cases, particularly the observed increase in cases with

decreasing population density. Despite having significant biases and low

correlation, the model successfully predicts annual anomalies in malaria cases

across Nigeria, particularly in the savannah region that experience large malaria

burden. Annual correlations between the VECTRI Forecast run and the VECTRI

Control run are relatively low at all lead times (LT) and for each start date (SD)

across West Africa, although correlation generally increases from the Gulf of

Guinea to the Sahel. Despite low correlations, the Rank Probability Skill Score

(RPSS) reveals that the model has a statistically significant skill in predicting

malaria occurrences across all categories of malaria cases, regardless of start

date or lead time. While the Guinea Forest has the strongest RPSS, the increase or

decrease in skill from the first to seventh lead time varies significantly across the

region. In addition, the VECTRI malaria model has a good ability to discriminate

variability in malaria cases across all regions, with an average Area Under the

Relative Operating Characteristics (ROC) Curve (AUC) of approximately 0.62. Our

findings suggest that the VECTRI malaria model could be used as a reliable

Malaria Early Warning System (MEWS), particularly for identifying malaria hyper-

endemic zones in West Africa at seasonal time scale.
KEYWORDS

ECMWF-seasonal-forecasts, malaria, early warning system, VECTRI, West Africa
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fitd.2024.1322502/full
https://www.frontiersin.org/articles/10.3389/fitd.2024.1322502/full
https://www.frontiersin.org/articles/10.3389/fitd.2024.1322502/full
https://www.frontiersin.org/articles/10.3389/fitd.2024.1322502/full
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fitd.2024.1322502&domain=pdf&date_stamp=2024-07-16
mailto:olaniyan.eniola67@gmail.com
https://doi.org/10.3389/fitd.2024.1322502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://doi.org/10.3389/fitd.2024.1322502
https://www.frontiersin.org/journals/tropical-diseases


Olaniyan et al. 10.3389/fitd.2024.1322502
1 Introduction

Plasmodium falciparum is a parasitic species that is the primary

cause of malaria in susceptible people, particularly in tropical

regions of the world and Africa (1, 2) and is a major cause of

death in Sub-Saharan Africa, particularly among children and

pregnant women (3, 4). It is extremely prevalent in this region,

and its transmission persists despite the deployment of effective

control measures (3). Malaria caused 619,000 deaths in 2021, 95%

of these occurring in Africa. The World Health Organization

estimated that 32% of pregnancies were exposed to malaria

infection over the African continent (1). In addition to the

associated number of fatalities, research has shown that malaria

can also limit the capacity of people to work and children to attend

school. Malaria attacks, according to several studies, can

incapacitate a person for an average of ten to fourteen days (5).

(5) also noted that malaria-related illnesses frequently result in

substantial financial demands due to the high cost of medical

treatment, resulting in a dearth of domestic food supplies. Over

ten billion dollars are estimated to be spent on malaria-related costs

in West Africa, including treatment, prevention, and lost labor

hours (6).

Female Anopheles mosquitoes are the primary vectors of the

malaria parasite, as they need human blood to obtain the proteins

necessary to nourish and lay their eggs (7, 8). Following an

infectious blood meal, the malaria parasite is typically transmitted

to humans through an infective mosquito bite (9–11).

Environmental and climatic conditions can significantly influence

mosquito development and survival (12–15). Usually, relative

humidity, wind, temperature, and rainfall are the most frequently

correlated atmospheric variables that influence the life cycle of

mosquitoes. However, temperature and precipitation are by far the

most important climatic variables. Temperature influences the rate

at which mosquito larvae mature, the mosquito’s biting rate, and the

time required for the malaria parasite to mature inside Anopheles

female mosquitoes, the so-called sporogonic cycle. Rainfall creates

mosquito breeding sites where adult females can lay their eggs.

Consequently, accurate real-time monitoring of weather factors,

such as temperature and precipitation, could provide useful

information about potential malaria transmission risk and for the

design of malaria early warning systems. Integrating sub-seasonal to

seasonal forecasts for temperature and precipitation could further

extend the lead-time of malaria predictions (16, 17).

Despite this potential to use climate information to provide

early warnings, there is no implemented operational tool to assist

with proactive community-based disaster risk management in sub-

Saharan Africa, despite the large sums of money spent combating

malaria and its extensive socioeconomic impacts. This paper aims

to estimate the skill of an early warning system for the possible

spread and transmission of malaria in West Africa, and hence to

address a significant research gap in epidemiological research.

Various malaria models were able to predict the dynamics of

malaria in response to climatic factors in different epidemic zones

(16, 18). Some malaria models are dynamic and have been tested

operationally. The Liverpool Malaria Model (LMM) and the ICTP’s
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Trieste VECtor borne disease community model (VECTRI) are two

commonly employed dynamical malaria models in West Africa (7).

Due to its availability as an open-source dynamic malaria model,

the VECTRI model is utilized in this paper. VECTRI considers how

surface hydrology, population density, and climate (rainfall and

temperature) impact the distribution and magnitude of malaria.

Numerous studies utilizing both simulated and observed

climate drivers have demonstrated the predictive ability of the

VECTRI model in diverse regions of Africa. For instance, the

predictive ability of the VECTRI model was evaluated by

employing simulated and observed climate drivers in diverse

regions of Africa [19, 20 and 7]. VECTRI simulations driven by

observed precipitation and temperature were compared to observed

malaria cases and Entomological Inoculation Rates (EIR) (19).

Focusing on Bobo-Dioulasso in Western Africa, the results

demonstrated that the VECTRI model could effectively reproduce

observed seasonality in malaria transmission as well as changes in

malaria transmission rate between rural and semi-urban areas.

An early warning system prototype was developed using the

VECTRI model driven by temperature and precipitation data from

the European Centre for Medium-Range Weather Forecasting

(ECMWF) monthly and seasonal climate forecasts (19, 20).

Despite the delays between the rainy season and malaria

transmission, preliminary analysis in the highlands of Uganda

and Kenya revealed that this malaria forecasting system was able

to reproduce years of documented highland malaria outbreaks.

While (20) primarily focused on Eastern Africa (13), evaluated

the skill of the VECTRI model over Ghana. To investigate the

spatiotemporal variability of malaria transmission, they modified

the standard parameterization of the VECTRI malaria model. Their

findings demonstrated that the VECTRI model’s results were

consistent with observed features, and of high quality for

simulating monthly reported malaria cases.

The potential of using S2S seasonal forecasts (using ensemble

hindcasts from European Centre for Medium-Range Weather

Forecasting (ECMWF ’s) VarEPS (IFS ver. 41r1), China

Meteorological Administration’s BCC-CPS-S2Sv1 ver. 1, and

UKMO’s GloSea4 from the S2S global repository) to drive the

VECTRI malaria model in hyperendemic malaria zones of Nigeria

was evaluated by (21) and (22). They demonstrated that, despite

regional discrepancies, S2S forecasts were useful to identify

hyperendemic areas and mobilizing responsible health

departments at least one month before the occurrence of

malaria outbreaks.

Although several studies have used the VECTRI malaria model

over different regions of Africa, significant knowledge gaps remain.

Many of these studies have only focused on small geographical

areas, which cannot accurately represent the entire sub-Saharan

region, especially West Africa. In addition, only a limited number of

studies have employed comprehensive verification techniques with

an extensive set of skill scores to evaluate the accuracy of VECTRI

malaria forecasts, particularly at seasonal timescale.

Consequently, the accuracy of the VECTRI malaria model in

predicting malaria dynamics over West Africa needs to be

investigated in greater details with the goal of developing an
frontiersin.org
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operational system for Nigeria and potentially the wider West

African region. We aim to answer the following questions for

West Africa. Firstly, is the VECTRI malaria model skillful in

predicting malaria cases in West-Africa at seasonal time-scale;

Secondly, how impactful could the use of rainfall and temperature

forecasts from seasonal climate models in driving the VECTRI

malaria model; lastly is the use of ensembles in driving the VECTRI

model beneficial? Here, we intend to study these issues in greater

detail in Nigeria and West Africa to develop a reliable malaria Early

Warning system at seasonal and sub-seasonal timescales.

Section 2 describes the ECMWF Seasonal forecasts and

observed climate data such as ERA5 and satellite data, and the

methods. Section 3 examines the primary results, while Section 4

summarizes and concludes the main work’s findings.
2 Data and methods

2.1 Input climate data

2.1.1 Seasonal data - forecast run
Precipitation (mm/day) and 2 meters temperature (°C) data

from the ECMWF seasonal Forecasting ensemble was used.

Simulated seasonal data was collected from the ECMWF seasonal

data hub as part of the European-funded Copernicus Climate

Change Services (C3S) data project. Real-time seasonal

precipitation and temperature forecasts for the years 2014 to 2021

were utilized, along with reforecast data for the years 2014 to 2016.

To ensure that all forecasts are contained within a one-year period,

for computational efficiency and ease of comparison with

observations, the data is initialized monthly, from January to

June, with a seven-month lead time (LT; see Tables 1, 2). For

example, a forecast initialized in January 2020, will provide daily

rainfall and temperature forecast until the end of July 2020.

Seasonal precipitation and temperature data were regridded to 1°

x1° resolution and then used to drive the VECTRI model. The

simulation resulting from these VECTRI model runs will be

referred to as “VECTRI Forecast Run (VFR)” thereafter.
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2.1.2 Satellite and ERA5 reanalysis data–
control run

Daily rainfall data from satellite-derived Integrated Multi-satellitE

Retrievals for the Global Precipitation Measurement mission

(GPM_IMERG) version 3 (23) and 2m temperature data from the

ERA5 reanalysis data (24) from 2014 to 2021 were used. The GPM-

IMERG precipitation data is available at a grid spacing of 10 kilometers

and covers the entire globe. Although GPM has some inherent biases

(25, 26), several studies (27–29) have used it for weather forecasting

model verification, particularly over Africa (25, 26). Though the

IMERG system is run twice in near-real-time, with the Early run

(IMERG-E; about six hours after nominal observation time) and the

Late run (IMERG-L after about 18 hours), the dataset from the Final

run (IMERG-F; about 3 months after the observation month), was

used in this study. with both forward and backward morphing

schemes (25, 26) the IMERG final run better described the intensity

in the rainfall features. The primary reason for utilizing GPM_IMERG

is related to the coarse distribution of rain gauges in Africa (29).

The ECMWF produces ERA-5, a global atmospheric reanalysis

of the fifth generation covering the years 1959 to the present. It

replaced the well-known ERA-Interim dataset and contains

numerous updates with finer temporal, horizontal and vertical

resolutions (respectively, 1 h, 0.25°, and 137 vertical levels

extending from the surface to 0.01 hPa), several improvements to

different parameterization schemes (such as convection and

microphysics) and a new data assimilation scheme. ERA-5 uses a

more recent version of the ECMWF Integrated Forecast System

model (IFS 41r2) than its predecessors (24). Recent research has

demonstrated that these advancements lead to an overall increase in

the accuracy of ERA-5 compared to its predecessors in representing

a variety of climate variables, including rainfall and tropical

convection (30, 31), land surface temperature (32) downwelling

solar radiation at the surface (33), and wind patterns over global

oceans (34, 35). The average daily temperature for this study was

calculated using the hourly 2m temperature data retrieved from

2014 to 2021. The VECTRI model is driven by regridding the

GPM_IMERG precipitation and ERA-5 2m temperature to a

horizontal resolution of 10km (about 0.1°x0.1° at the equator).
TABLE 1 Summary of data used in this study.

Data Variable Source
Date of
Monthly

Initialization
Periods Resolution

Ensemble
Size

Time-
step

Lead
Time (LT)

ECMWF -
Seasonal-Realtime

Rainfall
2m Temperature

ECMWF First Date
2017
- 2021

100km 50 Daily 7 Months

ECMWF -
Seasonal-Hindcast

Rainfall
2m Temperature

ECMWF First Date
2014
- 2016

100km 25 Daily 7 Months

Satelite Rainfall
GPM-

IMERGE
Not Applicable

2014
- 2021

10km – Daily –

ERA-5 2m Temperature ECMWF Not Applicable
2014
- 2021

31km – Daily –

Malaria Cases NMEP Not Applicable
2014
– 2021

50km – Monthly –
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This VECTRI model’s simulation will henceforth be referred to as

“VECTRI Control Run (VCR)”.

2.1.3 Observed malaria case data
Clinically confirmed monthly malaria case data in Nigeria for

the period 2014-2021 was obtained from the “National Malaria

Elimination Program (NMEP) program’s records (https://

nmcp.gov.ng/). The retrieved point data is then converted to

spatial regular grid data with a horizontal resolution of 50

kilometers using Inverse Distance Weighting (IDW) technique.
2.2 Validation metrics and skill scores

To evaluate the skill of the VECTRI malaria model, two

hierarchical evaluation methods were used. First, the VCR

simulated malaria cases, derived from the simulated EIR, are

compared to the reported malaria cases to assess the skill of the

modeled monthly malaria cases over Nigeria.

Second, we assess the quality of the seasonal VFR in simulating

malaria cases against the VCR in West Africa. The spatiotemporal

attribute of the VCR and VFR is evaluated utilizing both deterministic

and probabilistic evaluation methods. The deterministic evaluation is

based on bias (usingMean Error, see Equation 1), synchronization, and

Pearson correlation coefficients (r), while the two probabilistic

evaluations are based on the rank probability skill score (RPSS) and

the Relative operating characteristics (ROC).

BIAS =
1
No

N

i=1
(Fi − Oi) (1)

N denotes the sample size, Fi is the forecast totals, and Oi is the

observation totals. Pearson correlation coefficient (r) is computed to

measure the linear relationship between the VCR and the malaria

observation, as well as between the VFR and the VCR. We

calculated correlation coefficients between the VCR and malaria

observation for each month, season, and year. Focusing on monthly

data enables to estimate model skill in reproducing a realistic

monthly cycle of observed malaria cases. Seasonal time scale are

relevant for seasonal forecasting, as seasonal climate forecast are

usually carried out for the upcoming season (7 months from start

date in this study). Finally, correlations calculated at interannual
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time scale aim to estimate the model capability in reproducing low/

high malaria years over a set time period.

The correlation is then computed between the VFR (based on

the model ensemble mean) and VCR for each lead time (LT) from

each start date (SD), for all SDs at each LT, for all SDs at all LTs, and

finally for all seasons from each SD. Between the VCR and

observation, the computed seasons (seas) are JFM (Jan-Feb-Mar),

FMA (Feb-Mar-Apr), MAM (Mar-Apr-May), AMJ (Apr-May-Jun),

MJJ (May-Jun-Jul), JJA (Jun-Jul-Aug), JAS (Jul-Aug-Sep), ASO

(Aug-Sep-Oct), SON (Sep-Oct-Nov), and OND (Oct-Nov-Dec).

The computed correlation seas from the January SD are JFM, FMA,

MAM, AMJ, and MJJ, whereas those from the February SD are

FMA, MAM, AMJ, MJJ, and JJA. Tables 2, 3 provide details about

the forecast start dates (SDs) the corresponding seas and lead times

(LT). Significance level (p = 0.05) for a two-tailed T-test is also

computed to strengthen the support for any prospective linear

association between the correlated parameters.

Following (36) we also applied the synchronization (37)

technique to quantitatively determine how well the VCR captures

the timing of yearly rainfall anomaly signals.

Applied between VFR and VCR only, the rank probability skill

score (RPSS) used in this study follows (38). To denote low,

medium, and high occurrences of malaria, the 10th, 50th, and

90th percentiles are utilized to calculate the RPSS (See Equation 2).

RPSS   = 1 −
RPS
RPSr

(2)

Where RPS is the rank probability score for a forecast and RPSr is

the rank probability score for a reference forecast. Additionally, the

ROC diagram is generated by plotting the hit rate against the false

alarm rate for all LTs from all SDs in the VCR and the monthly

anomaly probability from the VFR. The Area under the Curve of ROC

(AUC) is computed using the monthly anomaly of malaria cases.

In addition, both Nigeria and West Africa are divided into four

ecological zones based on a common climatology of rainfall onset

dates, which is averaged along longitude -18°W – 18°E for West

Africa and along longitude 2°E – 15°E for Nigeria. These zones

include the Gulf of Guinea (GoG; latitude 4°N –8°N), the Guinea

Forest (GF; latitude 8 °N–10°N), the Savannah (SAV; latitude

10°N-12°N), and the Sahel (SAH; latitude 12 °N–16°N), as

depicted in Figure 1. In addition, we calculated average for the
TABLE 2 Summary of forecast start dates (SDs) corresponding Months and Seasons in this study.

START
DATE (SD)

Month
Season
(Seas) 1

Season 2
(Seas) 2

Season
(Seas) 3

Season
(Seas) 4

Season
(Seas) 5

1 January JFM FMA MAM AMJ MJJ

2 February FMA MAM AMJ MJJ JJA

3 March MAM AMJ MJJ JJA JAS

4 April AMJ MJJ JJA JAS ASO

5 May MJJ JJA JAS ASO SON

6 June JJA JAS ASO SON OND
JFM, January February March; FMA, February March April; MAM, March April May; AMJ, April May June; MJJ, May June July.
JJA, June July August; JAS, July August September; ASO, August September October; SON, September October November; OND, October November December.
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West African domain (longitude -18o°W – 18o°E and latitude

4°N–16°N), the East of Meridian longitude (MerE; 0–18°E and

latitude 4°N–16°N), the West of Meridian longitude (MerW;

18°W–0°E and latitude 4°N–16°N), and the Nigeria longitude

(2°E–15°E and latitude 4°N–14°N). All datasets used in this study

were re-gridded to a resolution of 1° x 1° for uniformity and because

this was the lowest spatial resolution used.
2.3 The VECTRI malaria model

VECTRI is an open-source dynamical model that simulates the

dynamics of malaria transmission. It was developed at the

International Center for Theoretical Physics (7) and it runs at a

daily time step. The spatial resolution of the model varies from a

single location to a regional scale of 10 to 100 km, depending on the

resolution of the input climate data. The model explicitly resolves

the growth stages of the egg-larvae-pupa cycle, as well as the

sporogonic cycles, using an array of bins for each process (7, 13).

If temperatures are suitable for the different mosquito life cycle

stages, this process continues to advance within the boxes. A

schematic description of the modelling framework is shown on

Figure 2. VECTRI incorporates human population density, which

influences vector–host interaction dynamics. Therefore, as

population density increases, the Entomological Inoculation Rate

(EIR) predicted by the model tends to decrease (7). The model also

contains a simple hydrological scheme. This scheme, as modified by

(14) (Ernest Ohene Asare, Tompkins, and Bomblies 2016),

indirectly controls habitat productivity and adult density by

killing larvae when the habitat dries out. In addition, the scheme

considers the negative impact of heavy rainfall on habitat

productivity, as a result of larvae being flushed away (39). The

VECTRI model is described in detail in (7) and (14).
3 Results and discussion

3.1 Observed malaria dynamics
over Nigeria

Malaria transmission in Nigeria is complex because it is a year-

round phenomenon (Figures 3A, E, I, M). Seasonal peaks in malaria
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cases follow the evolution of the West African monsoon with one to

two-months lag. Variability in malaria cases exhibits different features

at monthly, seasonal and annual time scales across different eco-

regions of Nigeria (Figure 3). The lag between the peaks in rainfall

and malaria cases may be a result of the retention capacity of soil

moisture, which has been demonstrated to have a feedback effect on

rainfall variability (40). Observed malaria cases exhibit bimodal

characteristics over the GOG, GFR, and SAV, but mostly unimodal

features over the SAH (Figures 3A, B, E, F, I, J, M, N). Peaks in

malaria cases tend to primarily occur in May and November over

most of Nigeria. The number of malaria cases increases latitudinally

from the GoG with approximately 600,000 to the SAH with

approximately 900,000 cases (Figure 4A). The studies of (41), and

(20) This finding is consistent with other modelling studies that

related an increase in malaria cases to a decrease in population

density consistent with an increase in malaria cases with increasing

latitude and larger malaria burden in rural regions (20, 41). The

number of malaria cases in Nigeria is consistently low in 2016,

regardless of the region, and peaks in 2017 over the GOG and SAH,

and in 2021 over the GFR and SAV (Figures 3C, G, K, O). While

years of above and below normal malaria cases may not be consistent

over the GOG, as shown in (Figures 3D, H, I, P), fewer malaria cases

were reported in 2014 to 2016 and more were observed in 2019 to

2021 in other regions.
3.2 Validation of VECTRI-Control-Run with
observed malaria cases in Nigeria

The VCR captures the monthly and seasonal evolution of

malaria cases (Figure 3). VCR simulates the hyperendemic

characteristics of malaria, including the bi-modal and uni-modal

distribution, particularly over the GoG and the SAH (Figures 3A, B,

E, F, I, J, M, N). In addition, the model captures the yearly variability

of observed malaria cases over most regions of Nigeria, except in

2016 where there is a systematic large overestimation with respect

to observations. The model’s yearly variability is consistent from

2018 to 2021 across all regions (Figures 3G, K, O), except over the

GoG (Figure 3C), where simulations are close to observations from

2019 onwards. (Figures 3D, H, I, P) demonstrate that the VECTRI

model is able to reproduce annual anomaly of malaria cases for

2014-2015, and then from 2019 to 2021 for all eco-regions of
TABLE 3 Summary of forecast start dates (SDs) and corresponding Lead Time (LT).

START
DATE (SD)

Lead-Time
1

LT1

Lead-Time
2

LT2

Lead-Time
3

LT3

Lead-Time
4

LT4

Lead-Time
5

LT5

Lead-Time
6

LT6

Lead-Time
7

LT7

1 January February March April May June July

2 February March April May June July August

3 March April May June July August September

4 April May June July August September October

5 May June July August September October November

6 June July August September October November December
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Nigeria. Nevertheless, while the model significantly deviates from

observations from 2016 to 2018 over the GoG, 2016-2017 over the

GFR, and 2016-2018 over the SAH, it only deviates over SAV in

2016. In addition, the VCR simulation captures the observed

latitudinal increase in malaria cases from the GoG to the

SAH (Figure 4A).

Correlation coefficients between the VCR simulation and

observed malaria cases vary by region at monthly (Figure 4B) and

seasonal time scale (Figure 4C), but they are generally low. Monthly

correlations are negative across Nigeria (Figures 4B) except in

January and from September to December. During the dry

seasons, the model is negatively correlated with observation

estimates, particularly in FMA, MAM, and AMJ (Figure 4C).

Correlation increases during the wet seasons of MJJ and JJA, then

ASO to OND, but weakens during JAS. Overall, annual correlations

between the VCR simulation and the observations are low

(Figures 4A–C). Despite low correlations at annual time scale,

correlations are strong over the Sahelian part of Nigeria during

the second half of the transmission season (July to-October), when

observed seasonal cases tend to increase (Figures 3M, N).

The observed discrepancies in correlation coefficients,

specifically the moderate to negative and positive correlations

between malaria and VCR depicted in Figure 4, may be ascribed

to a multitude of factors. A fundamental element is the inherently

intricate nature of malaria (which may include various species of
Frontiers in Tropical Diseases 06
Anopheles) transmission dynamics, which are impacted by several

human, environmental, and ecological factors that are not

considered by the VECTRI model.

Figure 4F shows a synchronization of 65% over both the GoG

and GFR, with a maximum synchronization of 90% over SAV and a

synchronization of approximately 75% over the SAH. The VECTRI

model can predict the annual anomaly of malaria cases in the SAV

region of Nigeria nine times out of ten (Figure 4F).
3.3 VECTRI-Forecast-Run and
VECTRI-Control-Run

(Figures 5A–D) demonstrate that the correlations between VFR

and VCR vary across regions for each year for all SDs and LTs.

Despite being low, Figure 5A reveals that the correlation between

LT1 and LT3 to LT7 is better to that of the GoG. While the

correlation of LT1 across other regions is negative, the correlation of

LT3 to LT7 across the SAH was the lowest. In comparison, LT2 has

the highest correlation for the SAH but the lowest correlation for

the GoG. Theoretically, seasonal climate forecast (used as inputs

to the VECTRI model) tend to be more skillful at short lead times.

In addition, there are large uncertainties in predicting rainfall at

seasonal time scale over West Africa (42) (Pirret et al., 2020).

The correlation between VFR and VCR improved marginally

annually from all SDs at all LTs (Figure 5C), compared to the

correlation from all SDs at each LT across the MerE, MerW, and

West African regions. The yearly correlation over the SAH is the

highest, particularly from 2016 to 2021 (Figure 4B), whereas the

correlation over the SAV is the lowest during this period. OverWest

Africa, the yearly correlation is greater over MerE than MerW, with

2017 exhibiting a significant improvement in correlations across all

regions except for SAV.

Additionally, the correlations for all SDs and all seasons are

weak. Figure 5C demonstrates an increase in correlation from Seas 3

to Seas 5 across all regions, except for the GoG region, where

correlation increases from Seas 1 to Seas 5. In addition, while

correlation improves from Seas 1 to Seas 2 over the majority of

regions, Figure 5C indicates that correlation decreases in the SAH

and MerE regions. The correlation between VCR and VFR tends to

increase with increasing latitude. Figure 5C indicates that

correlations between VCR and VFR for all SDs and all LTs are

larger in MerW regions. The correlation computed across months

seasons and years is statistically significant as their p-values range

between 0.0002 and 0.002, i.e.,<< 0.05.

The probabilistic accuracy of the model is significant with some

variation across regions for all SDs and all LT. Figure 6A demonstrates

that while the LT1 has the largest RPSS over the SAH and the lowest

RPSS over the GoG, the GFR has the highest RPSS from LT3 to LT6,

whereas the RPSS over the SAH has the lowest RPSS at the same LTs.

In addition, the order of RPSS increase or decrease is not sequential.

Figure 6A demonstrates that while the RPSS decreases from LT1 to

LT3, it increases from LT3 to LT7. MerW exhibits the strongest RPSS

from LT3 to LT7, just as MerE exhibits the strongest RPSS from LT1 to

LT3. As depicted in Figure 6B, although the model RPSS is stronger in
A

B

FIGURE 1

(A) Classification of ecological zones in West Africa: Gulf of Guinea
(GoG region1; blue; 4 °N– 8°N, 10°W–15°E), Guinea Forrest (GFR
region2; green; 8 °N–10°N, 12°W–15°E), Savannah, (SAV region3;
yellow; 10 °N–12°N, 14°W–15°E), Sahel (SAH region4; brown; 12 °N–

16°N, 18°W–15°E) and (B) the rainfall onset climatology derived from
the GPM_IMERG satellite dataset.
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regions MerW, particularly above latitude 9°N, it exhibits a bimodal

distribution latitudinally.

As depicted in Figure 7, the propensity of the model to

distinguish anomalous malaria cases across all SDs and LTs varies

by region. With an AUC of 0.59 and 0.51, it shows low skill over the

SAH (Figure 7B) and MerE (Figure 7B). The model’s skill over the

GoG, GFR, and SAV (Figure 7A) is moderate, with AUCs of 0.64,

0.66, and 0.62 respectively. The separability of the model supports
Frontiers in Tropical Diseases 07
the utility of the synchronization technique, which compensates for

low correlation skill, especially when considering time anomalies.
4 Conclusion

Malaria continues to be a leading cause of death, financial

burden over the African continent. In this study, we investigate the
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 3

Monthly (A, E, I, M) and seasonal (B, F, J, N) climatology, yearly (C, G, K, O), and year anomaly (D, H, L, P) of observed (black line and blue bar) and
VCR (red line and circle) malaria Cases (X1000) across the GoG the GFR, SAV and the SAH in Nigeria.
FIGURE 2

Schematic of the forecast-system setup, Adapted from Tompkins and Giuseppe, (2015).
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capability of the VECTRI model to simulate malaria cases over a

seasonal time range of 1 to 7 months using multiple verification

metrics and a two-hierarchical evaluation technique.

The results of the VCR indicate that VECTRI is able to

reproduce the hyperendemic nature and evolution of malaria in

Nigeria, specifically the increasing number of cases with decreasing

population density in rural areas. Despite having inherent biases

and low correlations with observations, the model demonstrates

strong synchronization ability in predicting annual anomalies in

malaria cases across Nigeria, particularly in the savannah region.

For all years, the model correlation coefficients at all LTs from

each SD date across West Africa are low, with an improvement in

lead time from the Gulf of Guinea to the Sahel region.

The observed variability in correlation coefficients may be

attributed to several environmental, ecological and human factors

that are not considered in the current version of the VECTRI model.

Variation in vector species (including insecticide resistant strains)
Frontiers in Tropical Diseases 08
as well as control efforts, availability of public health facilities and

human behavior modulate malaria transmission risk locally.

Probabilistic RPSS scores, which reflect the model’s reliability

and resolution, indicates that the model has significant skill in

predicting categories of malaria cases, regardless of SD, LT, or year

under scope. In addition, the highest skill is shown over the

Guinean Forest region, the order of increase or decrease of the

RPSS from LT1 to LT7 varies and is not sequential across regions.

Furthermore, with an average Area Under the ROC Curve

(AUC) of approximately 0.62, the model’s ability to distinguish

the variability of malaria cases in all regions is relatively good.

Additionally, the results suggest that the use of an ensemble

seasonal forecast is an added value.

Our results suggest that the VECTRI malaria model could be a

reliable Malaria Early Warning System (MEWS) tool, particularly

for identifying malaria hyper-endemic zones in Nigeria and West

Africa at seasonal time scale.
A B

D

E F

C

FIGURE 4

Showing (A), latitudinal evolution of malaria climatological cases over Nigeria (averaged between lon 2 -15°E), (B, C) monthly and seasonal
correlation between observed and VCR across the GoG (redline) the GFR (green line) SAV (blueline), the Sahel (light blueline) and over Nigeria
(blackline), (D, E), latitudinal yearly and yearly anomaly corelation and (F), percentage synchronization of the yearly anomaly.
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A

B

FIGURE 6

Rank Probability Skill Scores (RPSS) between the VCR and VFR
simulations for each LT, from all SDs over (A) the GoG (blackline),
GFR (redline), SAV (green line), Sahel (blueline), W.Africa (light
blueline), MerW (magenta line), and MerE (yellow line) regions.
(B) Latitudinal RPSS over W. Africa (blackline), MerW (redline), and
MerE (green line) regions.
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A

B

FIGURE 7

Relative operating characteristic (ROC) diagram based on VCR and
VFR probability standardized anomaly over (A), the GoG (black line),
GFR (red line), SAV (green line), SAH (blue line), and (B), across W.
Africa (light blueline), MerW (magenta line), and MerE (yellow line)
for all SDs and each LT.
A B

DC

FIGURE 5

Correlation between the VCR and VFR malaria cases for (A), each LT from all SDs, (B) each year from all SDs and LTs, (C) each season from all SDs
across the GoG (blackline), GFR (redline), SAV (green line), SAH (blueline), W. Africa (light blueline), MerW (magenta line), and MerE (yellow line)
regions. (D) Latitudinal correlation coefficients for all LTs from all SDs, across W. Africa (blackline), MerW (redline), and MerE (green line) regions.
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The ERA5 global reanalysis. Q J R Meteorological Soc. (2020) 146:1999–2049.
doi: 10.1002/qj.3803

25. Maranan M, Fink AH, Knippertz P, Amekudzi LK, Atiah WA, Stengel M. A
process-based validation of gpm imerg and its sources using a mesoscale rain gauge
network in the West African forest zone. J Hydrometeorology. (2020) 21:729–49.
doi: 10.1175/JHM-D-19-0257.1

26. Stein THM, Keat W, Maidment RI, Landman S, Becker E, Boyd DFA, et al. An
evaluation of clouds and precipitation in convection-permitting forecasts for South
Africa. Weather Forecasting. (2019) 34:233–54. doi: 10.1175/WAF-D-18-0080.1

27. Sharifi E, Steinacker R, Saghafian B. Assessment of GPM-IMERG and Other
Precipitation Products against Gauge Data under Different Topographic and Climatic
frontiersin.org

https://endmalaria.org/resources
https://doi.org/10.1186/1756-3305-7-265
https://doi.org/10.1038/s41598-022-15561-4
https://doi.org/10.1038/nature03342
https://doi.org/10.1186/1475-2875-12-65
https://doi.org/10.1175/2010JCLI3208.1
https://doi.org/10.1111/j.0269-283X.2004.00495.x
https://doi.org/10.1142/S1793524517500553
https://doi.org/10.3390/cli5010020
https://doi.org/10.3390/cli5010020
https://doi.org/10.1371/journal.pone.0150626
https://doi.org/10.1186/1756-3305-6-104
https://doi.org/10.1038/nature04503
https://doi.org/10.1016/S1471-4922(01)02077-3
https://doi.org/10.4269/ajtmh.2007.77.61
https://doi.org/10.1029/2018GH000157
https://doi.org/10.1175/JAMC-D-14-0156.1
https://doi.org/10.1175/BAMS-D-20-0224.1
https://doi.org/10.1175/BAMS-D-15-00306.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JHM-D-19-0257.1
https://doi.org/10.1175/WAF-D-18-0080.1
https://doi.org/10.3389/fitd.2024.1322502
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org


Olaniyan et al. 10.3389/fitd.2024.1322502
Conditions in Iran: Preliminary Results. Remote Sens. (2016) 8:135. doi: 10.3390/
rs8020135

28. Cafaro C, Woodhams BJ, Stein THM, Birch CE, Webster S, Bain CL, et al. Do
convection-permitting ensembles lead to more skillful short-range probabilistic rainfall
forecasts over tropical east Africa? Weather Forecasting. (2021) 36:697–716.
doi: 10.1175/WAF-D-20-0172.1

29. Woodhams BJ, Birch CE, Marsham JH, Bain CL, Roberts NM, Boyd DFA. What
is the added value of a convection-permitting model for forecasting extreme rainfall
over tropical East Africa? Monthly Weather Rev. (2018) 146:2757–80. doi: 10.1175/
MWR-D-17-0396.1

30. Nogueira M, Nogueira M, Luiz ID, De Ciências FUniversidade De Lisboa and
Campo Grande. Based analysis of systematic and random differences. Journal of
Hydrology (2020) 583:124632.

31. Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AIJM, et al.
MSWEP V2 global 3-hourly 0.1° Precipitation: methodology and quantitative
assessment. Bull Am Meteorological Soc. (2019) 100:473–500. doi: 10.1175/BAMS-D-
17-0138.1

32. Johannsen F, Ermida S, Martins PA, Trigo IF, Nogueira M, Dutra E. Cold bias of
ERA5 summertime daily maximum land surface temperature over Iberian Peninsula.
Remote Sensing (2019) 11:2570. doi: 10.20944/preprints201909.0268.v1

33. Ruben U, Huld T, Gracia-Amillo A, Martinez-de-Pison FJ, Sanz-Garcia A,
Kaspar F. Evaluation of Global Horizontal Irradiance Estimates from ERA5 and
COSMO-REA6 Reanalyses Using Ground and Satellite-Based Data. Elsevier
Enhanced Reader. Available online at: https://reader.elsevier.com/reader/sd/pii/
(Accessed July 11, 2022).
Frontiers in Tropical Diseases 11
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