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The molecular biology tools available since the early 1970s have been crucial to

the development of molecular epidemiology as an important branch of public

health, and are used for the identification of host genetic and environmental

factors associated with both communicable (CDs) and non-communicable

diseases (NCDs) across human and animal populations. Molecular

epidemiology has significantly contributed to the understanding of etiological

agents, disease distribution, and how to track outbreaks, as well as to prevention

and control measures against tropical infectious diseases. However, there have

been significant limitations compromising the successful application of

molecular epidemiology in low-to-middle income countries (LMICs) to

address complex issues at the animal–human–environment interface. Recent

advances in our capacity to generate information by means of high-throughput

DNA genomic sequencing, transcriptomics, and metabolomics have allowed

these tools to become accessible at ever-lower costs. Furthermore, recently

emerged omics fields such as lipidomics are improving our insights into

molecular epidemiology by measuring lipid phenotypes that gauge

environmental and genetic factors in large epidemiological studies. In parallel,

the development of bioinformatic tools has revolutionized the utility of omics,

providing novel perspectives to better characterize pools of biological molecules

and translate them into the structure, function, and dynamics of organisms.

Unfortunately, the use of such powerful tools has not been optimal for a One

Health approach to both CDs and NCDs, particularly in low-resource tropical

settings. The aim of this review is to present the fundamentals of omics tools and

their potential use in molecular epidemiology, and to critically discuss the impact

of omics on the evolving One Health dimension applied to tropical diseases. We

use Ethiopia and Brazil as model systems to illustrate existing gaps and

opportunities, while also addressing global applications. Moreover, we also

discuss perspectives on exploring omics based molecular epidemiology in the
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context of One Health as a crucial approach to preventing and mitigating

the burden of CDs and NCDs at the interface of human health, animal health,

and the environment. This review shows that building capacity in the tropical

regions is crucial to establishing equitable global health.
KEYWORDS

communicable diseases, non-communicable diseases, omics, metabolomics, genomics,
transcriptomics, lipidomics
Overview: molecular epidemiology
of tropical diseases and the One
Health approach

Today, our planet is facing major complex global health

challenges. Approximately 75% of public health emergencies

associated with infectious diseases are of animal or environmental

origin (1). Tropical regions such as sub-Saharan Africa, Latin

America, and Southeast Asia are known to be major hotspots of

emerging and re-emerging infectious zoonotic diseases of global

significance (2). Furthermore, the consistent increase in major

chronic non-communicable diseases (NCDs) in the tropical belt is

known to be associated with environmental factors, mainly

chemical hazards (3). The One Health approach addresses such

complex issues at the interface of human health, animal health,

plant health, and the environment (4). Recent examples of major

epidemics and pandemics that necessitated One Health-oriented

initiatives for prevention or mitigation include COVID-19, Ebola

virus disease (EVD), Zika virus, Middle East respiratory syndrome

(MERS), and many emerging and re-emerging vector-borne

diseases, including dengue fever and chikungunya (5, 6).

Tropical regions, particularly those in developing countries,

have experienced significant limitations in implementing these

genotypic approaches to address epidemiologic problems with

both communicable (CDs) and non-communicable (NCDs)

diseases. We have previously reported on a detailed review of the

use of molecular epidemiology to address leading bacterial and viral

zoonotic diseases, and addressed the critical capacity-building needs

at the interface of human health and animal health (4, 7). The

problem is further accentuated with regard to the application

of omics approaches. Although the use of omics approaches is

rapidly expanding worldwide, with more advanced tools at ever-

lower running costs, their implementation remains very limited in

developing tropical regions compared with in developed regions

where there is usually ample laboratory infrastructure and well-

trained personnel. Moreover, although high-resolution genomic

epidemiology can provide invaluable information about

dissemination patterns of infectious agents, as shown in the

COVID-19 pandemic (8), there is a paucity of information about

the role of the environment and other potentials reservoirs of

infectious agents (including zoonotic pathogens) in developing

tropical regions. The successful integration of omics and non-
02
omics data in analytical epidemiological models is a key

bottleneck, and the application of more effective and relevant

bioinformatics approaches to epidemiologic investigations is

required (9).

Most diseases are complex in nature and result from the

interaction of biotic and abiotic hazards (such as pathogens) with

environmental factors or exposures at the system-level interface.

Therefore, understanding these complex associations requires

modeling exhaustive and appropriate data that characterize in

detail such features and conditions at the molecular level. The

statistical power of the strength of association between risk factors

and disease states is weakened by the fact that phenotypes of

different exposures are coded, not only at the genetic level but

also at the macromolecular (lipid, protein, etc.) and molecular (fatty

acid, amino acid, etc.) levels of detail.

In this review, we describe the conceptual fundamentals and

current status of the use of various omics to address tropical and

global diseases of significance to the One Health approach,

including examples concerning foodborne, waterborne, vector-

borne, and interrelated chronic diseases. We will highlight gaps

associated with implementing omics tools in tropical developing

regions using model systems from Latin America (Brazil) and

eastern Africa (Ethiopia). These two tropical countries were

chosen based on convenience and yet they represent developing

regions with a distinct disparity in terms of economic status and

availability of skilled personnel and laboratory infrastructure. We

will highlight details of how genomics, metagenomics,

transcriptomics, and metabolomics, such as lipidomic tools, are

used to address communicable and non-communicable diseases.

Finally, we recommend potential ways to develop and strengthen

capacity for the application of omics tools and associated

bioinformatic analyses in tropical developing regions.

The term “molecular epidemiology” emerged around the early

1970s with the use of molecular biology tools to link swine and

human type A influenza virus H1N1 to the 1918 influenza

pandemic (10). For the last half a century, a plethora of

molecular biology techniques have been used to more accurately

address epidemiologic investigations by, for example, discerning

etiology, understanding risk factors, tracking sources of disease

outbreaks, developing markers for diagnostic purposes, and

assisting prevention and control approaches to epidemics and

pandemics. Present-day molecular epidemiology is moving from

the traditional reductionist approach toward omics-driven research,
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which is mainly spurred by the technological advances using high-

throughput laboratory techniques that measure multiple

biomarkers from different sources (11–14).

Molecular epidemiology must be recognized as a dynamic and

rapidly evolving discipline. The molecular tools commonly applied

to molecular epidemiology are usually used with the aim of

investigating disease occurrence, disease distribution, or the

determinants associated with disease distribution. However,

sometimes the term molecular epidemiology has been misused in

studies that should be more appropriately described as involving

molecular taxonomy or phylogeny, as no epidemiological problem

is addressed, despite the invaluable contribution of both phylogeny

and taxonomy to the field of molecular epidemiology (15). Box 1

shows the definitions of terminologies pertinent to this review.

The tools that have been commonly used over the last two-to-

three decades have primarily focused on methodologies that

indirectly show sequence variations of the targeted pathogenic

organisms or eukaryotic gene biomarkers. Such methods are

primarily based on the profiling of chromosomal or plasmid-

based genetic determinants, DNA fragmentation built on targeted

restriction digestion, the amplification of targeted gene(s),

hybridization using targeted probes, the amplification of repetitive

elements, or a combination of these approaches. Some of the most

common methods used in molecular epidemiology of infectious

diseases include random amplified polymorphic DNA (RAPD),

restriction fragment length polymorphism (RFLP), pulsed-field gel

electrophoresis (PFGE) (16, 17), amplified fragment length

polymorphism (AFLP) (18), and repetitive palindromic PCR

(REP-PCR) (19), among many others.

These indirect DNA fingerprinting (or also known as

genotyping) approaches come with various advantages as well as

limitations. They have great variability in terms of discriminatory

power (measured based on Simpson’s index of diversity, i.e., the DI

index) (20), repeatability (ability to give consistent results at the

same conditions, usually referred to as intra-laboratory

reproducibility), reproducibility (ability to give consistent results

in different conditions, usually referred to as inter-laboratory

reproducibility), typeability (applicability for the a specific

organism or targeted genetic element), throughput (ability to test

a large number of specimens in a defined period), and other

optional criteria such as speed and cost. The relative importance

of each criterion depends on the objectives of the epidemiologic
Frontiers in Tropical Diseases 03
scenario (outbreak investigation, surveillance, or research) as well as

the availability of laboratory infrastructure, laboratory supplies, and

skilled personnel. The incorporation of sequencing information

provided by first-generation sequencing platforms (Sanger

sequencing) represented an important evolutionary step in

molecular epidemiology toward the development of methods such

as multilocus sequence typing (MLST) (21) and spa typing, which is

based on sequencing of the polymorphic X region of the protein A

gene (spa) present in Staphylococcus aureus (22). A summary of the

evolution of epidemiology with the application of various

genotyping tools and their unique features is shown in Figure 1.
Overview of omics as a
tool for understanding
molecular epidemiology

The development of omics in the last few decades has been of

increasing importance, as they allow us to address molecular

epidemiologic questions in the most direct and discriminatory

ways. These approaches are rapidly expanding across the world

with more advanced tools that can rapidly sequence small or large

RNA- or DNA-based genomes of bacterial, viral, or parasitic

organisms. Consistent with this, the whole-genome sequencing

(WGS) of pathogens has become an indispensable tool in

epidemiologic investigations of veterinary and livestock infectious

diseases. The cost of these genomic tools is also rapidly declining,

making them more affordable to use for epidemiologic research,

surveillance, and outbreak investigations. However, their

implementation has been very limited to developed regions where

there is ample laboratory infrastructure and well-trained personnel.

The need for capacity building in low- and middle-income

countries (LMICs), most of which are located in tropical regions,

is of paramount importance.

More recently, approaches using next-generation sequencing

(NGS), also known as second-generation sequencing (SGS) or

massively parallel sequencing (MPS), have enabled us to obtain

high-throughput genomic information capable of determining the

order of nucleotides in the whole genome or targeted regions of DNA

or RNA (cDNA) with scalability and speed, providing completely

new perspectives for genomic approaches. We are now experiencing
Box 1: Definitions of pertinent terminologies
Molecular epidemiology is the field of epidemiology in which information at the molecular level is obtained or explored by molecular tools to improve our capacity to

make epidemiological decisions. Therefore, molecular epidemiology can provide additional information to classic epidemiological approaches (descriptive or analytic) that
can be applied to a diverse health-related outcomes or events, such as investigating outbreaks, establishing surveillance systems, developing rapid diagnostic methods,
detecting host genetic markers for disease susceptibility etc.

Genetic epidemiology: is the field of molecular epidemiology in which molecular biomarkers to assess genetic variations that allow predicting susceptibility and
progression of disease. The term is usually applied to the study of non-communicable diseases (NCDs). Genetic epidemiology deployed the use of molecular biomarkers to
assess genetic variations that allow predicting progression of various NCDs such as cancer, diabetes and cardiovascular diseases among others. Genetic epidemiology is
particularly important in the control of inherited diseases and in the understanding of the multifactorial causes of diseases related to genetic aberrations among individuals
or (sub-) populations.

Genomic epidemiology: is one more evolutionary step in progression of molecular epidemiology where genomic information, usually obtained by high-throughput
sequencing methods and bioinformatics, such as whole genome sequencing (WGS) or metagenomics, is used to investigate the distribution and spread of infectious agents
and to mitigate disease in a population. Although this term has been also used in studies involving host-related genetic background, its more frequently used to address
etiologic agents.
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the expansion of third-generation sequencing technologies, also

known as long-read sequencing technologies, which represent very

powerful tools for genome assembly, especially by using short- and

long-read hybrid assembly strategies. Later in this review, NGS and

its utilities for molecular epidemiology in a tropical diseases context is

described in greater detail.

In parallel with other high-throughput measurement methods,

such as liquid chromatography combined with high-resolution

mass spectrometry (LC-MS/MS) and nuclear magnetic resonance

(NMR) spectroscopy, we are now able to collectively detect and

quantify pools of biological molecules, such as small molecule

substrates, intermediates, proteins, and products of cell

metabolism, providing unique chemical fingerprints associated

with specific cellular processes (23). The possibility of collectively

characterizing these biological molecules and analyzing how they

translate into structure and biological function, supported by

increasing computational biology and bioinformatics, was the

milestone for omics (genomics, transcriptomics, proteomics, and

metabolomics including lipidomics). These tools enable the

identification of biomarkers that are often crucial for the

development of diagnostic or therapeutic tools. Biomarker

datasets characterizing biological features by means of genomics,

transcriptomics, proteomics, lipidomics, and metabolomics are

commonly known as omics data, while non-omics data are

usually either phenotypic or genotypic data measuring indirect

differences in genetic makeup, as described in the earlier section.

The profiling of these biomarker datasets characterizing

biological phenotypes at different levels of a biological system

using highly discriminatory and high-throughput biotechnologies

on DNA sequence data (genomics), RNA expression levels

(transcriptomics), protein translation levels (proteomics), lipid

synthesis levels (lipidomics), and metabolite levels (metabolomics)

is commonly called omics data (24–26). Therefore, omics is the field

of biomarker discovery research using sets of advanced tools to

discover multiple factors that can be applied to understanding large
Frontiers in Tropical Diseases 04
sets of biological molecules involved in disease or health conditions;

it explores the comprehensive set of an organism’s genetic and

phenotypic makeup (24).

Advanced technologies including next-generation sequencing,

single- or multi-cell RNA assays, high-definition spectrometry

tools, and expression assays have enabled the profiling of

biological systems at the genomic, transcriptomic, proteomic,

lipidomic, and metabolomic levels. In doing so, omics studies

have helped to indicate early molecular signatures of low-level

exposures, broadening our understanding of healthy and diseased

states. At the same time, epidemiological registries gather

information such as individual reports of habits and symptoms,

the characterization of diseases by pathologists, and clinical

electronic health records, commonly referred to as metadata.

Consequently, as the application of omics tools in molecular

epidemiology has increased in recent years with the improved

sensitivity, higher resolution, and greater number of data

garnered by omics-based assays, it has been combined with

robust metadata to decipher classical epidemiologic questions.

Through these advancements in multiple biomarker discovery

techniques, modern population studies have moved from “black-

box epidemiology” to “systems epidemiology” (27). Nevertheless,

omics-based population studies will still require the basics of

epidemiological studies, such as confounding, interaction,

selection bias of the population, and measurement error

principles, while also exchanging the reductionist view of the

traditional approach for a more complex interpretation of

different exposures on biological systems using multiple

biomarkers (28). Therefore, in the context of understanding the

complex effects of environmental factors on biological systems, it is

crucial to integrate omics data and non-omics data (metadata) in

the same models of association and prediction of health or disease

status. This endeavor poses several challenges regarding data

generation, capture, curation, sharing, analysis, and visualization,

and regarding information privacy and storage (29).
FIGURE 1

Schematic diagram depicting the evolution of epidemiology as a discipline from the classic descriptive/analytic epidemiology to molecular
epidemiology, progressing from traditional indirect genotyping methods to the current and emerging omics applications. Block arrow (gray) shows
the progression pattern of the molecular epidemiology approaches.
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omics application in One Health-related
molecular epidemiology: some examples
applied to NCDs

One Health is an integrated, unifying approach that aims to

sustainably balance and optimize the health of humans, animals,

plants, and ecosystems. It recognizes that the health of humans,

domestic and wild animals, plants, and the wider environment

(including ecosystems) are closely linked and interdependent. More

than two-thirds of emerging and re-emerging diseases in humans

are known to be of animal and environmental origin (30). Omics-

based research provides in-depth information about the effect of

exposure on the metabolome profile (the transcriptome,

microbiome, lipidome, etc.) and how these complex changes may

allow for the identification of associations between the gene

expression profile and confounding environmental factors (31).

Although recent high-resolution and high-throughput omics

tools are accelerating and expanding epidemiological population

studies, the use of molecular tools to identify biomarkers

associated to disease or health conditions started decades ago. A

good example of the application of systems-level multi-omics is

the Framingham Heart study established in 1948 (32), which

revealed the complex dynamics between smoking, lifestyle, and

metabolic disorders and susceptibility to coronary heart disease

development (33, 34). In addition, genotyping studies have

generated an important hypothesis on the environmental effect

of benzene exposure on the development of hematological cancer

(35, 36). Some of the approaches that have been used in the

context of One Health include a microarray-based measurement

of approximately 22,000 gene transcripts revealing a set of genes

that were differentially expressed and further elucidating the

biological pathways that are involved in arsenic-induced skin

lesions. (37).

Although important advances have been achieved in terms of

the identification of genetic markers associated with NCDs, such as

diabetes mellitus (38, 39), cancer (40), and even obesity (39, 41), the

vast majority of investigations have originated from developed

high-income countries (42). Importantly, there is not only a

scarcity of information on the genetic background of populations

in LMICs, but also a lack of knowledge of the environmental risks

affecting these populations. This is of paramount importance, as

gene functionality can be affected by environment and nutrition

(43). Moreover, the effects of environmental factors on gene

functionality, driven by molecular mechanisms, such as DNA

methylation and micro-RNA modifying gene expression, are

heritable (44). This is particularly important for public health as

an understanding of the implications of exposure factors, especially

those associated with embryogenesis and gestation, can be key to

preventing NCD in later life and future generations. This is the field

of epigenetics (45); the mechanisms of human disease-causing

mutations associated with changes in the epigenome or in the

abundance and activity of proteins regulating chromatin structure

are reported by Zoghbi and Beaudet (46). Epigenetic epidemiology

can provide unprecedented insights into the evolutionary aspects of

diseases at both the individual and population level. However, the
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particularities of the genetic background and biotic and abiotic

exposure factors in LMICs should be considered when building

rigorous causal models in these regions.
Genomics and metagenomics
frontiers in genomic epidemiology

The term genomics is often used to refer to a whole-genome-

sequencing (WGS) approach to understanding and managing

infectious disease outbreaks, and it is inarguably one successful

application of omics tools in investigating infectious diseases (47).

The application of genomics in the epidemiological framework

involves inferring relatedness among organisms by incorporating

sets of epidemiological parameters known as metadata together

with organism sequence information (48). In such a case,

sequencing is usually performed in previously isolated organisms,

especially cultured bacteria. For organisms containing shorter

nucleic-acid contents, such as viruses, the whole genome can

usually be obtained by either amplicon sequencing combinations

in second-generation sequencing technologies or applying long-

read sequencing third-generation technologies. On the other hand,

shotgun metagenome sequencing (the sequencing of the total DNA

of a sample without the previous isolation of targeted organisms)

allows for the identification of the microbial community present in

a sample and the characterization of these microorganisms in terms

of the presence of virulence or resistance genes (49). For instance,

shotgun metagenomics of blood culture bottles with periprosthetic

tissue enabled the prediction of phenotypic antimicrobial resistance

and virulence profiles for Staphylococcus aureus (50).

Although (meta)genomics can provide high-resolution

information that is usually explored in epidemiological research,

the use of genomics in routine clinical microbiology can differ

significantly as the time to response is a key factor, whether it is

applied to the rapid characterization of infectious agents directly

from clinical samples or to the identification of pathogens to

combat disease outbreaks (51). Importantly, the structural

complexity and genome size of organisms have a profound

impact on the practical aspects of genomics field application,

including cost and speed. Although small genomes, such as

viruses, facilitate the use of tools such as WGS, eukaryotic

pathogens such as malaria are distributed in a wider variety of

phylogenetic lineages. Their functional complexity relies on

evolutionary aspects associated with pathogenicity and host

adaptation (52, 53), making comparative genomics, for the

identification of vaccine targets, for instance, more complicated,

costly, and time-consuming (54–56).
Genomics spurred by
technological innovation

Genomics, as is the case for all other omics fields, was spurred

by technological innovation (57). The conventional methods for

identifying and characterizing bacterial, viral, and parasitic
frontiersin.org

https://doi.org/10.3389/fitd.2023.1151336
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org


Tigistu-Sahle et al. 10.3389/fitd.2023.1151336
pathogens from patient or environmental samples were established

in the 19th century and are based on presumptive organisms in a

system designed to selectively enrich specific pathogens (58).

Toward the end of the 20th century, molecular and nucleic acid-

based assays were used in various ways for pathogen genotyping

and epidemiological traceability. NGS methods introduced a

massive parallelization of DNA sequencing, exponentially

increased the number of data generated, and at the same time

lowered the cost of WGS (59). Hence, NGS has allowed researchers

to sequence hundreds of organisms simultaneously (58, 60).

Since 2008, the National Institutes of Health (NIH) have

reported a 50-fold drop in the cost per-megabase of DNA

sequencing with the introduction of NGS methods. For bacterial

genome sequencing, NGS methods cost approximately US $150 to

US $250, compared with $94 PFGE, which was the gold standard

method for genotyping foodborne bacterial infections on PulseNet

(61). Further refinement of technologies has occurred through time,

especially with the introduction of third-generation sequencing

technologies (59). Third-generation sequencing technologies use

single DNA/RNA molecules and offer long- to ultra-long reads,

which are ideal for assembling repetitive mobile genetic elements

and plasmids (62, 63).

On top of these technological innovations, the development of

highly scalable and adaptable sequencing protocols facilitated the

widespread use of WGS. A good example is the tiled amplicon

sequencing approach developed for WGS of the Ebola virus in 2015

(64), Zika virus (ZIKV) in 2017, and West Nile virus (WNV) (65),

and was quickly adapted for SARS-CoV-2 sequencing (the ARTIC
Frontiers in Tropical Diseases 06
protocol), which enabled large-scale sequencing with a considerable

cost reduction ($10–50 per genome) (66). As of the compiling of

this report, more than 13 million SARS-CoV-2 genomes and more

than five million raw un-assembled (FASTQ) sequences have been

shared openly through the Global Initiative on Sharing Avian

Influenza Data (GISAID) and the National Center for

Biotechnology Information (NCBI) databases, mostly using the

tied amplicon sequencing protocol. This constitutes the largest

single pathogen genome collection in history.
Genomics provide high-resolution insights
for infectious disease epidemiology

A series of molecular epidemiology methods, including PFGE,

MLST, and targeted amplicon-based sequencing have been

developed and used to construct phylogenetic relationships (7).

NGS and the ability to perform WGS have leapfrogged the iterative

improvements of these older genotyping methods (67). Whole-

genome sequencing of pathogens provides a single-base-pair-level

resolution, making it ideal for investigating outbreaks in a

population or hospital setting involving clonal pathogens that

conventional molecular epidemiologic tools were unable to

discern (67). Notable examples include a S. aureus outbreak

investigation in intensive care and neonatal units showing that

spa typing captured a minority of the transmission events, in

contrast to WGS (68). Similarly, the US Food and Drug

Administration (FDA) documented multiple incidents of
FIGURE 2

Time-scaled phylogenetic reconstruction of Staphylococcus aureus that originated in humans, with cross-species transmission to bovines 2,500
years ago. Branches are color coded according to the host and arrows point to the main evolutionary jumps into the bovine population. Adopted
(with permission) from 75; Proceedings of the National Academy of Sciences (PNAS)].
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Salmonella (69, 70), E. coli (71), and Listeria (72) outbreaks where

conventional typing tools, such as the PFGE, were unable to

attribute a source. In those instances, WGS was used to

investigate the relatedness of clinical isolates to food and

environmental sources containing identical strains of bacterium

(73). A good example of the use of genomics is the mapping of

Vibrio cholerae subtypes introduced in Haiti from South Asia that

caused more than 9,000 deaths in the 2010 outbreak (74).

Moreover, a contemporary population-level genetic analysis

powered by WGS can comprehensively dissect a pathogen’s

evolutionary history and provides insights into origins and cross-

species transmission events. A recent study that looked at 10,254 S.

aureus genomes including 1,896 bovine isolates showed four

independent host-jump events in the last 2,500 years (Figure 2).

S. aureus human-to-animal transmission facilitated evolutionary

adaption in livestock, which was then followed by the dissemination

of seven endemic S. aureus clones through the cattle trade, causing

bovine mastitis around the world (75). Beyond high-resolution

genotyping, WGS is applied as a diagnostics tool in public health

and clinical laboratories to guide treatments, for example, to guide

appropriate antimicrobial therapy in the case of foodborne

pathogens or monitor resistance to antiviral therapy in the case of

human immunodeficiency virus (HIV) infections (76). It also

constitutes a second-line confirmatory test to clarify test

ambiguities, differentiate between species with complex genera,

such as the Mycobacterium tuberculosis complex, and verify

relapse or reinfection in cases of a second episode of infection (77).

Whole-genome sequencing and genomic epidemiology have

contributed significantly to the response to major infectious disease

outbreaks in tropical regions in the last two decades. Real-time

monitoring of virus spread using portable sequencers was

demonstrated in the 2014 Ebola virus disease (EVD) outbreak

that spread through Guinea, Liberia, Sierra Leone, and Nigeria

(64). The genomic analysis showed that a West African EBV variant

diverged from Central African lineages around 2004 (78) and

crossed from Guinea to Sierra Leone around May 2014 to cause

sustained human-to-human transmission (79, 80). Furthermore,

large-scale sequencing efforts involving the virus from 2013 to 2016

showed that the outbreak involved a single spillover event of the

Zaire Ebola virus from an animal reservoir before it was sustained

through human-to-human and cross-border transmission events

(78). For EVD, direct contact and human-to-human transmission

remain the typical pathways. Genomic studies have proven that

outbreaks can occur through sexual transmission of the virus from

persistently infected individuals. This finding was a basis for the

improvement of the WHO guidance on the repeated testing of

semen samples before clearing a patient (81, 82).

Another major epidemic of the last decade was the Zika virus

(ZIKV) outbreak in the Americas, which emerged in Brazil, where

viral whole-genome sequencing data from the vector (mosquitoes)

were used to shed light on the number of country-level virus

introduction events. Using ZIKV whole-genome phylogenic

reconstruction, studies were able to plot the rapid expansion of

the ZIKV from Brazil to Puerto Rico, Honduras, Colombia, other

Caribbean islands, and the continental United States (83). Modeling

involving genomic data and traveler information have provided
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evidence of unreported hidden outbreaks of ZIKV in Cuba,

providing a framework for understanding ZIKV dynamics in the

Americas (84).

Most importantly, the past 3 years have been an illustrative

example of how genomic data can support conventional

surveillance. More than 13 million SARS-CoV-2 sequences,

compiled through GISAID, mainly from human sources, were

used for real-time monitoring of the pandemic’s spread and to

design mitigation strategies. In those countries with periodic

sampling, the SARS-CoV-2 genome provided early insight into

the emergence of viral mutations and provided a platform from

which to monitor SARS-CoV-2 evolution in real time (85, 86).

Large-scale genomic comparisons allowed for rapid estimation of

the rate of SARS-CoV-2 mutation and evolution in the early stages

of the pandemic. The initial calculation showed that the SARS-

CoV-2 mutation rate was at least 10 times lower than seasonal

influenza. However, with the emergence of variants of concern

(VOCs), the virus acquired a higher number of non-synonymous

mutations, specifically in the spike gene enabling SARS-CoV-2 to

evade natural and vaccine-acquired immunity and establish re-

infections in previously exposed individuals (87–90) The genomic

evidence, coupled with additional experimental findings, helped to

design a bivalent booster dose of the mRNA vaccines to protect

patients from severe COVID-19-associated pneumonia and

complications (88, 91, 92).

Another use for SARS-CoV-2 genomic data was for spotting

sources of novel variants. By sequencing viral genomes in a

longitudinal manner from persistently infected individuals,

studies elucidated the process of variant emergence, at least in

part (93, 94). In addition, the SARS-CoV-2 genomes from non-

human hosts were used to track the origins of some mutations

associated with animal adaptations and to identify transmission

routes to humans (95, 96). Also, genomic surveillance of SARS-

CoV-2 originating from environmental and wastewater

sequencing provided information on upcoming waves of

infection and novel variants before detection in human

surveillance (97).
Metagenomics: the microbial
community approach

Metagenomics comprises NGS approaches that sequence and

analyze multiple genomes of organisms simultaneously.

Metagenomics combined with untargeted nucleic acid extraction

allows a mixture of multiple genomes that cannot be cultured in the

laboratory to be detected, enumerated, and functionally

characterized. The key feature characterizing metagenomics as a

unique technique is that it can be universally applied to bacterial,

viral, and eukaryotic microbes all at once (98). It also circumvents

the challenges of viable but non-culturable (VBNC) microbes and

opens a transformative avenue for infectious disease investigations

(99). Prior to metagenomics, analyzing these microbes required

either isolating and amplifying a pure culture of any suspected

pathogen or performing whole-genome sequencing in repeated

rounds, which was highly costly, laborious, and time consuming.
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The utilization of nucleic acid for assessing bacterial diversity was

developed based on the 16S rRNA marker gene and phylogenetic

techniques pioneered in the field of environmental microbiology

(100, 101). Other markers that are also specific to prokaryotic taxa,

such as cpn60, rpoB, and 23S rRNA have been less frequently used

(102, 103). Universal targets for eukaryotic organisms include the

18S rRNA gene or, alternatively, the nuclear ribosomal internal

transcribed spacer (ITS) for specifically characterizing fungal

populations (104, 105). Importantly, these targeted NGS

approaches (amplicon sequencing) aiming at microbiome

characterization (metataxonomics) have reduced sequencing costs

compared with shot-gun metagenomics, contributing to their

widespread use in microbiome studies, particularly in those

focusing on gut microbial composition and dysbiosis. Although

these methods provide limited information compared with

metagenomics, as functional genes are not covered, the reasonable

cost–benefit trade-off owing to the need for lower sequencing depth

per sample has contributed to their increasing use in LIMCs.

Furthermore, functional predictive bioinformatic tools based on

taxonomic data are available (106) and can be exploited despite

their inherent limitations.

Dysbiosis of the intestinal microbiota is closely associated with

human infectious diseases. This is because the intestinal epithelial

cells associated with the microbiota form the major host immune

barrier. It is estimated that human somatic cells are less numerous

than the microbial cells colonizing all the tissues (107). The stability

of the human microbiome is influenced by several factors, including

human genetics and interactions with the immune system during

early development, body site, diet, antibiotic administration, and

lifestyle (108). Understanding the human microbiota, how it

interacts with the host, and how these microorganisms respond to

infectious diseases is of critical importance for the understanding of

disease epidemiology and for the development of new clinical

interventions in tropical regions. For instance, unique gut

microbial species have been identified in COVID-19 patients,

such as Streptococcus thermophilus, Bacteroides oleiciplenus,

Fusobacterium ulcerans, and Prevotella bivia (49), alongside

significant changes in other taxa possibly associated with disease

severity. These examples highlight the invaluable power of

metagenomics in shedding light on the complex microbial

interactions that clearly influence disease outcome.
The power of metagenomics as a One
Health discovery tool

Infectious diseases of viral origin, particularly RNA viruses, are

shown to cause the majority of the recurrent and novel emerging

zoonotic, foodborne, waterborne, and vector-borne disease

epidemics globally. The timely identification of novel pathogens

has a tremendous impact on the subsequent mitigation and

response. Unlike bacterial (16S rRNA) and fungal (ITS) agents,

viral agents lack unifying marker genes that can be used to

characterize the diversity of the virome. As a result, there is a

global trend toward the utilization of whole-genome metagenomic

sequencing approaches as mainstream methods to identify novel
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viruses. A recent example is the first identification of SARS-CoV-2

from a single patient admitted to the Central Hospital of Wuhan on

26 December 2019 experiencing severe respiratory syndrome.

Metagenomic sequencing of the bronchoalveolar lavage provided

the first conclusive evidence of a novel RNA virus from the family

Coronaviridae (109). This discovery had a clear impact: within 12

days, species-specific SARS-CoV-2 RT-PCR was developed for the

global monitoring of the spread of infection and to support the

public health response (110).

Nearly two-thirds of emerging infectious diseases that affect

humans are zoonotic, and three-quarters of these originate in

wildlife, making surveillance of wildlife for novel pathogens part

of a logical strategy to prevent future emergence. The greatest

paradigm shift in recent viral surveillance is the application of

metagenomics techniques at prioritized One Health interfaces to

identify viruses with the risk of novel emergence. Global projects,

such as PREDICT and the Global Virome, utilize this approach in

wildlife surveillance of potentially zoonotic viruses. Over the span of

10 years, these efforts have characterized 1,000 unique viruses,

including zoonotic diseases of public health concern such as

Bombali ebolavirus, Zaire ebolavirus, Marburg virus, and MERS-

and SARS-like coronaviruses (111, 112). Furthermore,

metagenomic approaches can detect co-infections, attribute

sources, and screen environmental samples for previously

unreported or divergent pathogens (113, 114). Innovative

metagenomic protocols such as meta-total RNA sequencing

(MeTRS) displayed improved sensitivity and linearity in detecting

viral, bacterial, and fungal communities with the greatest

reproducibility while requiring lower sequencing depth (Figure 3).

As a result, this approach has been increasingly used to investigate

the prevalence, diversity, abundance, and co-occurrence of low-

abundance pathogens; for instance, this approach was applied to

Campylobacter in infants to explain colonization patterns that may

have occurred through multiple reservoirs or from a reservoir that

several Campylobacter species coinhabit (113). In this study, our

team has also shown the use of metagenomics in studying 105 stool

samples collected from children infected with multiple viral genera

(Figure 4). Although Enterovirus was the most common, several

children were shown to be infected with three or four other viruses.
Transcriptomics

Analysis of the pathogen transcriptome is critical for

understanding host–pathogen interactions, predict ing

antimicrobial resistance, predicting virulence, and tracking disease

progression in humans and animals. A hybridization-based

microarray approach has been used in the past for studying gene

expression, but it has many limitations, such as the need to know

the sequence of genes to be studied in advance, artifacts due to

cross-hybridization, and inaccuracies in quantifying gene transcript

levels (115, 116). Other sequencing techniques such as series

analysis of gene expression (SAGE) and cap analysis gene

expression (CAGE), were found to be better than a microarray

approach for the quantification of genes but they are labor intensive,

require large quantities of RNA, and are not useful for quantifying
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spliced isoforms (117). In addition, all these previous methods are

expensive and very difficult to implement in tropical developing

regions because of a lack of skilled personnel. Next-generation RNA

sequencing (RNA-Seq) in now routinely used for studying gene

expression in pathogens and the host to predict and identify

regulatory pathways involved in disease pathogenesis. RNA-Seq

enables a high-throughput quantitative profiling of transcriptional

gene expression in an unbiased manner. Several technical

approaches are currently available for RNA-Seq, with each
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approach having its advantages and disadvantages. Bulk RNA-Seq

involves the sequencing of total RNA, which contains ribosomal

RNA (rRNA), pre-mRNA, and different classes of non-coding RNA

(ncRNA). This sequencing approach is useful for measuring global

gene expression patterns, alternative splicing, gene fusion, new

transcripts, and isoform expression (118). The most commonly

used bulk RNA-Seq involves a single-end short sequencing, which is

largely focused on mRNA, and involves targeting the poly(A)-tail of

mRNA using poly(T) oligonucleotides rather than depleting rRNA.
FIGURE 3

Campylobacter spp. prevalence, diversity, and abundance in children’s stools detected using MeTRS. Blue and red cells represent the absence or
presence, respectively, of Campylobacter spp. in stool samples. Adopted from the study by Terefe et al. (113; Frontiers in Public Health). MeTRS is
found to be more sensitive than PCR and detects more species of Campylobacter than reported in other studies that utilized the 16S method.
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This approach is useful for studying differentially expressed genes

(DEGs) between the biological samples. The other approach, which

is primarily useful for analyzing point mutations, novel transcripts,

and long non-coding RNAs, usually involves the sequencing of

rRNA-depleted libraries for better in-depth coverage. Nonetheless,

bulk RNA-Seq fails to capture transcriptomes of individual cells

within the biological sample and their heterogeneity. Bulk RNA-seq

has been used to assess drug resistance (119); the RNA interactome

(120); host–parasite interactions (121); and the characterization of

the pathogen stages in the vector (122) in zoonotic diseases such as

leishmaniasis, which is caused by a protozoan parasite Leishmania.

Recently, the single-cell RNASeq (scRNASeq) technique has

become one of the preferred tools for studying transcriptome

heterogeneity and discovering rare and uncommon cells. This

technique allows for a rapid analysis of gene expression profiles

of up to 20,000 individual cells in a single assay, and the

identification and characterization of cell populations based on

their transcriptomic signatures. scRNA-seq studies using

fluorescent bacterial strains have revealed host-cell heterogeneity

in vitro (123–125). Furthermore, Pisu et al. (126) used a multimodal

scRNASeq approach in Mycobacterium tuberculosis infection that

enabled the simultaneous acquisition of the host cell transcriptome

and bacterial phenotyping of the individual infected cell. They

demonstrated the functional heterogeneity of infected host cells in

vivo, which could not be revealed using conventional technology

(126). In addition, scRNA-Seq has proved critical for investigating

transcriptomic diversity in eukaryote pathogens such as

Plasmodium and Leishmania. In malaria, scRNA-Seq analysis of

different parasite life stages has revealed transcriptome signatures

that are associated with pathogenicity (127), sexual commitment

(128), asynchronous development, and sporozoite maturation

(129). In addition, single-cell epigenomics and scRNA-Seq can

identify the transcriptome changes that regulate the development

of host Th1 and Tfh cells in malaria (130, 131). An interactive

Malaria Cell Atlas developed following comprehensive functional

genomics analysis by scRNA-Seq of various Plasmodium species
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and parasitized host cells is a major milestone for malaria research

(132). Similarly, the scRNA-Seq technique has been effectively

employed to identify specific Leishmania parasite populations

with a discernible transcriptomic signature that are involved in

the formation of parasite hybrids between different Leishmania

species in vitro on stress (133). Tissue-specific dual RNA-Seq in the

liver and spleen of Leishmania donovani- and Leishmania

infantum-infected mice by sequencing both host and parasite

transcriptomes by bulk RNA-seq has identified distinct pathways

that could be involved in the pathogenesis of these two infections

(134). In a recent study using in silico-cell-type deconvolution for

transcriptome analysis, a unique transcriptome signature in bone

marrow stem cells from L. donovani-infected mice and the blood of

VL patients from India, Ethiopia, and Brazil was identified as

associated with parasite persistence (135). In addition, scRNA-Seq

of the cells isolated from L. major-infected mice identified cellular

heterogeneity and transcriptome alterations in the cells at the site of

infection (136). Nonetheless, single-cell-based RNA-seq methods

have not yet been used for simultaneous analysis of both host and

parasite transcripts in vivo. The analysis of host and parasite

transcripts at the single-cell level would allow for the

identification of novel cell type, which is not possible using

conventional methods, such as flow cytometry via cell annotation

by transcriptomic analysis. Such an unbiased approach can be

widely applied to other infectious diseases for which reference

transcriptomes are available.
Challenge: genomics is expensive and
metagenomics even more expensive

Since 2005, the number of NGS platforms with different costs,

chemistries, capacities, and applications in microbial genomics has

increased. With every emerging NGS technology, it is important to

evaluate its use in accordance with the laboratory’s research needs

and throughput requirements before adoption. Selection of the
FIGURE 4

Metagenomic profile of the gastrointestinal tract from 105 children’s stool samples from Ethiopia. Vertical columns represent each child’s sample.
The first four columns are negative controls. Enteroviruses were the most common in most children. The reads were filtered to include viruses with
a large number of gene segment reads.
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appropriate sequencing platform requires grounded knowledge on

reagent accessibility, cost, and instrument preventive and curative

technical support. Several guidance documents have reviewed the

infrastructural and operational need for the establishment of

genomic- and bioinformatics-associated capacities (137, 138). In

addition, major companies in the sequencing space offer NGS

solutions varying in size, cost, and throughput according to

research and clinical service needs, as in the case of high-

throughput sequencing cores. However, as of today, the NGS

market share of infectious diseases/microbiological research is

below that of human genetic, germline testing, and cancer-related

applications, making it difficult to obtain the technical support and

interest from companies necessary to invest in innovative means to

scale down NGS costs for routine use in infectious disease research.

Often, whole-genome bacterial and viral sequencing is performed

with benchtop sequencers with a few exceptions for highly

repetitive bacterial genomes that may require long reads, although

hybrid sequencing usually seems to be the optimal strategy for

superior genome assembly in such cases. Most pathogen sequencing

is performed with short-read sequencing technology for high raw

read accuracy. For applications that need a greater depth of

sequencing, such as the characterization of minor variants in a

microbial population and metagenomic studies, high-throughput

sequencers are often needed. These requirements increase the initial

investment from a few thousand to millions of dollars, depending

on the sequencing platform. Substantial investments are also

needed for ancillary equipment associated with quality control,

measurement, and library preparation. The different chemistries

available for NGS also have cost implications as, for example,

metagenomic sequencing requires unbiased pathogen detection,

hence careful assessment and consideration is needed to avoid

errors and biased amplification of organisms. This is especially

important with microbiologic and clinical research where

abundance can be associated with disease severity or

progression (139).
Bioinformatics: computational needs and
analytical tools

In most developing countries, investment in genomics and

bioinformatics capabilities was spurred more recently as a result

of the COVID-19 pandemic as a reactive measure rather than a

proactive investment (140). As a result, the laboratory facilities

established have minimal or no computational space or expertise in

the area of bioinformatics. An essential part of NGS (including

genomics, metagenomics, and transcriptomics) capacity is the

availability of infrastructure for data acquisition, analysis, and

storage frameworks. Currently, instruments on the market

produce sequencing in too large a quantity for most computer

CPUs (60). Hence, laboratories in developing countries generate

data that is beyond their capacity to store, manage, and analyze. In

addition, the lack of harmonization in data streaming has created a

choice of multiple (i.e., local, offsite, or cloud-based) platforms for

data storage and the preferred approaches vary depending on cost,

privacy risk, internet reliability, and ease of accessibility.
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Genomic, metagenomic, and transcriptomic data analysis steps

remain a challenge because the NGS raw sequence data (FASTQ)

require complex bioinformatic steps to assemble fragments.

Bioinformatic workflows for read-level processing, mapping,

genomic assembly, polishing, variant calls, and clustering using

phylogenetic approaches require individual tools that are not yet

harmonized. Handling, interpreting, and making use of the massive

datasets available, especially through metagenomics, requires a high

level of computational skill and an up-to-date understanding of the

taxonomic landscape via a well-curated database to provide context

for and an interpretation of the result (67).

Another important challenge that has been observed in the

context of NGS-generated information relates to data ownership

and regulations for data sharing. It is undeniable that technological

innovation and infectious disease control are affected by data access.

In the context of microbial sequencing data, the sharing of pathogen

information can improve surveillance systems and support drug

development to control infectious diseases (141). An important

example of the benefits of data sharing was observed during the

SARS-CoV-2 pandemic, enabling a rapid response to the pandemic at

both individual and population levels and contributing to the control

of infection not only in high- but also middle- and low-income

countries (142). However, complex barriers exist, primarily related to

the conflicting interests and motivations of different sectors involved

in data sharing, such as prioritizing public health, basic research,

economic prosperity, and innovation. Broad discussion and

coordination among sectors are urgently needed to establish rules

and to ensure that data access is not a limiting factor for infectious

disease control and inequality reduction.

Considering these limitations, internet and cloud technologies

are providing remarkable opportunities for remote learning and

data analysis, directly benefiting laboratories with limited

infrastructure and a lack of specialized staff, as commonly seen in

LMICs. Applications and pipelines for NGS-data analysis have been

discussed elsewhere (67), including tools such as Taxonomer,

EDGE, and Pathosphere. These and other low-cost or free

bioinformatics platforms are shown in the Supplementary

Material (S1).
Metabolomics application in One Health

The metabolome represents the entire low-molecular-weight

metabolites of an organism and thus is distinctly different from

genomic or transcriptomic sequences. The metabolite profiling of

these entities using spectrometry techniques is termed

metabolomics. As a relatively newer member of the ‘omics’

family, metabolomics seeks to define the entire complement of

metabolites within a cell, tissue, or biofluid (143, 144).

Metabolomics provides an analytical approach to reveal the

response of a biological system to endogenous or exogenous

stimuli, and, consequently, depict its steady-state physiological

state (145). As the downstream product of gene transcription,

proteome expression, and lipidome composition, the metabolome

(including lipidomics) is tightly coupled to other omics fields such

as genomics, transcriptomics, and proteomics. It represents an ideal
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platform for understanding the global systems biology of an

organism and its relationship with environmental stimuli (146).

The development of metabolomics over the past two decades has

mainly been spurred by the advancement of analytical techniques and

bioinformatic tools (147). The most common instruments used in

metabolomic analyses include liquid or gas chromatography coupled

with high-resolution mass spectrometry (LC-MS/MS, GC-MS/MS)

and nuclear magnetic resonance (NMR). The metabolomic

approaches used for such purposes can generally be grouped into

two classes: metabolite profiling (untargeted) and metabolite

fingerprinting (targeted) strategies. The former is a hypothesis-free

global investigation of metabolites in a biological system, whereas the

latter represents a hypothesis-driven analysis of predefined

metabolites (148–150; Castro-Puyana et al., 2013). The main

objective of an untargeted metabolite-profiling approach is to

establish patterns between different biological samples to potentially

indicate significant differences and lead to biomarker identification.

On the other hand, metabolic fingerprinting involves analysis of a

specified list of metabolites as a result of certain biochemical

questions about a particular pathway of an organism. Such targeted

analysis characterizes phenotypes and attempts to describe the

metabolic signatures or patterns left by environmental factors

(151). Between these two approaches to metabolomics, the

untargeted profiling of metabolites provides more potential for the

discovery of novel metabolic associations of diseases, and has the

potential to better characterize exposure and detect early markers of

diseases, thus improving diagnostic and therapeutic methods.

The application of metabolomic techniques can provide several

complementary inputs to classical molecular epidemiology

approaches. The strong computational and technological

application of metabolomics provides a strong correlation of

metabolite data with metabolic pathways (152, 153). Moreover, the

application of sensitive and robust analytical methods such as high-

resolution mass spectrometry combined with chromatographic

techniques (HPLC-MS/MS) or time-of-flight mass spectrometry

(LC-TOF MS) significantly improve the sensitivity and specificity

of small-molecule detection, and, consequently, allow the

characterization and quantification of complex metabolic profiles in

biological samples, which in turn results in the simultaneous

measurement of hundreds of metabolites in a single sample (154,

155). In this section, we will review the application of metabolomics

within the One Health concept by taking two countries, Ethiopia and

Brazil, as model references and highlight the role of this technique in

the clarification of issues that are relevant to the One Health topic.
Metabolomics applications in
zoonotic infectious diseases
and vector-borne diseases

The field of metabolomics has provided researchers with a new

generation of tools that detect the small-molecular metabolites of

organisms with improved sensitivity, ultimately improving our

understanding of pathogen detection and analysis of diversity.

Although this powerful analytical method has been extensively

applied to molecular epidemiology and related fields, its use in
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the elucidation of zoonotic infections is still underexplored. This

limitation is particularly prominent in the Global South, including

sub-Saharan Africa and Latin America. However, there are a few

studies reporting the use of metabolomics-based approaches to

address zoonotic infections. For example, Lagatie et al. (156)

reported on the use of metabolomics to identify potential markers

of infection by the nematode Ascaris lumbricoides in populations

from Ethiopia, Kenya, Belgium, and Indonesia. In another example

of the application of metabolomics in One Health, serologic

markers have been identified by NMR-based metabolomics in

ruminants affected by caseous lymphadenitis caused by

Corynebacterium pseudotuberculosis (157).

Modern metabolomic-based methods encompass the application

of advanced analytical instrumentation to study the vector–host–

pathogen interplay. Several metabolomic changes have been detected

in response to arboviral infections—including dengue, chikungunya,

malaria, and Zika virus—in serum, blood, and urine from humans,

mice, and monkeys (158). Given that such markers could be

identified in biofluids, such as serum and urine, metabolomic-based

analysis can be used for non-invasive, population-based screening of

various vector-borne diseases (159). Although there are few studies

reporting the use of metabolomics in regions affected by neglected

tropical and vector-borne diseases, interesting findings related to

shifts in the metabolic profiles of serum samples of Zika-virus-

infected newborns with or without microcephaly have been

reported (160). The use of metabolomics together with other omics

approaches (lipidomics, proteomics, and genomics) may provide new

insights and aid future studies focused on disease comprehension and

therapeutic applications for vector-borne diseases.
Metabolomics applications in food safety
and toxicity

Food safety is a major concern for governments and regulatory

agencies as a result of the significant increase in demand for animal- and

plant-derived food globally in parallel with the rise of food fraud and

adulteration. This is a potential field for the application of

metabolomics, as there are numerous laws around the world

regarding hazardous compounds such as chemical contaminants and

toxins and their maximum residue limits (MRLs) (161) Current trends

in food science have moved toward a multi-omics examination of

metabolites using metabolomic analysis in combination with other

omics technologies (e.g., genomics, transcriptomics, proteomics, and

lipidomics) to elucidate the fundamental mechanisms of food spoilage

and adulteration. In a study using LC-MS/MS, metabolomic methods

showed the contamination of Brazil nuts with aflatoxin B1, B2, G1, and

G2 (162, 163).

Owing to its robustness and high sensitivity, metabolomics has now

been applied to the concept of the “exposome” (i.e., the entirety of

human environmental exposures) and to the detection of the molecular

imprint of intermediate markers of exposure and diseases, leading to the

identification of causative agents (164). A study of Hirmi Valley liver

disease (HVLD) in the Tigray region of Ethiopia by Robinson et al.

(165) presented a unique application of metabolomics to human liver

injury caused by plant hepatotoxins known as pyrrolizidine alkaloids.
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Using untargeted global 1H NMR analysis, a number of metabolites

associated with liver dysfunction have been identified in urine samples

of HVLD cases, together with indicators of changes to the gut

microbiome in humans in response to this plant hepatotoxin.
Metabolomics applications in
environmental health

Biological systems are continuously exposed to several

environmental factors with biochemical consequences, and,

subsequently, environmental metabolomics is gaining ground as

one of the emerging omics fields. It can be used for examining the

metabolic fingerprints of environmental stressors, and, subsequently,

for the development of biomarkers of toxicant exposure, metabolic

response, susceptibility, and disease diagnosis and monitoring (166,

167). The application of metabolomics in this field will bring an

improved understanding of the underlying mechanisms of toxic

compounds in the environment. However, little evidence exists of

the application of this field in resource-limited regions globally. The

use of metabolomics in tropical regions, where environmental

stressors are rapidly increasing as a result of urbanization,

industrialization, climate changes, and other factors, is encouraged.
Metabolomics applications in non-
communicable diseases

NCDs are responsible for 74% of all deaths globally, of which

77% are in low- and middle-income countries (168). Current

clinical practices with respect to NCDs mainly focus on a select

number of biochemicals that are directly related to pathophysiology

and disregard the potential interaction of several other

metabolomes of a patient. Clinicians are thus prevented from

making the best possible therapeutic interventions as a result of

the lack of such multi-omics data that reduce the systems-level

approach to diseases. Several molecular epidemiology studies have

used metabolomic data to explain the metabolic pathways

associated with various pathologies, subsequently developing

several biomarkers for disease diagnosis and prognosis in type II

diabetes, cardiovascular diseases, hypertension, cancer, and heart

failure (Wang et al., 2011; 169–173).

Although no such studies were found in our model countries of

Brazil and Ethiopia, a study carried out in Western Africa (i.e., the

Gambia) applied metabolomics analysis to the diagnosis of

pneumonia, which was shown to be successful in identifying a

number of urinary and plasma metabolites with a strong correlation

to the incidence and severity of childhood pneumonia infection (174).
Challenges of applying metabolomics in
One Health

At the macro level, similar to other omics approaches, the main

challenges of applying metabolomics in tropical developing regions
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include the lack of skilled personnel and the lack of necessary

infrastructure. When these are available, however, there are both

technical and statistical challenges intrinsically associated with the

processing of metabolomic data. The technical challenges include

signal fluctuation, sensitivity reduction, environment alterations,

analytical variances (152), which usually arise during sample

handling and analytical laboratory preparation. Statistical

challenges arise from the lack of proper software applications that

can process the multidimensional and highly correlated metabolite

variables of datasets. Moreover, there is a lack of standardized

protocols concerning the type of specimens, sampling methods,

storage conditions, and profiling-related variables (150, 175, 176).

This is a critical factor for population-based epidemiological studies

using metabolomic data from different sources.

Standardization is urgently required for the epidemiological

application of metabolomics; a number of international

collaborations are now working toward the development of

standardized protocols guiding sample collection, processing, and

data acquisition (177). Similarly, international collaborations are

under way to address statistical challenges such as missing data and

multiple correlated datasets, which for the most part have not yet

yielded any gold standard approaches (175, 178–180).
Concluding remarks
and recommendations

Molecular epidemiology is a crucial discipline that allows us to

address critical public health challenges. This is particularly significant

considering the rising burden of communicable and non-

communicable diseases worldwide, especially those at the interface

of human health, animal health, and the environment, which

ultimately require the One Health approach. The rise of the omics

approach described in this review has brought much more powerful,

discriminatory techniques that allow us to discern etiologic agents,

track infectious strains, and characterize metabolites at a large scale in

complex biological systems. These technological developments have

enabled developed regions (mainly in the Global North) to accelerate

their capability for the early detection of potential public health

emergencies and the development and utilization of biomarkers for

the early detection of NCDs such as cancer, among many others. In

contrast to such progress, tropical developing regions (mainly in the

Global South) have been far behind in terms of building and

strengthening skilled personnel and laboratory infrastructure. This

disparity must be addressed and narrowed so that global health can be

improved equitably and the planet can be made healthy and livable

for everyone.

Increasingly, omics tools have become essential for surveillance,

research, and outbreak control in epidemic and pandemic settings.

However, there is great variation in their implementation across the

world. This disparity is not only between countries with a high GDP

(commonly referred as the Global North) and a low GDP

(commonly referred as the Global South), but also among

countries in tropical regions, where most Global South nations

are located. We recommend the following:
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• A major emphasis on strengthening laboratory

infrastructure capacity for omics is important.

• Considering the significant gap in human capacity

development, we recommend workforce training at PhD and

laboratory technician levels to establish a functional critical

mass of skilled workers who can address the needs in omics.

• In order to realize the above two points, it is crucial that

developing countries in tropical regions invest significant

financial resources in building and strengthening omics capacity.

• To accelerate the implementation of omics, it is also

important to establish more robust technology transfer

and data exchange systems, encompassing data access,

security, and other important areas.

• It should also be noted that omics is much broader than

genomics. We recommend the implementation of a more

complete package of omics, including metabolomics and

transcriptomics, in order to realize effective genotyping and

phenotyping profiles.
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