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Pregnant women are particularly susceptible to Plasmodium falciparum

malaria, leading to substantial maternal and infant morbidity and mortality.

While highly effective malaria vaccines are considered an essential component

towards malaria elimination, strides towards development of vaccines for

pregnant women have been minimal. The leading malaria vaccine, RTS,S/

AS01, has modest efficacy in children suggesting that it needs to be

strengthened and optimized if it is to be beneficial for pregnant women.

Clinical trials against pregnancy-associated malaria (PAM) focused on the

classical VAR2CSA antigen are ongoing. However, additional antigens have

not been identified to supplement these initiatives despite the new evidence

that VAR2CSA is not the only molecule involved in pregnancy-associated

naturally acquired immunity. This is mainly due to a lack of understanding of

the immune complexities in pregnancy coupled with difficulties associated

with expression of malaria recombinant proteins, low antigen immunogenicity

in humans, and the anticipated complications in conducting and implementing

a vaccine to protect pregnant women. With the accelerated evolution of

molecular technologies catapulted by the global pandemic, identification of

novel alternative vaccine antigens is timely and feasible. In this review, we

discuss approaches towards novel antigen discovery to support PAM

vaccine studies.
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Background on pregnancy-
associated malaria

Plasmodium falciparum, P. vivax, P. malariae, P. ovale and

P. knowlesi are the five major species of Plasmodium that cause

malaria in humans. Malaria remains a global public health threat

despite decades of intense control efforts (1). According to the

World Health Organization (WHO)-2020 malaria report, there

were 241 million malaria infections and 627,000 fatalities

globally, with 14 million infections and 69,000 more deaths

than in 2019. During the pandemic, nearly two-thirds of these

excess deaths (47,000) were attributable to interruptions in

malaria prevention, diagnosis and treatment (2). P. falciparum

causes the majority of malaria infections and fatalities with most

occurring in sub-Saharan Africa. The major disease burden is in

children less than 5 years of age, pregnant women, and

individuals with immunodeficiencies.

Despite immunity acquired after years of exposure, the risk

of infection is the same for women of all gravidities (3).

However, the risk of poor birth outcomes is increased in

primigravid and secundigravid women because they lack

protective antibodies against placental malaria parasites; such

outcomes include maternal anemia, spontaneous abortions,

premature delivery (gestation of less than 37 weeks) and

intrauterine growth retardation (IUGR) (4–7). This is

primarily driven by the accumulation of infected erythrocytes

(iRBCs) in the vascular spaces of the placenta (8).
Immunopathogenesis of malaria
in pregnancy

The sequestration of iRBCs in the vascular portion of the

placenta causes placental malaria (9). These parasites express a

surface ligand that is unique to placental malaria called

VAR2CSA. VAR2CSA is a member of the P. falciparum

erythrocyte membrane protein 1 (PfEMP1) family and binds

to chondroitin sulfate A (CSA), a glycosaminoglycan found in

the placenta and other cells that mediates sequestration of iRBCs

in pregnancy-associated malaria (PAM) (10, 11). These parasites

bind to CSA but not to other major surface ligands, notably

CD36 and ICAM-1, whereas most parasite isolates from non-

pregnant women do the contrary (12, 13). Parasite sequestration

in the placenta triggers a transition in the cell-mediated immune

response, often from Th2 to Th1, which is marked by an increase

in production of pro-inflammatory cytokines (14). Although

Th1-type responses are important for the elimination of the

parasite through stimulation of cellular immune responses,

overproduction of cytokines alters pregnancy (15). In addition,
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increased number of maternal phagocytic cells and fibrin in the

intervillous space together with deposition of hemozoin in

phagocytic leucocytes induce placental inflammation that is

associated with low birth weight and maternal anemia (8).
Protective antibodies against PAM

There is a strong negative association between gravidity and

poor birth outcomes from PAM (16). This suggests that

protective immunity develops against PAM and is directed

against a target that is pregnancy-specific and highly

immunogenic (17). VAR2CSA meets these criteria and

antibodies to this protein are associated with protection

against poor pregnancy outcome (18). In a recent study in

Benin, high antibody responses to the N-terminal region of

VAR2CSA were associated with lower risk of infection and low

birth weight highlighting the protective role of these antibodies

in immunity to placental malaria (19). Furthermore, in another

cohort, anti-VAR2CSA antibody responses involved cytophilic

immunoglobulin G (IgG) 1 and IgG3 subclasses, with prevalence

ranging from 28% IgG3 to 50% IgG1. During pregnancy, higher

levels of VAR2CSA-specific total IgG and cytophilic IgG3 were

consistently linked to higher birth weights, whereas high levels of

IgG4 were linked to a lower risk of placental infections, an

indicator that both cytophilic and non-cytophilic antibodies

offer protection (20).

In a similar study in Kenya, plasma from pregnant women

exposed to malaria inhibited more than 35% of parasite adhesion

to CSA (21). As expected, only one of 47 primigravid women

had anti-adhesion antibodies, whereas anti-adhesion activity

was higher in secundigravid women. This was associated with

increased newborn birth weight and gestational age but not

maternal hemoglobin. In a different study, IgG levels but not

IgM against parasite lysate were positively correlated with

newborn weight increase (22). In a study conducted in

Mozambique, IgG levels against placental and pediatric

isolates, as well as recombinant VAR2CSA (DBL2X, DBL3X,

DBL5 and DBL6 domains) and other blood-stage antigens

correlated with normal neonatal weight and gestational age in

women with PAM (23). In contrast, a recent systematic review

suggests that anti-VAR2CSA antibodies may instead be markers

of infection rather than correlates of protection (24).

Taken together, VAR2CSA appears to be an important

target of protective immunity to PAM (25), but additional

targets, and protective mechanisms could also exist. The

majority of studies, including vaccine trials, have focused on

understanding and/or evaluating the role played by VAR2CSA;

this is the only antigen under consideration as a PAM

vaccine currently.
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Current status of PAM vaccines

Surface expression of VAR2CSA is restricted to CSA-

adhering iRBCs, prompting development of vaccines targeting

this protein (26). The leading VAR2CSA-based vaccines,

PAMVAC and PRIMVAC (27), are designed to generate

functional antibodies capable of blocking the binding of

infected cells to CSA on placental syncytiotrophoblast as well

as opsonizing iRBCs expressing VAR2CSA. Such a vaccine

would protect pregnant women, especially primigravids, from

adverse outcomes in PAM.

PAMVAC is derived from the VAR2CSA subunit spanning

ID1-DBL2-ID2a of the FCR3 variant (28) while PRIMVAC is

based on CSA-binding DBL1x-2x region of the 3D7-VAR2CSA

allele (29). The clinical trials for PAMVAC (under the

registration EudraCT 2015-001827-21; ClinicalTrials.gov

NCT02647489) were carried out in Germany and in Benin.

The vaccine was well tolerated and immunogenic, and elicited

IgG antibodies that recognized the homologous variant of

VAR2CSA and blocked adhesion of these parasites to CSA in

vitro (30).

The clinical trial for PRIMVAC (registered with

ClinicalTrials.gov, NCT02658253) was conducted in two

phases, the first in 18 to 35-year-old women in France and the

second in women who were naturally exposed to P. falciparum

and nulligravid in a research center in Burkina Faso using the

same formulations as for PAMVAC (31). Similarly, the vaccine

was safe, immunogenic and elicited antibodies with high

reactivity toward parasites expressing the VAR2CSA variant

homologous to the one in the vaccine. However, there was no

recognition or anti-adhesion activity against heterologous

variants of VAR2CSA (31).

This poor recognition of antibodies to the PAM vaccines

against heterologous VAR2CSA alleles is a significant limitation

that must be overcome to generate a broadly effective vaccine

against PAM. In a recent analysis of the var2csa gene in more

than 2,000 P. falciparum field isolates across 23 geographically

distant countries (32), Benavente et al. reported high nucleotide

and haplotype diversity of VAR2CSA in African parasites

compared to South East Asian parasites. Significant differences

in the frequency of extra VAR2CSA copies was also observed in

Oceania, West Africa, East Africa and Southeast Asia isolates at

88%, 35%, 29% and 21%, respectively. Surprisingly, insertion

and deletions were observed within the DBL-2x domain, a major

component of both PAMVAC and PRIMVAC vaccines (33).

Further investigations are needed to shed light on whether such

indels could impact the protein structure necessary for binding

to CSA and/or its ability to induce the immune response. High

polymorphism in var2csa was also observed in a strain from the

Democratic Republic of Congo (34). These studies have clearly

demonstrated genetic variation in var2csa, cementing the need
Frontiers in Tropical Diseases 03
to develop broad multivalent vaccine candidates that could be

efficacious across different variants.

While most vaccines against PAM focus on VAR2CSA,

vaccines that prevent liver stage infection would also have a

profound impact on pregnant women. One vaccine, the

radiation attenuated P. falciparum NF54 sporozoites (PfSPZ

Vaccine), which demonstrated significant protection in African

adults (35), is now being assessed in Mali for safety,

immunogenicity, and potential protective efficacy in women of

childbearing potential (clinicaltrials.gov; NCT03989102).
Identification of targets of broadly
cross-reactive antibodies

A critical feature of a PAM vaccine is to elicit antibodies that

mimic naturally acquired immunity and recognize diverse alleles

of var2csa. Natural immunity may be mediated by a repertoire of

antibodies to diverse epitopes (36) or increased affinity to

conserved epitopes that are shared across variants.

Doritchamou et al. revealed conserved epitopes in a single

variant of VAR2CSA and these epitopes are targets of

neutralizing antibodies, a promising discovery to develop a

vaccine using a few selected variants (37). Moreover,

VAR2CSA has several globally shared, cross-reacting

polymorphic epitopes (38).

The choice of construct for a domain specific VAR2CSA

vaccine is one that elicits antibodies that are broadly cross-

reactive. The VAR2CSA domain NTS-DBL1-Id1-DBL2X elicits

rabbit antibodies that completely inhibit the FCR3 strain of P.

falciparum from binding to CSA to the same extent as antisera

against full-length extracellular VAR2CSA (NTSDBL1X to

DBL6) (39). Epitope mapping revealed that Id1-DBL2X in the

N-terminal region of VAR2CSA contains an epitope that

induces highly inhibitory antibodies (40). However, some

domains (e.g. the VAR2CSA DBL6-epsilon domain expressed

in HEK293) induce limited cross-reactive and blocking

antibodies to CSA binding parasites (41). Immunization with

the DBL5 recombinant protein elicits broadly cross-reactive

antibodies against many parasite strains and clinical isolates

from pregnant women whereas antibodies to DBL1 had limited

breadth and only reacted with three or four parasite strains (42).

Using flow cytometry to measure antibody recognition of the

native protein, DBL3 and to a lesser extent DBL5, generated

antibodies that are cross-reactive to different CSA-binding

parasite lines whereas DBL6 antibodies were highly strain-

specific (43). However, even antibodies to the full length

VAR2CSA do not always inhibit binding of different placental

cell lines to CSA (44). We believe that identification of other

conserved antigens form novel targets can be investigated as

potentially cross-protective vaccines (45).
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One alternative approach is to identify conserved epitopes

that are shared across different proteins that contain DBL

domains. These epitopes may be related structurally and

present in proteins with diverse biological functions. For

example, antibodies to P. vivax Duffy Binding Protein

(PvDBP) elicited during natural infection with P. vivax or

following animal immunization with PvDBP, can cross-react

with and inhibit adhesion of strains expressing different variants

of VAR2CSA (46). Although these proteins are functionally

unrelated, they have a common homologous ancestry and share

conserved epitopes that can be exploited in vaccine design.
Identification of targets of
complement fixing antibodies
in PAM

Antibodies can activate the complement system to mediate

effector functions against myriad developmental stages of the

parasite life cycle (47) that are linked to protection against

clinical malaria (48). New evidence suggests that these

mechanisms may also contribute to vaccine-induced

immunity. For example, the RTS,S vaccine can induce

complement-fixing antibodies against the central repeat and

C-terminal regions of CSP (49).

Antibodies from pregnant women naturally exposed to

malaria also fix complement. Sera from a longitudinal cohort

of pregnant women in Papua New Guinea identified VAR2CSA-

DBL5 and DBL3 antibodies that fixed C1q and C3 (50). C1q

protein mediated complement enhanced the ability of

VAR2SCA antibodies to inhibit iRBC binding to CSA.

Protective associat ions between antibody-mediated

complement fixation and the risk of placental malaria

infection was weaker for C1q-fixation of DBL3 when

compared with C1q or C3 fixation of the DBL5 domain or

placental-binding iRBCs, highlighting the immuno-dominant

nature of these antigens (50). IgG1 and IgG3 subclasses are the

dominant antibodies to placental-binding iRBCs and to

recombinant VAR2CSA (51) with the ability to fix and

activate human complement in PAM (52). However, the

proportion of VAR2CSA-specific IgG in plasma that is

involved in complement fixation relative to other effector

functions remains to be determined.

Importantly, Opi et al. observed higher C1q and C3 fixation

on genetically modified CS2 P. falciparum infected iRBCs (that

lack surface expression of PfEMP1) among multigravida

compared to primigravida (50). This demonstrated that lack of

PfEMP1 expression did not eliminate complement fixation on

iRBCs suggesting that other surface proteins such as other
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variable surface antigens (repetitive interspersed family

(RIFIN), subtelomeric variable open reading frame (STEVOR),

surface-associated interspersed gene family (SURFIN), could

also be important targets of complement-fixing antibodies.

Evaluation of these molecules warrant investigation to

establish if they have a role in parasite sequestration in the

placenta as they do in other microvascular spaces (53, 54).

Importantly, antibodies to RIFIN can clear parasites in

malarial infection (55). In summary, these studies have

demonstrated that elevated complement-fixing antibodies are

associated with a reduced risk of placental parasitemia probably

by enhanced inhibition of iRBC adhesion to CSA, thus the role

of complement in protection against PAM deserve

further investigations.
Identification of new vaccine targets
other than VAR2CSA

Recent studies by genome-wide transcript analysis of P.

falciparum isolates freshly collected from placenta identified

other proteins that are upregulated during placental malaria

(56). Thus, other parasite proteins beside VAR2CSA may

contribute to the pathogenesis of malaria during pregnancy

(26) and acquisition of antibodies against these proteins may

contribute to protective immunity. For example, P falciparum

chondroitin sulfate A ligand (PfCSA-L) is a highly conserved

novel molecule expressed on the surface of iRBCs that binds

placental CSA and is peripherally associated with the outer

surface of knobs through specific protein-protein interactions

with VAR2CSA (57). Discovery and characterization of

additional antigens that interact with VAR2CSA is an area

that deserves prioritization for vaccine development.

While direct detection of PfEMP1 on the surface of placental

and CSA-adhering iRBCs by mass spectrometry has proved

difficult owing to the low quantity of PfEMP1 in the iRBC

membrane (58), several peptides were identified that

corresponded to a highly conserved protein named

PF3D7_0936900 (or PFI1785w) (59). PF3D7_0936900 and

four other conserved genes including PFD1140w were

identified in the transcription profiling study of placental

parasites (60, 61). Antibodies to PF3D7_0936900 were

significantly higher in P. falciparum-exposed women than men

while seroreactivity profiles of PF3D7_0424000 (PFD1140w)

were similar to those of VAR2CSA (62). Thus, these proteins

are immunogenic and may be important for parasite

development or adhesion in the placenta. It is therefore worth

evaluating whether antibodies to these antigens can inhibit

placental malaria infection (Table 1).
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Immuno-epidemiological, functional
studies and clinical trials in PAM
vaccine discovery

A recent a systematic review of different epidemiological

studies that assessed the relationship between pregnancy-specific

malarial immunity and risk of malaria in pregnancy observed

that prospective studies as well as standardized immunoassays

are lacking (24). The analysis strongly suggested that to identify

novel pregnancy-specific antigens, prospective cohort studies

evaluating immune responses to many proteins in different

epidemiological settings and throughout the gestational period

using high-throughput, but standardized assays are needed.

Antibodies to the identified antigens will then need to be

evaluated using functional assays such as erythrocyte and CSA

binding inhibition (anti-adhesion assay), iRBC cell-

agglutination, phagocytosis, and complement fixation. The

agglutinating and anti-adhesion assays are associated with

reduced odds of placental infection (21), and the capacity of

antibodies in pregnant women to opsonize phagocytosis CSA-

binding iRBCs in vitro was observed (65) and can be explored for

other antigens.

Flow cytometry-based assays have also been established with

CSA-coated channels, CSA-expressing cell lines or primary

trophoblast. In these studies, iRBCs flow through these

channels and attach in settings that closely mimic blood

vessels in vivo (66). Blocking these attachments correlate with

the functional activities of the antibodies. Similarly, to

recapitulate human placental organ physiology and function,

the use of stem cell organoids and bioengineered placenta-on-a-

chip models to construct biomimetic in vitro three-dimensional

(3D) tissue or organ models warrant more consideration (67,

68). In this model, trophoblast cells and human umbilical vein

endothelial cells are cultured on the opposite sides of a porous

polycarbonate membrane allowing both maternal and fetal
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investigations. However, it remains unclear if these PAM-

specific functional assays would correctly predict protective

immunity in vaccine trials. In addition, the design of effective

well-controlled studies with clear and globally acceptable

endpoints need to be carefully considered, as recently

proposed (69).
Leveraging wheat germ cell-free
system and the mRNA-based
vaccine approach to advance PAM
vaccine research

The discovery of antigens that induce strain-transcending

antibodies as well as new targets of complement fixing/activation

antigen in PAM has been limited partly due to a lack of robust

high-throughput screening platforms. This is hampered mainly

by challenges associated with production of functional

recombinant malaria antigens (70). However, the eukaryotic

wheat germ cell-free protein system (WGCFS) overcomes

these problems, as summarized by Kanoi et al., 2021 (71). In

validation studies, WGCFS was used to generate more than 2500

recombinant proteins from various P. falciparum life cycle stages

(72). This includes the synthesis of all high molecular weight

VSAs including PfEMP1, SURFINs, RIFINs and STEVORs (73,

74). Similarly, more than 300 P. falciparum proteins were

functionally annotated following generation of antibodies in

immunized rabbits and mice, suggesting immunogenicity of

the produced proteins (75).

The WGCFS technology has also been used to study vivax

malaria in Thailand, Brazil and Papua New Guinea towards

development of markers of recent infection. Antibody responses

to 307 P. vivax recombinant proteins were measured at the onset

of infection and at several points during the follow-up period

(76). Antibodies with relatively longer-lived responses were
TABLE 1 List of proteins over-expressed in placental malaria associated parasites.

Gene ID Gene name Significance during pregnancy associated malaria References

PF3D7_0936900 Plasmodium
exported protein
(PHISTb)

Peptides from this non-PfEMP1 conserved protein (PFI1785w), were exclusively identified in placental iRBC
samples. Antibodies to this protein were observed to be significantly higher in P. falciparum-exposed women
than men.

(59)

PF3D7_0202400 Translation-
enhancing factor

Studies reveals a critical role this protein plays as a translation -enhancing factor in the production of
VAR2CSA. Surface expression of this protein is unknown.

(63)

PF3D7_1001000 P falciparum
chondroitin sulfate
A ligand

Systematic immunoassay of various groups in East Africa revealed a significant seropositivity of the anti-
PfCSA-L antibodies especially amongst multigravidas that inhibited this ligand from binding CSA.

(57)

PF3D7_0424000 Plasmodium
exported protein
(PHISTc)

Forms complex with PfEMP1, and seroreactivity profile is similar to that of VAR2CSA. (62)

PF3D7_1201000 Plasmodium
exported protein
(PHISTb)

Localizes to the surface of iRBCs. (64)
fr
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observed in PNG where individuals had greater past exposure to

P. vivax. In subsequent independent studies, eight proteins with

specificity for detecting recent infections were identified (77).

These findings further support WGCFS as well as high-

throughput screening platforms as rational tools for

production, screening and characterization of functional

recombinant proteins that can be explored for induction of

protective antibodies against falciparum and non-falciparum

malaria during pregnancy. Thus, coupled with the rapid

advancement of bioinformatics tools, WGCFS could support

identification of potential placenta-specific or placental-binding

ligands that induce antibodies that abrogate parasites

sequestration in the placenta (Figure 1).

We note that robust bioinformatics and artificial

intelligence (AI) tools have been developed to support

antigen selection, utilizing either sequence-dependent,

structure-based, or ligand-based approaches (78). Such

approaches, which have been applied in COVID-19 vaccine

studies (79), combine multiple immuno-informatics

approaches in integrated frameworks that include supervised

machine learning. Recently, Rawal et al. used tools such as

PsortB, WoLF PSORT, BLAST, HMMTop, ProtParam,

FungalRV, NetCTL, VaxiJen 2.0, or IEDB tools to identify

potentially immunogenic, stable and cross-protective antigens

against Trypanosoma species (80). Other sequence-

independent methods use auto cross-covariance (ACC), a

mining method that transforms protein sequences into

uniform equal-length vectors (81, 82). This has been

extended to develop servers such as VaxiJen for the

prediction of protective antigens (83). Such statistical

approaches can be exploited in PAM to enhance the search

for novel antigens.
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Concurrently, numerous mRNA vaccine platforms have

been developed and evaluated for immunogenicity (84–86).

The ability to genetically modify the RNA sequences has

hastened the production of translatable non-toxic synthetic

mRNA and delivery systems (87). This approach was applied

recently to the production of coronavirus vaccines by Moderna

and Pfizer-BioNTech (88). These examples raise optimism for

adoption of this technology in the production of vaccines

for PAM.
Critical appraisal and summary

Understanding the complexity of naturally acquired

immunity against PAM will inform antigen discovery and

vaccine development. It is now clear that VAR2CSA is not the

only antigen that is involved in PAM but there are other antigens

that may be targets of protective immunity. With this

knowledge, it is plausible to further query the plasmodium

genome using emerging bioinformatics tools such as machine

learning and artificial intelligence to identify possible conserved

antigens that can be interrogated for development of broadly

neutralizing vaccines. Application of eukaryotic WGCFS for

generation of the recombinant proteins that induce

immunogenic and protective antibodies need to be granted

critical consideration. In addition, the advent of mRNA-based

vaccine development platforms comes with high flexibility and

rapid development while still inducing robust immune responses

against specific targets. The mRNA technological approach is a

great milestone for rapid in vivo production of full-length

proteins and multivalent or multi-antigen vaccines. This has

renewed the hope of quickly developing effective vaccines.
FIGURE 1

An illustration of an immunoscreening pipeline to identify targets of potentially protective antibodies from pregnant women with and without
PAM. Unique proteins are represented by colored dots. The antigens may also be identified using complex genomic assays, statistical
approaches such as artificial intelligence (AI), machine learning and expressed using robust platforms such as the wheat germ cell free system
for functional studies.
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