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Presently, there is a need to develop effective and novel modes of control for

mosquitoes, which remain a key driver of infectious disease transmission

throughout the world. Control methods for these vectors have historically

relied on a limited number of active ingredients (AIs) that have not experienced

significant change in usage since the mid-20th century. The resulting

development of widespread insecticide resistance has consequently

increased the risk for future vector-borne disease outbreaks. Recently, metal

nanoparticles have been explored for potential use in mosquito control due to

their demonstrated toxicity against mosquitoes at all life stages. However, the

majority of studies to date have focused on the larvicidal efficacy of metal

nanoparticles with few studies examining their adulticidal potential. In this

review, we analyze the current literature on green synthesized metal

nanoparticles and their effect on adult mosquitoes.

KEYWORDS

silver nanoparticle, metal nanoparticle, adulticide, AgNP, green synthesis,
nanoinsecticide, nanotechnology
Introduction

Vector-borne disease remains a leading cause of death worldwide despite sustained

eradication programs across Africa, Asia, and South America. Malaria and dengue have

been identified as threats to global health by WHO accounting for a global 230 million and 96

million symptomatic cases in 2019 respectively (1). Unfortunately, vector-borne disease will

continue to be of public health importance due to the confluence of changing climate,

globalization and urbanization which together are likely to increase rates of transmission. Rising

temperatures, in particular are predicted to expand the geographic range of many vector

species, increase the transmission season length, and provide shorter incubation period for

vector species and their associated pathogens (2). This rising incidence will largely be driven by
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mosquito-borne diseases (3) such as yellow fever, dengue, Zika,

chikungunya, West Nile, eastern equine encephalitis and St. Louis

encephalitis viruses for which most have no available vaccines.

As such, mosquito control remains the most effective

preventative strategy.

Current mosquito control strategies employ a combination

of source reduction, larviciding and adulticiding. Of these three

options, adult insecticides have historically provided control

operations with an effective means to quickly target and

suppress mosquito population outbreaks with ultra-low

volume (ULV) spraying being the preferred delivery method

(4). Unfortunately, sustained use and reliance on a small group

of chemical classes of insecticides (i.e. pyrethroids,

organophosphates and carbamates) has led to the development

of widespread insecticide resistance (5–8). Continued use of

these same active ingredients (AIs) overtime will lead to

diminished effectiveness (9) and may lead to the resurgence of

mosquito-borne diseases (10).

To mitigate further development of resistance and retain

insecticide efficacy, new AIs and formulations are necessary.

However, development can be prohibitively expensive, due in

part to strict regulatory requirements encompassing

toxicological and safety studies that promote more selective

and less persistent insecticides (11). Registration of a new

chemical AI costs an estimated 250 million USD and can

take fifteen years of research and development to complete

(12–14). This gap in effective control tools and insecticide

resistance has led to increasing interest in alternative sources

of insecticides.

Nanotechnology has grown as a potential tool in

insecticide application. Metal nanoparticles, in particular,

are increasingly being incorporated into scientific and

medical applications for the purposes of catalysis, imaging,

diagnostics, drug delivery and pest management (15–20). Due

to their wide array of applications, nanoparticles are currently

one of the most active areas of research in the material

sciences, including their use as an insecticide. Though there

currently is no regulatory definition within the US as to what

constitutes a nanoparticle insecticide, the term generally refers

to anything that is 100 nm in size or smaller. The key

feature that distinguishes a nanoinsecticide however, is

that they demonstrate beneficial properties apart from the

original material due to their small size. A number of studies

have already demonstrated the toxic effects these metal

nanoparticles possess against medically important mosquito

vector species. However, the majority of studies have been

limited to larvicidal efficacy and there has not yet been an in

depth look into the use of metal nanoparticles as a potential

adulticide. In this review, we summarize the current literature

on the effectiveness of metal nanoparticles against adult

mosquito vectors of medical importance. We also explore
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challenges for future research as well as potential pitfalls in

evaluation methodology between existing studies.
Biosynthesis of metal nanoparticles
as a mosquito control tool

Synthesizing a metal nanoparticle requires three separate

components: a source of metal ions, a reducing agent and a

capping or stabilizing agent (21). The combination of these

three factors can greatly impact the physical characteristics,

notably morphology and size, of the resulting nanoparticle

(22). The objective of applying nanoparticle technology has

been to enhance unique beneficial properties that many metals

already demonstrate. For example, silver has been utilized as

an antimicrobial treatment in medicine since the mid-

twentieth century and low dose larval exposure to copper

has been linked to longer larval development, lowered rates of

eclosion and decreased larval fitness in mosquitoes (21,

23–26).

Increasingly, plants are being used in the production of

metal nanoparticles due to their natural reducing and stabilizing

potential. Plant-mediated synthesis, often referred to as green

synthesis, is advantageous due to its simplicity as a single step

reaction that does not require the use of intensive heat or

chemical processing. Plant extracts are comprised of different

phytochemicals, metabolites and volatile bioactive compounds,

many of which have demonstrated toxic effects against

mosquitoes acting as larvicides, pupicides, adulticides and

repellents across a number of studies (27, 28). These

compounds can disrupt receptor sites of the nervous system

through different metabolic pathways. For example, alkaloids

and monoterpenes act on Na+/K+ ion exchange while

flavonoids target acetylcholinesterase (29). Additionally, plant

extracts also demonstrate synergism with existing insecticides.

Synergism screening has demonstrated enhanced adulticidal

toxicity of permethrin when combined with Cyperus rotundus,

Alpinia galanga and Cinnamomum verum essential oils (30). In

2013, Tong and Bloomquist identified six permethrin synergist

essential oils whose mode of action was likely metabolic

inhibition of enzymes cytochrome P450 monooxygenases and

carboxylesterases (31). Plant-mediated metal nanoparticles, in

theory, seek to incorporate the beneficial properties relevant for

their use in insecticide application of both metal ions and plant

extracts to improve control efficacy.

Metal nanoparticles are increasingly being explored for their

use in mosquito control as a potential insecticide. Application of

these particles against mosquitoes have proven to be quite

effective across a wide range of studies (32, 33). An extensive

review of more than 100 studies emphasizes the promising

toxicity many biosynthesized metal nanoparticles demonstrate
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against the larvae and pupae of different mosquito species (32).

Amongst these, selenium nanoparticles exhibited LC50 of 99.6,

104.13 and 240.7 µg/mL when administered to larvae of

Anopheles stephensi (List.), Aedes aegypti (Linn.), and Culex

quinquefasciatus (Say.) respectively while gold nanoparticles

demonstrated slightly stronger toxicity with LC50 of 25.92 and

28.64 µg/mL against An. stephensi and Ae. aegypti respectively

(34, 35). Similarly, silver nanoparticles (AgNP) synthesized via

plant extracts have demonstrated a wide range of larvicidal

efficacy against multiple species with LC50 values between 0.3

to 130.3 µg/mL (32, 33, 36–40).
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Adulticidal efficacy of metal
nanoparticles

While there have been many studies investigating the

larvicidal efficacy of nanoparticles, few have investigated their

effectiveness against adult mosquitoes. Table 1 summarizes

findings of such studies conducted between 2011 and 2020.

The majority of testing has focused on the adulticidal properties

of AgNPs synthesized primarily via plant-mediated pathways

against common mosquito vector species. Out of twenty-two

identified studies, only two evaluated alternative metals (gold
TABLE 1 Adulticidal toxicity of metal nanoparticles, their synthesis pathway and testing methodology against common mosquito vectors.

Reducing agent Synthesis
pathway

Metal Test
Methodology

Target Species L50 References

Chrysosporium keratinophilumVerticillium
lecanii

fungal Ag spatial spray Culex quinquefasciatus 0.19
0.40

Soni and Prakash 2012 (41)

Azadirachta indica plant extract Ag spatial spray Culex quinquefasciatus 0.53 Soni and Prakash 2014 (42)

Listeria monocytogenesBacillus
subtiliusStreptomyces anulatus

bacterial Ag spatial spray Anopheles stephensi 0.16
0.08
0.06

Soni and Prakash 2014 (43)

Ficus religiosa plant extract Ag spatial spray Anopheles stephensi
Culex quinquefasciatus

0.12
0.12

Soni and Prakash 2015 (44)

Feronia elephantum plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

20.399
18.041
21.798

Veerakumar and
Govindarajan 2014 (45)

Heliotropium indicum plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

26.71
229.626
32.077

Veerakumar et al., 2014 (46)

Chomelia asiatica plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

26.6
29.16
32.23

Muthukumaran et al., 2016
(47)

Zeuxine gracilis plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

8.48
10.39
13.21

Kovendan et al., 2018 (48)

Chenopodium ambrosioides plant extract Ag WHO tube bioassay Aedes albopictus 14.29 Subramaniam et al., 2017
(49)

Hedyotis puberula plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

33.11
36.34
39.56

Azarudeen et al., 2016 (50)

Ventilago maderaspatana plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

41.19
44.85
48.94

Azarudeen et al., 2017 (51)

Naregamia alata plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

31.60
34.31
37.52

Azarudeen et al., 2017 (52)

Rubus ellipticus plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes aegypti
Culex quinquefasciatus

21.10
23.04
25.06

AlQahtani et al., 2017 (53)

Couroupita guianensis plant extract Au WHO tube bioassay Anopheles stephensi 11.23 Subramaniam et al., 2016
(54)

Mimusops elengi plant extract Ag WHO tube bioassay Anopheles stephensi
Aedes albopictus

13.7
14.7

Subramaniam et al., 2015
(55)

Phyllanthus niruri plant extract Ag WHO tube bioassay Aedes aegypti 6.68 Suresh et al., 2015 (56)

(Continued)
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and zinc) and all but three used plant extracts as the reducing

agents with the exception of fungal, bacterial and chemical

synthesis pathways (Table 1). This disparity in metal choice is

likely due to the low cost and availability of silver nitrate as

alternative metal nanoparticles demonstrate comparable efficacy

against adult mosquitoes. The gold nanoparticles evaluated

against the malaria vector An. stephensi were demonstrated to

have an LC50 at 11.23 µg/mL whereas zinc nanoparticles were

shown to reduce longevity in the same mosquito species when

exposed to concentration between 2-10 ppm (54, 61). All

combinations of metal and reducing agent demonstrated toxic

effects against mosquitoes. However, differences in material or

reducing agent do not appear to produce noticeable differences

in toxicity despite their role in determining physiochemical

properties of the nanoparticle.

Feronia elephantum was used to synthesize AgNP which

were evaluated against Ae. aegypti, An. stephensi and Cx.

quinquefasciatus using the WHO susceptibility bioassay

demonstrating LC50 values of 20.40, 18.04 and 21.80 µg/mL at

24h respectively (45). Similarly, nanoparticles synthesized from

three other plant species, Chomelia asiatica, Zeuxine gracilis and

Heliotropium indicum, were tested using the same methodology

producing a range of LC50 between 8.48-32.23 µg/mL (46–48).

The LC50 of Chenopodium ambrosioides synthesized AgNP

tested against Ae. albopictus was determined to be 14.29 µg/

mL (49). A series of studies conducted by Azarudeen et al. also

confirmed comparable results using Hedyotis puberula,

Ventilago maderaspatana and Naregamia alata to synthesize

AgNPs (50–52). Of the studies conducted using the WHO tube

bioassay, the lowest to highest LC50 achieved ranged from 6.68 to

48.94 µg/mL from AgNPs synthesized using Phyllanthus niruri

and to V. maderaspatana respectively.

Although the majority of adulticide efficacy was evaluated

using the WHO tube bioassay, several studies opted for

alternative test methodologies. One study tested silver
Frontiers in Tropical Diseases 04
nanoparticles following WHO spatial spray guidelines against

Cx. quinquefasciatus utilizing a fungal mediated synthesis

yielding LC50 at 22h of 0.4 µl/cm2 (41). Bacteria mediated

synthesis using Listeria monocytogenes, Bacillus subtilius and

Streptomyces anulatus produced lower LC50 values at 0.16, 0.08

and 0.06 µl/cm2 respectively (43). Two additional studies

evaluating AgNPs as a spatial spray also demonstrated

comparable toxicity with an LC50 of Ficus religiosa synthesized

particles at 0.12 µl/cm2 and Azadirachta indica at 0.53 µl/cm2

(42, 44). A modified CDC bottle bioassay study determined

sodium citrate synthesized AgNPs induced 100% mortality at 4h

post-treatment when applied to the bottles at 90 ppm (59).

During the same study, nanoparticles conjugated with

deltamethrin did not improve the treatment efficacy over a

deltamethrin only control. Two separate studies conducted

against Ae. aegypti and An. stephensi also confirmed sub-lethal

exposure to AgNPs reduced adult longevity in both male and

female mosquitoes.
Future challenges: standardizing
evaluation methodology and
broadening research scope

Preliminary studies on metal nanoparticle adulticides have

shown promising results which warrant further research and

discussion on how to potentially integrate this technology as a

mosquito control tool. This is necessary because adulticides are

the primary tool used to curb active transmission of mosquito-

borne disease, yet there are so few available insecticidal AIs when

compared to larviciding. Increasing levels of insecticide

resistance across mosquito populations globally have also

diminished the potency of current insecticides and new AIs

are needed to maintain effectiveness of mosquito control
TABLE 1 Continued

Reducing agent Synthesis
pathway

Metal Test
Methodology

Target Species L50 References

Ipomoea batatas Plant extract Ag WHO tube bioassay Aedes albopictus
Anopheles stephensi
Culex quinquefasciatus

17.58
12.57
10.07

Bharathi et al., 2017 (57)

Acacia caesia Plant extract Ag WHO tube bioassay Anopheles subpictus
Aedes albopictus
Culex tritaeniorhynchus

18.66
20.94
22.63

Benelli et al., 2018 (58)

Sodium Citrate chemical Ag Modified CDC bottle
bioassay

Aedes aegypti – Sooresh et al., 2011 (59)

Hypnea musciformis Plant extract Ag Longevity Aedes aegypti – Roni et al., 2015 (60)

Sargassum wightii Plant extract Zn Longevity Anopheles stephensi – Murugan et al., 2018 (61)

Moringa oleifera Plant extract Ag Impregnated fabric Culex quinquefasciatus – El-Sayed et al., 2020 (67)
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operations. However, our review of the current literature on

metal nanoparticle adulticides exposes several key issues that

should be addressed in future testing. These include inconsistent

testing methodology, an unknown mode of action, absence of

field efficacy trials and unexplored interactions with

existing insecticides.

First, there is no consistency in methodology for evaluating

the toxicity of nanoparticles. According to WHO guidelines, the

effectiveness of a novel insecticide must be assessed across three

phases of testing: (1) inherent toxicity evaluations, (2) small-

scale studies and outdoor semi-field applications and (3)

operational trials against field populations with before and

after measurements of mosquito population abundance (63).

Due to their novelty in mosquito control research, metal

nanoparticles have so far been limited to the first phase

of testing.

For laboratory trials, the standard measure of intrinsic

toxicity is through the direct topical application of a given

insecticide to the pronotum across a range of concentrations

to determine the lethal dose. This is typically supplemented with

additional testing to determine its insecticidal activity as a spatial

spray. Here, an insecticide is atomized to produce droplets of a

known size into a wind tunnel and again, administered to test

mosquitoes across a range of concentrations to calculate

lethal concentration.

In the current literature however, a majority of researchers

have opted to use the WHO tube bioassay and the CDC bottle

bioassay as alternative methodologies. Briefly, the WHO tube

bioassay employs a tarsal contact test scheme. In this evaluation,

filter paper is impregnated with a known concentration of an

insecticide and placed into a tube. Mosquitoes are then

introduced into the tube where they are exposed to the

impregnated filter paper for one hour, after which they are

transferred into a separate clean holding tube where they can be

observed for mortality. Similarly, the CDC bottle bioassay also

employs the same tarsal contact scheme using glass bottles

whose interior surface are treated with a known concentration

of insecticide dissolved into a solvent such as acetone. After the

bottles have dried, mosquitoes can be introduced and assessed

for mortality.

More than half of the twenty-two studies reviewed in this

article were conducted using the WHO tube bioassay. Of the

remaining studies, four tested the metal nanoparticles as a spatial

spray, one using the CDC bottle bioassay and one using fabrics

impregnated with silver nanoparticles. In the latter study,

mosquitoes were exposed to the impregnated fabrics using the

same contact and holding methodology as the WHO tube

bioassay. This diverse assortment of studies is problematic

because the results cannot be directly compared. Furthermore,

the WHO tube bioassay and CDC bottle bioassay are not

representative of how mosquitoes would interact with the
Frontiers in Tropical Diseases 05
nanoparticles in real world applications. Adulticide treatments

are primarily delivered as a spatial spray where individual

droplets must come into physical contact with a mosquito.

Prolonged tarsal contact schemes are more suited for testing

residual insecticides but are not an appropriate proxy for

adulticide sprays. Data generated in these studies would

therefore not comply with registration requirements for novel

insecticides. For these reasons, lethal dose and lethal

concentration as determined by direct topical applications

and spatial spray testing following WHO guidelines

would provide optimal metrics by which to judge the efficacy

of any new insecticide. As further research into metal

nanoparticle insecticides progress, testing needs to be

standardized to ensure any obtained data can be compared

between studies.

Second, although metallic nanoparticles have demonstrated

strong efficacy to control mosquitoes at all life stages, their mode

of action has yet to be definitively determined. One hypothesis is

that metal nanoparticles act on cellular membranes and

detoxification enzymes which leads to loss of cellular function

and eventual death (32, 64). However, the mechanism by which

nanoparticles induce mortality has yet to be fully explored and

further research is needed. Third, testing should be expanded to

include field collected populations and insecticide resistant

colonies to better validate the potential operational efficacy of

metal nanoparticle adulticides amidst the rising prevalence of

insecticide resistance. Fourth, the scope of research should be

broadened not only to stand-alone effects but also how the metal

nanoparticles interact with existing insecticides. This could

conceivably include their role as an additive insecticidal agents

but also as nanocarrier delivery systems for conventional

insecticides (65). In one such study, deltamethrin was

successfully conjugated with silver nanoparticles (59).

Although this did not improve treatment efficacy above the

deltamethrin control, investigating potential synergism presents

a promising avenue of research.

In summary, preliminary studies on metal nanoparticle

adulticides have shown promising results but are hindered by

inconsistent testing methodology, preventing meaningful

comparisons between studies. Additionally, the mode of

action, field study results and synergism with existing

insecticides remains largely unexplored. Future research efforts

should seek to address these areas. Plants possess bioactive

compounds including alkaloids, ketones, tannins and essential

oils which have demonstrated insecticidal effects, but many of

these same compounds can also act as synergists with existing

insecticides (66, 67). By synthesizing metal nanoparticles in

conjunction with these bioactive compounds, researchers aim

to confer beneficial properties to enhance insecticide

formulations, thus providing potential new tool in managing

resistance in mosquito populations.
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