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Traditionally, pathogen-associated molecular patterns (PAMPs) were described as
structural molecular motifs shared by different classes of microorganisms. However, it
was later discovered that the innate immune system is also capable of distinguishing
metabolically active microbes through the detection of a special class of viability-
associated PAMPs (vita-PAMPs). Indeed, recognition of vita-PAMPs triggers an extra
warning sign not provoked by dead bacteria. Bacterial RNA is classified as a vita-PAMP
since it stops being synthesized once the microbes are eliminated. Most of the studies in
the literature have focused on the pro-inflammatory capacity of bacterial RNA on
macrophages, neutrophils, endothelial cells, among others. However, we, and other
authors, have shown that microbial RNA also has down-modulatory properties. More
specifically, bacterial RNA can reduce the surface expression of MHC class I and MHC
class II on monocytes/macrophages and help evade CD8+ and CD4+ T cell-mediated
immune surveillance. This phenomenon has been described for several different bacteria
and parasites, suggesting that microbial RNA plays a significant immunoregulatory role in
the context of many infectious processes. Thus, beyond the pro-inflammatory capacity of
microbial RNA, it seems to be a crucial component in the intricate collection of immune
evasion strategies. This review focuses on the different facets of the immune modulating
capacity of microbial RNA.

Keywords: vita-PAMPs, microbial RNA sensors, RNA immunomodulation, adjuvants, immune evasion
INTRODUCTION

Live pathogens trigger more robust immune responses compared to dead pathogens (1, 2). A clear
proof of this fact is that vaccines built based on attenuated strains, such as the vaccine against
smallpox or poliomyelitis, induce responses of longer duration and are more effective in eradicating
diseases compared to formulations using killed pathogens or purified antigens together with
adjuvants (1, 3, 4). The difference in the extent of the immune response was initially attributed
to the replicating nature of live microbes and their ability to deploy virulence factors. However, live
vaccines are attenuated or avirulent, indicating additional mechanisms are at play. Thus, it became
evident that the immune system had to have the machinery to detect microbial viability.

Recognition of living microbes was shown to rely on the detection of molecules associated with
the metabolic activity and replicative capacity of microorganisms, which are rapidly eliminated
ersin.org July 2022 | Volume 3 | Article 9247191
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when they lose their viability (2). In contrast, traditional PAMPs,
such as LPS, lipoproteins and DNA, are structural components
that persist even after the loss of metabolic activity. Hence, this
particular kind of PAMPs associated with viability were called
vita-PAMPs (2).

The best-characterized vita-PAMP is bacterial RNA. First
described in 2011, recognition of bacterial RNA in the cytosol of
innate immune cells leads to enhanced TRIF-dependent IFN-b
secretion and NLRP3-mediated IL-1b production and pyroptosis
(2, 5). Detection of prokaryotic RNA is a direct indication that
bacteria are metabolically active, that is to say, transcribing genes
and translating them into proteins (6).

Beyond RNA, there is only one other established vita-PAMP,
namely cyclic-di-adenosine monophosphate (c-di-AMP) (7).
This molecule directly binds and activates STING (Stimulator
of IFN genes) (8), a direct innate immune sensor of endogenous
cyclic di-nucleotide cGMP–cAMP (cGAMP) produced in
response to the presence of cytosolic DNA (9). Other than
that, bacterial signal peptides and quorum-sensing molecules
were also proposed as vita-PAMPs (10), but there is no proof
that they are only present in viable bacteria.

In this review we will detail the mechanisms by which
microbial RNA can act as a unique warning sign for the
immune system. Beyond that, we will describe how this
molecule can also be exploited in immune evasion mechanisms
by the pathogens themselves.
RECOGNITION OF MICROBIAL RNA BY
RECEPTORS OF THE IMMUNE SYSTEM

Among the receptors involved in the recognition of microbial
RNA, the Toll-like receptors (TLRs) located in endosomes/
phagolysosomes are the most studied. However, not all detect
the same kind of RNAmolecules. Thus, TLR3 recognizes double-
stranded RNA, TLR7 recognizes double-stranded RNA (dsRNA)
and single-stranded RNA (ssRNA), and TLR8 is capable of
detecting ssRNA and RNA degradation products (11, 12).
Another TLR located in endosomes/phagolysosomes and
capable of recognizing RNA is TLR13. This TLR is, at least as
far as we know, only present in mice and activated by an
unmethylated motif present in 23S rRNA (the large ribosomal
subunit of bacterial RNA) (13, 14). Besides, TLR receptors can
differ in the adapter molecule responsible for signaling
downstream of their activation: TLR7, 8 and 13 signal via
MyD88, while TLR3 uses TRIF as adapter molecule. The
signaling cascade triggered by the activation of these receptors
leads to the induction of IFN-regulated factors 3 and 7 (IRF 3 and
7) and the consequent production of type I IFN. In addition, it
can promote the activation of the NLRP3 inflammasome and
production of classical cytokines of the nuclear factor kB (NF-
kB) pathway, such as pro-IL-1b, IL-6 and TNF, depending on
the cell type.

RNA can also be recognized by other families of receptors
expressed in the cytosol. RIG I-like receptors (RLRs), which
include retinoic acid-inducible gene I (RIG-I), melanoma
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differentiation-associated gene 5 (MDA5) and LGP2, are
among such kind of cytosolic RNA receptors (5). Activation of
RIG-I and MDA5 by ssRNA or dsRNA, respectively, signal
through the mitochondrial antiviral protein (MAVS) to induce
type I IFN production and activate the NLRP3 inflammasome,
resulting in the production of IL-1b (15–17). Additionally, LGP2
may act as a regulator of RLR activity (5).

Going more deeply into recognition of microbial RNA,
activation of endosomal TLR3 and TLRs7-8 has been
associated with viral dsRNA and ssRNA respectively (18).
However, beyond synthetic small molecules, human monocytes
also sense bacterial RNA through TLR8. Examples of this
phenomenon is the recognition of Group B streptococcus or
Borrelia burgdorferi RNAs (19, 20). Also, human, and murine
plasmacytoid dendritic cells recognize bacterial RNA through
TLR7 (21). With respect to cytosolic RLRs, MDA5 is associated
with sensing of antiviral responses triggered by long viral dsRNA
whereas RIG-I senses short dsRNA or ssRNA. But RIG-I also
senses RNA from a bacterium such as Listeria monocytogenes
(17, 22).
PRO-INFLAMMATORY CAPACITY
OF MICROBIAL RNA

Microbial RNA Promotes Monocytes/
Macrophages and Dendritic
Cells Activation
Alexopoulou et al., in 2001, demonstrated that dsRNA is
recognized by TLR3 (23). Moreover, the stimulation of this
TLR by dsRNA induces NF-kB activation and type I IFNs
production (23). However, the immunostimulatory capacity of
ssRNA and the receptors involved in its recognition were
unknown. In 2004, Heil et al. reported that GU rich ssRNA,
that is oligonucleotides rich in guanosine and uridine, derived
from human immunodeficiency virus-1 (HIV-1) induces the
secretion of IFN-a and proinflammatory/regulatory cytokines
by dendritic cells and macrophages (24). Moreover, the authors
showed that murine TLR7 and human TLR8 are the receptors
involved in the species-specific recognition of GU rich ssRNA,
suggesting for the first time that ssRNA is the physiological
ligand for these TLRs (24).

As mentioned, in 2011 Sander et al. described for the first
time that bacterial RNA is a vita-PAMP (2). In this study, the
authors showed that viable Escherichia coli (non replicative and
without virulence factors) induces higher levels of IFN-b than
heat-killed E. coli. Furthermore, only viable E. coli induces IL-1b
secretion in bone marrow-derived macrophages (BMDM),
peritoneal macrophages, and both splenic and bone marrow-
derived dendritic cells (BMDC) (2). In addition, viable but not
heat-killed E. coli induces NLRP3 and adapter protein ASC-
dependent pro-caspase-1 cleavage, and pyroptosis in BMDM.
Besides they showed that TRIF (the adapter protein of TLR3)
controls “viability-induced” responses, in vitro and in vivo. The
authors also demonstrated that the component associated with
bacterial viability is the RNA, more specifically uncapped non-
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polyadenylated prokaryotic mRNA. Finally, the authors showed
that viable bacteria RNA could access the NLRP3 inflammasome
through leakage to the cytosol during the phagocytosis (2). For
its part, Gratz et al. demonstrated that nucleic acids derived from
the gram-positive human pathogen Streptococcus pyogenes
induce the production of type I IFN by BMDM and BMDC
(25). Moreover, type I IFN signaling is required to protect mice
against lethal subcutaneous cellulitis caused by S. pyogenes
infection (25). In this study, the authors showed that the
nucleic acid involved in the production of IFN-b was different
for these cellular types. In BMDM the production was dependent
on the endosomal delivery of streptococcal DNA, while in
BMDC it was induced by streptococcal RNA. In addition, the
IFN-b signaling pathway employed for BMDM and BMDC was
also different. The production of IFN-b was dependent on IRF3,
STING, TBK1 and partially MyD88 for macrophages, and
completely dependent on IRF5 and MyD88 for dendritic cells.
Surprisingly, TLR3 and TLR7 were not required for the IFN-b
production induced by S. pyogenes (25). Previously, Mancuso et
al. reported that RNA from Group B streptococcus (GBS) is
capable of inducing IFN-b production in BMDC through TLR7,
MyD88 and IRF1 (26). Therefore, although GBS and S. pyogenes
use MyD88, GBS is TLR7-dependent while S. pyogenes is TLR7-
independent (26). On the other hand, Deshmukh et al. reported
that the recognition of GBS and other Gram-positive bacteria by
macrophages and monocytes relies on bacterial ssRNA (27).
ssRNA interacts with a signalling complex, which comprises the
TLR adaptors MyD88 and UNC93B (an endoplasmic reticulum
protein essential for the delivery of TLRs to the endosome), but
not the established MyD88-dependent ssRNA sensors (27). In
line with these results, Eigenbrod et al. reported that bacterial
RNA from both Gram-negative and Gram-positive bacteria
induces caspase-1 activation and IL-1b secretion by murine
dendritic cells and BMDM (28). Induction of pro-IL-1b, as
well as the priming for caspase-1 activation by bacterial RNA
was dependent on UNC93B whereas TLR3, 7, and 9 were
dispensable. Additionally, caspase-1 activation and IL-1b
production by transfected bacterial RNA were absent in
MyD88-deficient cells but independent of TRIF (28). Several
years later, in 2014, Signorino et at.. explored the role of murine
TLR13 in the context of the infection with the model pathogen
GBS. In this study, the authors concluded that although TLR13
participates in the recognition of GBS, the lack of function of this
receptor can be compensated by other endosomal TLRs (29). In
the study of Cervantes et al., the authors demonstrated that the
RNA of Borrelia burgdorferi, the Lyme disease spirochete, is a
TLR8 ligand in human monocytes and that transcription of IFN-
b in response to the spirochete is induced from within the
phagosomal vacuole through the TLR8-MyD88 pathway (19,
30). In accord with this study, in 2015 Eigenbrod et al.
demonstrated that human monocytes respond to bacterial
RNA with the secretion of IL-6, TNF-a, and IFN-b, which is
critically dependent on lysosomal maturation and TLR8 (20).
Moreover, TLR8-dependent detection of bacterial RNA was
critical for triggering monocyte activation in response to
infection with Streptococcus pyogenes (20). More recently,
Frontiers in Tropical Diseases | www.frontiersin.org 3
Hafner et al. reported that the recognition of low multiplicities
of infection (MOI) of S. pyogenes by murine macrophages and
dendritic cells is completely dependent on the sensing of nucleic
acids through endosomal TLRs. However, at higher MOIs, TLR2
also has a role in S. pyogenes recognition (31). Finally, through in
vivo experiments, Hafner et al. demonstrated that nucleic acid-
sensing is crucial to the early detection of S. pyogenes. The loss of
this recognition leads to a reduced local containment of the
bacteria and subsequent dissemination, which leads to significant
systemic inflammation (31).

Overall, the studies discussed here show evidences that
microbial RNA is a potent activator of monocytes/
macrophages and dendritic cells, two key components of the
innate immune system.

Prokaryotic RNA Induces Neutrophil and
Endothelial Cells Activation Promoting
Neutrophil Transmigration
Some years ago, Rodriguez-Rodrigues et al. showed that
prokaryotic RNA is also capable of activating polymorphonuclear
neutrophils (PMN) (32). In this study, the authors studied the effect
of live vs. dead bacteria on inducing the activation of PMN. They
could show that live E. coli but not heat-killed E. coli (HK-Ec)
induces an increase in the forward-scatter (FSC) parameter and an
up-regulation of CD11b surface expression, events corresponding
to the spreading and early activation of PMN. Furthermore, only
live bacteria managed to increase PMN chemotaxis and
potentiate their bactericidal capacity, demonstrated by an
increase in ROS production and neutrophil extracellular traps
(NETs) formation (32). This phenomenon was not restricted to
E. coli since they also observed similar effects when using other
bacteria, such as Enterococcus faecalis and Klebsiella pneumoniae
(32). Interestingly, stimulation with either E. coli RNA or
supernatants of dead bacteria containing released RNA
mimicked the responses observed with live bacteria. Treatment
of the E. coli supernatants with RNase negatively impacted their
ability to increase ROS generation and NETosis. However, RNase
treatment did not influence PMN activation overall since an
increase in FSC, CD11b up-regulation, and increased chemotaxis
was still observed, suggesting that other molecules could be also
involved in the recognition of viability. Furthermore, the authors
were not able to determine the nucleic acid receptor/s involved in
the recognition of viable E. coli. Regarding this, PMN only express
endosomal TLR8 (33–35), NLRP3 (36, 37) and RIG-I. Elucidating
which of these receptors is responsible for this effect would help in
further understanding how the immune system distinguishes live
pathogens and could be used to target therapies.

Since the interaction between endothelial cells and
neutrophils is decisive in the resolution of infections and
having shown that RNA activates PMN, Castillo et al.
investigated the effects of bacterial RNA on endothelial cells
and whether these effects could also modulate neutrophil-
endothelial cell interaction (38). In this paper, the authors
found that stimulation of Human Umbilical Vein Endothelial
Cells (HUVEC) with E. coli RNA up-regulates the expression of
ICAM-1 (or CD54) on these cells and the secretion of IL-8 and
July 2022 | Volume 3 | Article 924719
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von-Willebrand factor. These effects are consequences of
HUVEC activation. Moreover, the conditioned medium of
RNA-treated HUVEC induces the migration of PMN and the
activation of these cells, shown by the up-regulation of CD11b.
Last, the authors found that by mimicking an infectious focus
using a transwell system, HUVECs respond to RNA delivered
from the basolateral side and this event triggers the adhesion and
transmigration of PMN.

Despite showing for the first time the role of prokaryotic RNA
as a stimulus of endothelial cell-PMN interactions, the authors
were not able to determine the HUVEC nucleic acid receptor/s
involved in this pathway. It is well known however that cytosolic
RNA sensors such as MDA5 are fundamental in antiviral innate
immunity (39). So, perhaps these receptors are involved in the
activation of endothelial cells triggered by bacterial RNA.

Thus, live pathogens and bacterial RNA have been shown to
act on different cell types other than antigen-presenting cells
such as the endothelium and PMN and induce their activation.
The fact that both these cell types are the first to encounter
pathogens during an infection suggests that recognition of
viability is essential for the immune system. Once the
endothelium is activated by bacterial RNA, it will attract PMN
to the site of infection. These PMN in turn will also be further
activated by the bacteria itself and most importantly by microbial
RNA and increase their bactericidal capacity. Killed bacteria and
NETs will release more RNA, thus further amplifying the
immune response and helping in the resolution of the
infectious foci.

Microbial RNA as an Adjuvant
Given their capacity to alert the innate immune system and
generate potent immune responses without the risk of
infection, vita-PAMPs and microbial RNA could be
considered the ideal adjuvants. Proof of concept was already
provided by Sander et al. when first describing bacterial RNA as
a viability-associated PAMP. The authors showed that
administering heat-killed E. coli plus total bacterial RNA into
mice enhanced the anti-E. coli antibody production to levels
similar to live bacteria (2). The observed increase in IgG class-
switched antibodies pointed to a specific role of bacterial RNA
in benefiting B cell activation and promoting the generation of
germinal centers. Mechanistically, a CD11c+ CX3CR1hi CCR2-

Ly6C- monocyte population responded to bacterial RNA via
TRIF and promoted the activation of T follicular helper cells
(Tfh) through the secretion of IFN-b and IL-1b (40). The effect
of bacterial RNA was shown to be restricted to an increase in
Tfh differentiation and a concomitant increase in serum
antibody titers in all B cell subtypes. However, whether this
response persists in time or whether it can protect against
disease was not addressed. Similarly, bacterial RNA can induce
the secretion of TNF and IL-12 via TLR8 in human monocytes
which in turn promotes the differentiation of Tfh and their IL-
21 production (41).

Despite these promising reports, further studies are needed to
establish whether bacterial RNA could be used as a vaccine
adjuvant. Indeed, the immunogenic capacity of exogenous RNA
is well-known in the field of mRNA vaccines. Thus, great efforts
Frontiers in Tropical Diseases | www.frontiersin.org 4
were put into identifying ways to reduce the pro-inflammatory
effects of RNA, such as introducing modified nucleosides or
adding carrier proteins (42). Nonetheless, if bacterial RNA is to
be used as an adjuvant, its anti-inflammatory effects should also
be considered. In the next sections, we will focus more on this
topic, specifically on how bacterial RNA can impact
antigen presentation.

Overall, in these sections, we discussed some interesting
topics on the inflammatory properties of bacterial RNA and its
potential use as a vaccine adjuvant. The most important points
are summarized in Figure 1.
DOWN-MODULATORY CAPACITY OF
MICROBIAL RNA

Prokaryotic RNA Reduces MHC Class I
and Class II Surface Expression on
Monocytes/Macrophages
As shown in the previous sections, bacterial RNA can activate the
innate immune system, and this characteristic makes it a
potential vaccine adjuvant. In this section, we show evidence
demonstrating that RNA is also a bacterial component used by
specific pathogens to evade the immune system. A clear example
of these pathogens is the intracellular bacterium Brucella abortus.

Several years ago, Barrionuevo et al. showed that infection
of monocytes/macrophages with B. abortus hinders their ability
to up-regulate the surface expression of MHC-I and MHC-II
upon IFN-g stimulation (43, 44). Thus, B. abortus-infected
macrophages fail to present bacterial peptides to CD8+ and
CD4+ T cells, respectively (43–45).

Interestingly, heat-killed B. abortus (HKBA) is not able to
inhibit MHC-I expression, suggesting that such inhibition is
dependent on bacterial viability (44). Furthermore, mutant
strains in key virulence factors (such as the type IV secretion
system and LPS) that cannot persist in macrophages for
prolonged periods, can also inhibit MHC-I surface expression
though only when they are alive (46, 47). The heat-killed forms
of the mutant strains completely lost the ability to inhibit MHC-I
expression (47), reinforcing the idea that Brucella-mediated
MHC-I inhibition depends on bacterial viability but is
independent of key virulence factors. In agreement with the
results obtained with mutant strains, the kinetics of MHC-I
inhibition showed that the phenomenon occurs early during
infection when bacteria are actively replicating (46). Thus,
Brucella was most likely employing a vita-PAMP to inhibit the
expression of MHC-I, such as microbial RNA, which is
exclusively present in viable bacteria (2, 6). Indeed, Brucella
RNA was able to inhibit the MHC-I expression on the surface of
macrophages, mimicking the effect observed during the infection
with viable bacteria. Following these results, it was demonstrated
that the incapacity of heat-killed Brucella to inhibit MHC-I
surface expression is due to the absence of RNA in these
bacterial preparations (47). In addition, RNA degradation
products are also able to inhibit MHC-I expression.
Furthermore, Brucella RNA and its degradation products
mimic the retention of MHC-I molecules inside the Golgi
July 2022 | Volume 3 | Article 924719
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apparatus previously observed by Brucella infection (44, 47).
Interestingly, the phenomenon of MHC-I inhibition is not
exclusive to Brucella RNA. Other prokaryotic RNAs, such as
those from Salmonella typhimurium, Bacillus cereus, Escherichia
coli, and Klebsiella pneumoniae had similar effects (47),
suggesting that this immune modulation strategy can be
extended to other infectious processes.

As mentioned, the most known receptors capable of
detecting RNA are TLR3, TLR7, and TLR8, which are inside
endosomes/phagolysosomes. Though initial candidates for the
receptor involved in MHC-I inhibition, both TLR3 and human
TLR7 were excluded using either BMDM from TRIF KO mice
or specific inhibitors/agonists for their human counterparts.
Therefore, human TLR8 was later shown to recognize Brucella
RNA by using BMDM from TLR7 [the TLR that accomplishes
the function of TLR8 in mice (24, 48, 49)] KO mice (47).
Nonetheless, although not involved in MHC-I inhibition,
TLR3 and TLR7 play an important role in sensing Brucella
RNA to induce the production of pro-inflammatory cytokines
and type I IFN expression in murine dendritic cells (50). As
previously mentioned, TLR8 does not only recognize ssRNA
but also RNA degradation products, specifically a uridine
mononucleoside at one binding site and oligonucleotides
like UG or UUG at a distinct second binding site (12). This
would argue in favor of Brucella RNA degradation products as
the real component involved in the inhibition of MHC-I
surface expression. The reduced antigen presentation to
MHC-I-restricted CD8+ cytotoxic T cells mediated by
Frontiers in Tropical Diseases | www.frontiersin.org 5
Brucella RNA was also abolished in BMDM from TLR7 KO
mice (47). Thus, emphasizing the biological significance of
RNA and its degradation products being employed as a
molecu lar too l by Bruce l la to escape detr imenta l
cytotoxic responses.

Regarding the inhibition of MHC-II surface expression on
monocytes/macrophages mediated by B. abortus, unlike MHC-
I inhibition, this phenomenon is mimicked by HKBA (43). A
structural component, the outer membrane protein 19
(Omp19) [a prototypical B. abortus lipoprotein], diminishes
the MHC-II surface expression (43). Moreover, the
phenomenon of MHC-II inhibition could be extended to
all Brucella lipoproteins since Pam3Cys (a synthetic
lipohexapeptide that mimics the lipid moiety of lipoproteins)
is also capable of inhibiting MHC-II surface expression (43). In
addition, HKBA and lipidated Omp19 (L-Omp19) inhibited
MHC-II surface expression through TLR2, and the soluble
mediator involved in this phenomenon was IL-6 (43).
Besides, the molecular mechanism exerted by B. abortus
lipoproteins to inhibit MHC-II expression is actually at the
level of MHC-II gene transcription (51). In detail, IL-6 induced
by B. abortus lipoproteins-stimulation inhibits IFN-g-induced
IFN regulatory factor-1 (IRF-1) expression and activation.
Then, this IRF-1 inhibition leads to a decrease in the
transcription of the MHC-II master regulator (51).

In spite of what was known about MHC-II down-modulation
by B. abortus, the fact that HKBA and B. abortus lipoproteins
decreased MHC-II less than live bacteria (43, 51) led us to
FIGURE 1 | Pro-inflammatory role of bacterial RNA. The vita-PAMP RNA activates several immune cells (monocytes, macrophages, dendritic cells, polymorphonuclear
cells) and endothelial cells and could act as an adjuvant in vaccine formulations. *Vaccine picture: created by Kiran Shastry from The Noun Project.
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contemplate about the participation of another component
associated with bacterial viability. In 2019, Milillo et al.
demonstrated the participation of B. abortus RNA and its
degradation products in the downregulation of IFN-g-induced
MHC-II expression on monocytes/macrophages (52). This result
was confirmed using different models of monocytes/
macrophages: THP-1 cells (a monocytic cell line), peripheral
blood-purified human monocytes, and murine BMDM (52). As
mentioned, B. abortus modified the expression of both MHC-I
and MHC-II (47, 52). However, the MHC expression inhibition
is not a generalized effect on all molecules induced by IFN-g.
Curiously, the IFN-g- induced up-regulation of CD86 and CD40
was increased by B. abortus RNA, while the expression of CD80
was not modified by B. abortus RNA (52). However, the
inhibition of MHC-II surface expression is not an exclusive
phenomenon of B. abortus since it could be generalized to
RNAs of other bacteria, such as Klebsiella pneumoniae,
Staphylococcus aureus, and Escherichia coli. Additionally, the
RNA of the parasite Trypanosoma cruzi was also able to inhibit
MHC-II (52). These findings together with those observed for
MHC-I inhibition by other prokaryotic RNAs, reinforce the idea
that the MHC expression down-modulation is a phenomenon
that can occur in multiple infectious contexts.

The evidence found in the study of Milillo et al., allowed us to
understand that in the context of B. abortus infection there are
two components participating in MHC-II down-modulation:
RNA and lipoproteins. In line with this, we find a synergism
between RNA and lipoproteins. Moreover, cells that were
previously exposed to B. abortus RNA and that later received
B. abortus lipoproteins presented higher MHC-II down-
modulation compared to cells stimulated with the two ligands
simultaneously. These results suggest that there could be a
crosstalk between TLRs. Intricate TLR-TLR interactions have
been described in the immune response against viral and
bacterial pathogens (53, 54). In particular, stimulation of
macrophages or dendritic cells with TLR8 alongside TLR3 or
TLR4 ligands has a synergistic effect on NF-kB and IRF
activation (53, 55). Moreover, Cervantes et al. demonstrated
that after stimulation of monocytes with TLR8 ligands, TLR2
expression is up-regulated (56). For its part, Mureith et al.
demonstrated that THP-1 cells pre-exposed to TLR8 ligand
(3M-002) present an increased response to a subsequent TLR2
stimulation (57).

Finally, Milillo et al. demonstrated that B. abortus RNA-
stimulated macrophages present a reduced capacity of antigen
presentation to CD4+ T cells (even when B. abortus RNA increases
the expression of co-stimulatory molecules). Furthermore, antigen
presentation is even lower in macrophages stimulated with B.
abortus RNA in combination with lipoproteins.

Here we present evidence demonstrating that bacterial RNA
is a component associated with bacterial viability involved in
the down-modulation of MHC-I and MHC-II surface
expression. Consequently, through the inhibition of these
molecules, the bacteria could avoid the recognition by CD8+

and CD4+ T cells and evade the surveillance of the
immune system.
Frontiers in Tropical Diseases | www.frontiersin.org 6
Down-Modulatory Properties of RNA in
Other Infectious Contexts
Beyond B. abortus RNA, other authors also described that
microbial RNA may have down-modulatory properties in the
context of other infectious processes.

In 2016, Saha et al. demonstrated that infection of
monocytes with Hepatitis C virus (HCV) induces their
differentiation into polarized M2 macrophages that
promote hepatic stellate cell activation via TGF-b. In this
study, the authors also identified circulating monocytes
expressing M2 markers and collagen in chronic HCV
infection (58). Later, the same authors demonstrated that
exosome-packaged HCV, cell-free HCV, or HCV ssRNA
induces the differentiation of monocytes into macrophages
with high expression of M2 surface markers and pro- and
anti-inflammatory cytokines production (59). The activation
of monocytes by HCV ssRNA could be prevented by TLR7 or
TLR8 knockdown. Moreover, the stimulation of TLR7 or
TLR8 by other TLR7/8 ligands (i.e., independent of HCV)
promoted monocyte differentiation and M2 macrophages
polarization. In chronic HCV-infected patients, the authors
found circulating monocytes with high expression of TLR7/8
associated with increased procol lagen intracel lu lar
expression. Final ly , the authors demonstrated that
knockdown of TLR8 completely attenuated the expression
of collagen in monocytes exposed to HCV, and TLR7
knockdown partially attenuated this expression (59),
suggesting an important role for TLR7/8 receptors in
fibrocytes induction in the context of HCV infection.

As previously mentioned, TLR13 is only present in mice and
recognizes a conserved sequence in 23S rRNA (13). More
precisely, this sequence is the bacterial binding site for the
antibiotics of the MLS (Macrolide, Lincosamide, and
Streptogramin) group, including erythromycin. Remarkably, in
this study Oldenburg et al. demonstrated that the clinical isolates
from Staphylococcus aureus resistant to erythromycin have a 23S
rRNA sequence unable to stimulate TLR13. Moreover, synthetic
oligoribonucleotides with a modification that causes resistance to
antibiotics of MLS group were unable to stimulate TLR13 as well.
These results reveal that the same mechanisms that confer
resistance to antibiotics allow the bacteria to deploy a powerful
immune evasion strategy, preventing recognition via TLR13
(13, 60)

Overall, we discussed here evidence of the ability of microbial
RNA to inhibit antigen presentation, direct monocyte
differentiation into M2 macrophages, and abolish TLR13
recognition. These properties could be used by pathogens as
potential immune evasion strategies. The more important points
are summarized in Figure 2.
FINAL REMARKS

In this review, we argue that microbial RNA can modulate the
immune system in two manners : RNA has a pro-
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inflammatory capacity on numerous cells of the innate
immune system, constituting an advantage for the host,
even with potential use as a vaccine adjuvant; and, perhaps
as a more challenging concept, microbial RNA has also down-
modulatory properties constituting a crucial component in
the complex set of immune evasion strategies employed
by pathogens.
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