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Mass drug administration programs for the control of soil-transmitted

helminths (STH) in humans most commonly utilize a single class of drugs;

the benzimidazoles. Most such programs focus on the treatment of pre-school

and school aged children attending schools, although there is increasing

interest in the potential utility of community-wide MDA to reduce infection

intensity within communities and possibly to interrupt STH transmission. In

animals, mass treatment with benzimidazoles leads to the rapid selection of

parasites containing resistance-encoding single nucleotide polymorphisms

(SNP) and the potential emergence of resistance in parasite species that

infect humans is of major potential public health concern. As programs scale

up delivery of anthelmintics and consider expanding treated populations,

monitoring of drug efficacy and the potential emergence of anthelmintic

resistance with sensitive diagnostic tools is critical to ensure the continued

success of STH control programs. In particular, as programs consider the

adoption of community-wide deworming, there is concern that such a

strategy may increase the risk of drug resistance by limiting the number of

untreated individuals which serve as a refugia of unexposed worm populations.

We review the literature for evidence of drug resistance in human STH

infections and explore risks and mitigation strategies for emergence of drug

resistance in the context of community-wide deworming.

KEYWORDS
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Introduction

Soil transmitted helminths (STH) are among the most

widespread neglected tropical diseases (NTD), affecting ~1.5

billion people globally (1, 2). STH disproportionately impact the

poorest and most vulnerable communities. STH include

hookworms (Necator americanus and Ancylostoma duodenale),

Ascaris lumbricoides and Trichuris trichiura. Infection occurs

through ingestion of eggs of A. lumbricoides and T. trichiura or

larval penetration of the skin by hookworm larvae present in

contaminated soil (3, 4). Moderate‐ and heavy‐intensity (MHI)

hookworm infections are associated with lower hemoglobin

levels and anemia, which may be particularly detrimental to

pregnant women and young children who often have low

baseline iron stores (5–8). Children with STH infections also

experience malnutrition and poor cognitive development,

further impacting school attendance and performance and

future economic productivity (9–11). The current World

Health Organization (WHO) strategy is focused on

eliminating morbidity through the targeted deworming of at-

risk populations with anthelminthic medications, including pre-

school-age children (PSAC), school-age children (SAC), and

women of reproductive age (WRA).

Large-scale deworming programs have led to a significant

decline in the prevalence, intensity, and associated morbidity of

STH (12). However, until substantial economic development

occurs, including significant improvements in access to clean

water, sanitation and hygiene (WASH), reservoirs among

untreated adults will continue to lead to contamination and

persistence in the environment (ranging from weeks for

hookworm to years for Ascaris) (13). This leads to rapid re-

infection in at-risk populations unless deworming is repeated

frequently over time. Evidence from mathematical models and

field trials indicate that it may be possible to interrupt the

transmission of STH in some geographic settings by adopting

a community-wide mass drug administration (MDA) strategy in

which all individuals, including adults, are treated (14–16). A

transmission-interruption strategy could allow for the

discontinuation of long-term deworming programs and

substantially reduce the need for drug donation upon which

deworming programs are highly dependent (17).

The two most commonly used drugs in existing STH

programs (and available as part of drug donation programs)

are albendazole and mebendazole. Both of these drugs belong to

a single class of benzimidazoles that act by inhibiting tubulin
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polymerization, leading to worm paralysis and death (18). A

2017 meta-analysis demonstrated that while both drugs were

highly efficacious against A. lumbricoides, albendazole had

higher efficacy against hookworm infections, with a cure rate

(CR) of 80% and an egg reduction rate (ERR) of 90%. In

contrast, mebendazole appeared most effective against T.

trichiura, resulting in a CR of 42.1% and an ERR of 66% (19).

The continued use of drugs with less than optimal efficacy

suggests that the likelihood of resistance emerging in human

populations may be high and, while global estimates continue to

show that morbidity due to STH is declining, some studies in

areas with a long history of deworming suggest a decline in

efficacy of these drugs (20, 21). In fact, a 2018 review of this

subject suggested that the efficacy of both albendazole and

mebendazole for the treatment of hookworm infection may

have decreased by as much as 15% during a two-decade period

from 1995 until 2015 (22). This same review suggests that

reduced efficacy is even more pronounced for the treatment of

T. trichiura, with efficacy reductions at or near 30%. Whether

these potential declines in efficacy are a result of the emergence

of drug resistance is not clear (23) but such trends provide

circumstantial evidence in support of this possibility.
Anthelminthic drug resistance

In the veterinary world, routine mass treatment of livestock

has led to widespread drug resistance, with well documented

single nucleotide polymorphisms (SNPs) that have resulted in

the entire class of benzimidazole drugs being rendered

ineffective. Isothermal loop-mediated isothermal amplification

(LAMP) assays, PCR, Sanger sequencing, pyrosequencing and

next generation sequencing (NGS) based methods have

identified SNPs associated with benzimidazole resistance in a

variety of human and veterinary nematodes at one of three

codons – 167, 198 and 200 – in the gene encoding the b-tubulin
isotype 1 (24, 25) (more appropriately named the b-tubulin A

locus to prevent false implications of orthology) (26). (Human

examples detailed in Table 1). These studies used nucleic acid

derived from a variety of sources, including adult worms (from

expulsion studies), dissected or concentrated eggs, or stool

samples (Table 2). Some studies have recorded treatment

history and collected samples both before and after treatment

in order to document a temporal association between treatment

and the emergence of putative genotypic determinants of
TABLE 1 Single nucleotide polymorphisms described in the b-tubulin A locus of human STH species.

SNP codon N. americanus (27, 28) A. caninum (29, 30) A. lumbricoides (26) T. trichiura (27, 31) Amino acid substitution

167 T>A(TTC>TAC) T>A(TTC>TAC) T>A(TTC>TAC) T>A(TTT>TAT) Phe>Tyr

198 A>C(GAG>GCG) not described A>C(GAA>GCA) A>C(GAA>GCA) Glu>Ala

200 T>A(TTC>TAC) T>A(TTC>TAC) T>A(TTC>TAC) T>A(TTC>TAC) Phe>Tyr
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TABLE 2 Review of rates of b-tubulin A locus single nucleotide polymorphisms reported in human STH samples.

Species Year,
Reference

Country Method Treatment (number of samples/
eggs/larvae)

Codon
167

Codon 198 Codon
200

A. duodenale 2004 (32) Tanzania Sequencing After Treatment (1) x x S

N.
americanus

2013 (27) Haiti Pyrosequencing Before Treatment (84) S S S

After Treatment (14) S S S

2013 (27) Kenya Pyrosequencing Before Treatment (86) S S 2.3%

After Treatment (127) S S S

2013 (27) Panama Pyrosequencing Before Treatment (23) S S S

After Treatment (59) S S S

2004 (32) Tanzania Sequencing After Treatment (71) x x S

2007 (33) Tanzania Real-time PCR After Treatment (38) S x S

2013 (34) Haiti Pyrosequencing After Treatment (25) x x 36%

2013 (34) Tanzania Pyrosequencing After Treatment (5) x x S

2016 (25) Sri Lanka Smart Amp2 No Treatment History (110) S 18.2% S

2018 (35) Brazil PCR-RFLP No details (552) x 1.4% 1.1%

2019 (28) Ghana Real-time PCR,
Sequencing

Before Treatment (109) 1.7% 29%* 41%

After Treatment (107) 5% x 52%

2020 (36) Brazil ARMS-PCR No details (524) S x x

2021 (37) Mozambique Pyrosequencing No details (15) S 17% SNP frequency in 1
sample

S

T. trichiura 2009 (31) Kenya Pyrosequencing No Treatment History (39) x x 46%

2009 (31) Panama Pyrosequencing After Treatment (8) x x 100%

2013 (38) Uganda Sequencing After Treatment (27) S S S

2013 (27) Haiti Pyrosequencing Before Treatment (65) S 26.2% 26.2%

After Treatment (38) S 36.8% 78.9%

2013 (27) Kenya Pyrosequencing Before Treatment (40) S S 51.3%

After Treatment (90) S S 68.5%

2013 (27) Panama Pyrosequencing Before Treatment (19) 78.9% S S

After Treatment (49) 16.3% 2.4% 11.9%

2019 (18) Honduras PCR, sequencing After Treatment (45) S S S

2021 (37) Mozambique Pyrosequencing No details (15) S S S

A.
lumbricoides

2009 (31) Kenya Pyrosequencing No Treatment History (38) x x S

2009 (31) Panama Pyrosequencing After Treatment (29) x x S

2009 (31) Uganda Pyrosequencing After Treatment (91) x x S

2009 (31) Zanzibar Pyrosequencing After Treatment (91) x x S

2013 (27) Haiti Pyrosequencing Before Treatment (37) 100% S S

After Treatment (5) 100% S S

2013 (27) Kenya Pyrosequencing Before Treatment (22) 77.2% S S

After Treatment (19) 94.8% S S

2013 (27) Panama Pyrosequencing Before Treatment (53) 100% S S

After Treatment (70) 100% S S

2017 (39) Rwanda PCR, sequencing After treatment (144) S S S

2018 (35) Brazil PCR-RFLP No details (601) S S x

2019 (40) Brazil ARMS-PCR After Treatment (854) x x 0.5%

2019 (18) Honduras PCR, sequencing After Treatment (40) S S S

2021 (26) Ethiopia Sequencing After Treatment (29) S S S

2021 (26) Tanzania Sequencing After Treatment (77) S S S
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resistance. In addition to presence or absence, pyrosequencing

and NGS also allow for estimates on the proportion of the worm

population in a sample with SNPs and would be more useful in

longitudinal follow up studies with samples collected before and

after administration of treatment.

While monitoring for these known SNPs of importance in

the veterinary world is a logical starting place for resistance

monitoring efforts, a focus on the presence/absence of veterinary

markers may not be sufficient to determine whether resistance is

emerging in human parasite populations. Resistance

development within human-infecting parasite populations may

develop through the convergent evolution of similar SNPs but

could just as easily occur as the result of genotypic changes in

other positions or on other b-tubulin genes. As such, broad

surveillance efforts employing less targeted approaches are

required and monitoring should not be limited to those SNPs

having known associations with veterinary resistance. Rather,

effective surveillance will require the use of tools such as RNA

sequencing or amplicon sequencing to broadly surveil

transcriptional products for the presence of both identical and

novel SNPs and SNP locations.

Definitive evidence of clinically relevant benzimidazole

resistance has not been clearly documented in humans. However,

in some regions, where continued human transmission occurs

despite repeated rounds of targeted deworming, benzimidazole

resistance may have emerged among different human STH

species (27, 31, 41). In such settings, detection of resistance-

encoding SNPs may be indicative of resistance in circulating

worm populations and if resistance development mirrors patterns

seen in the veterinary community, these SNPs might rapidly and

irreversibly become dominant due to drug selection pressure (42).

This is of concern, as prolonged MDA campaigns at suboptimal

coverage could impact helminth populations and result in

expansion of anthelmintic resistant worm populations (41). While

it is important to remember that SNPs at the aforementioned loci

have not been definitively shown to be relevant for resistance

development in human-infecting species, clinically relevant

resistance, brought about by intervention-mediated selective

pressures, may arise by multiple other mechanisms (43).

Additional research using sequencing-based approaches at the

species level with a wide geographic representation is urgently

needed to identify resistance determinants in the human

population (should they exist) or to monitor for their

development and emergence (43–45).

While generally seen with only limited or modest prevalence in

human-infecting STH species, the presence of SNPs associated with

benzimidazole resistance in the veterinary world remains a cause of

concern among the STH community. For human hookworm

infection, most studies documenting the presence of veterinary

resistance markers pertain to N. americanus (Table 2). SNPs at

codon 167 have been identified in Ghana (28), at codon 198 in

Ghana (28), Brazil (35) and Sri Lanka (25) and at codon 200 in

Ghana (28), Kenya (27), Haiti (34) and Brazil (35). Looking at
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samples collected before and after treatment, the study from Ghana

showed a very modest (1.7% to 5%), but significant increase in

detection among samples collected after treatment with albendazole

(28). For Trichuris infection, where the efficacy of benzimidazoles is

intrinsically lower, a study from Panama showed a decrease in

resistant SNPs after treatment at codon 167 (27). However, for

codon 198 and 200, studies in Haiti, Kenya and Panama showed an

increase in SNP proportion with both heterozygous and

homozygous populations seen (27, 31). In human Ascaris

infections, most resistant SNPs reported have been in codon 167,

and these have been reported in Haiti, Kenya and Panama (27).

While studies documenting the appearance of such SNPs are

important and cautionary, at present, their relevance and

relationship to resistance development remains unclear.
Mitigation strategies and
considerations

If community-wide deworming is adopted to interrupt

transmission of STH, drug pressure within the targeted

population would be dramatically increased and the proportion of

the population left untreated (the refugia) would be minimized.

This would decrease the pool of wild-type parasites in the

community (42). As such, strategies to mitigate the potential

emergence of drug resistance will be needed (44, 46). In the

veterinary community, it has historically been suggested that

maintaining an untreated sub-population of as little as 20% of a

flock (who would harbor drug susceptible helminth populations)

can significantly delay emergence and spread of resistance. Delayed

resistance, resulting from these relatively low levels of untreated

individuals, has been suggested as a possible reason for the lack of

confirmed resistance in the human population, where non-

adherence alone oftentimes ensures the existence of such a sub-

population of untreated individuals (42). However, while the

maintenance of an untreated sub-population may delay

resistance, it is also counterproductive to efforts aimed at

transmission interruption. Balancing such concerns will be critical

for the success of any community-wide intervention program.

In addition to maintaining adequate refugia, there are many

other lessons to be learned from the veterinary community. The

need for sensitive diagnostic tools able to screen for resistance

markers at the point-of-collection will be critical to managing and

mitigating risk of widespread resistance development, particularly

under an expanded treatment landscape. However, while

technologies such as LAMP and recombinase polymerase

amplification continue to increase the feasibility of field-friendly

testing, adequate tools are difficult to envision until a clear definition

of resistance markers in the human-infecting parasite community

has been defined. Exploring the use of novel deworming agents,

repurposing older drugs, the use of combination drug therapies, and

a focus on the avoidance of underdosing will also play important
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roles in future efforts to avoid the development of widespread

resistance within the human-parasite community. Innovative

strategies to reduce environmental contamination will also be

critical (23, 47) as will integration of community-directed

approaches and engagement to affect behavioral change to

improve equitable coverage and adherence with MDA and

WASH uptake.

Adequate consideration of animal reservoirs of infection and

parasite hybridization events are also likely to prove critical if

resistance development is to be delayed/avoided. Evidence of the

interbreeding of Ascaris suum and A. lumbricoides presents a

cautionary tale of the need to take a One-Health approach to

intervention strategies (48). While zoonotic reservoirs and/or

interbreeding parasite populations present significant risk for the

development of and lateral transfer of resistance, it is also

possible that in some instances animal reservoirs could serve

as an untreated sub-population, providing beneficial refugia.

Consideration of such factors may prove critical for both the

success of future intervention efforts and to avoid the

development of resistance in STH species affecting humans.
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