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THE SKIN-ASSOCIATED LYMPHOID TISSUE IS CRUCIAL FOR
PARASITE CONTROL

The skin represents one of the largest organs in mammalians and accomplishes complex
physiological and immunological functions (1). The most outer epidermal layer of this cutaneous
shield is pivotal to protect the body from invading microorganisms. However, this barrier is futile,
once pathogens are incorporated into deeper dermal compartments by bloodsucking arthropods. In
this case, arthropod-associated pathogens such as fungi, protozoans, viruses, and bacteria are
transmitted into the dermis of mammalians (2). After such a barrier-breakdown, a promptly
reacting innate immune response is crucial to eliminate most of the arthropod-associated pathogens
at the site of infection (3).
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Pathogens have learned to evade some mechanisms of innate
immunity (4–6). Thus, a precise pathogen-specific adaptive
immunity has to be generated, to avoid an uncontrolled
spreading of pathogens and tissue damage. This highly evolved
immune response combines a network of cellular and humoral
components capable of recognizing foreign antigens to eliminate
pathogens and pathogen-harbouring cells (7, 8). In the case of
bloodsucking arthropods, most of these host-pathogen
interactions take place within the skin-associated lymphoid
tissue (SALT) that combines three major components: First,
the cutaneous microenvironment equipped with immune cells
capable of accepting, processing, and presenting antigens at the
site of adaptive effector cell function. Second, the efferent
lymphatics connecting the dermal compartment with skin-
draining lymph nodes (SDLN). Third, the paracortex within
the SDLN where T cell-mediated immunity against skin-derived
antigens is generated (9).

A coordinated interaction of immune cells is a precondition
for efficient adaptive immunity within the SALT. In this context,
the experimental cutaneous leishmaniasis (ECL) of mice has to
be emphasized. In the model, promastigote Leishmania (L.)
major parasites are mostly incorporated by a syringe into the
dermal compartment to mimic the natural transmission by
bloodsucking sand flies (10). Ground-breaking aspects of T
cell-mediated immunity, such as T helper (Th) 1 and Th2
polarization arose from studies in ECL (11, 12). It has been
shown, that healing of ECL correlates with the presence of a
profound Th1 cell expansion and the production of IFN-g that
activates macrophages to eliminate intracellular parasites (13).
IL-12 has been identified as the Th1-polarizing cytokine
important for Th1 cell differentiation (14, 15). By contrast, IL-4
promotes Th2 cell development and susceptibility for ECL (16).
LANGERHANS CELLS ARE INVOLVED IN
ADAPTIVE IMMUNITY AGAINST
LEISHMANIA PARASITES

A subset of specialized myeloid cells, the epidermal Langerhans
cells (LCs), has been favoured to generate Leishmania-specific T
cells in vivo. In 1992, studies revealed that epidermal cells,
including LCs, can activate the Leishmania-specific T cell clone
L1/1 and antigen-primed T cells derived from susceptible
BALB/c mice (17). Furthermore, DEC-205/CD205/NLDC-145+

LCs can transport L. major antigens (L-Ag) to the SDLNs of
susceptible BALB/c mice (18). Flohé et al. demonstrated that a
single i.v. treatment with epidermal-derived LCs, that had been
pulsed with L-Ags, induces adaptive immunity and resistance
against a L. major (MHOM/IL/81/FE/BNI) infection (2×105

stationary-phase promastigote parasites/i.d.) in normally
susceptible BALB/c mice (19). The release of Th1-polarizing
cytokines by LCs has also been proven by other groups using
L. major clone V1 (MHOM/IL/80/Friedlin) and low-dose models
of ECL (20, 21). Thus, LCs have been in the spotlight as decisive
cells to induce a protective adaptive immunity in ECL for a
long time.
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CHANGING VIEWS ON LC
FUNCTIONS IN ECL

Inspired by novel markers, useful for the dissection of LCs and
dendritic cell (DC) subsets, it has been shown by different in vivo
configurations, varying in L. major strains and dose of
application, that LCs are not the only “antigen-presenting
cells” that are involved in orchestrating T cell-mediated
immunity (22–26). L-Ag-specific T cell proliferation is
predominantly driven by Langerin/CD207- DC subsets
(epidermal LCs are Langerin/CD207+), suggesting that
Langerin/CD207- dermal-derived DCs (dDCs) are crucial for
protective immunity in ECL using different L. major strains
[MHOM/IL/81/FE/BNI or clone VI (MHOM/IL/80/Friedlin)]
and applications (low- or high-dose) for needle infections (27–
30). Indeed, LCs can present L-Ags to T cells under certain
conditions (17–21). However, the question remains, which
pathways of T cell development and immunity are induced by
LCs in ECL? To address this aspect, in vivo models of inducible
ablation of LCs and other DC subsets have been used (31). It has
been proven that C57BL/6-LangDTR mice remain resistant
against L. major (MHOM/IL/81/FE/BNI) high-dose infection
even after depleting LCs (29). Protective Th1 cells are also
induced in SDLNs in the absence of LCs (29). Other groups
using low-dose models and the L. major strain clone VI
(MHOM/IL/80/Friedlin), were able to confirm that finding -
mice depleted for LCs can still control the disease (28).
Consequently, the presence of lymph node resident or dDCs is
sufficient to generate a protective immunity in in vivo ECL
(28, 29).

One should not get the impression that epidermal LCs
represent a kind of rudimental or redundant myeloid subset,
without specific immunological functions. Speculations in this
field assumed that LCs are involved in dampening the immune
response against Leishmania parasites (32, 33). This hypothesis
has been confirmed some years later, by demonstrating that LCs
participate in expanding regulatory CD4+ T cells (Treg) [low-dose
model; L. major strain clone VI (MHOM/IL/80/Friedlin) (28)]
and other IL-10 and IFN-g expressing CD4+ T cells [high-dose
model; L. major MHOM/IL/81/FE/BNI (29)] with regulatory
capacity (34). Consequently, LCs are involved in balancing
immune responses within the SALT. This aspect has also been
supported by other experimental systems, showing that LCs are
involved in the maintenance of tolerance to peripheral skin-
associated antigens (35–37).

Apart from this tolerance promoting functions, LCs are also
crucial in ECL for priming and differentiation of follicular helper
T cells (Tfh) and the subsequent formation of early germinal
centres (GC) within SDLNs [high-dose; L. majorMHOM/IL/81/
FE/BNI (38)]. A number of other immunization-based and
disease models, such as atopic dermatitis, have also confirmed
that LCs promote Tfh differentiation and GC formation (39–42).
This general “LC attribute” of Tfh polarization, needs to be
examined in more detail. In ECL, B cell-deficient µMT mice
develop severe lesions, compared to WT mice. However, the
absence of B cell-mediated immunity does not affect the final
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outcome of ECL (43). These facts might explain why LC-
depleted C57BL/6-LangDTR mice can control ECL, even in the
absence of ear ly GC formation and restr icted Tfh

development (38).
NATURAL TRANSMISSION OF
LEISHMANIA PARASITES IS NOT STERILE

In ECL, LCs contribute to the differentiation of distinct CD4+ T
cell subsets such as Foxp3+ Treg cells, IL-10 and IFN-g producing
CD4+ T cells, and Tfh cells. However, the absence of LCs does not
affect the generation of protective immunity in ECL. Are LCs
really “sufficient but not necessary” for protective immunity?
Most of the studies involved in the decoding of LCs function in
ECL have been performed under standardized conditions such as
defined parasite numbers, sterile needle injection and animal
housing under specific pathogen free (SPF) conditions (21, 27–
29). This standardization is crucial to compare data between
studies and in terms of reproducibility, but have we
underestimated some vector-associated important factors while
decrypting the function of LCs in ECL?

This question is more than justified, because all metazoans
coexist intimately with a community of commensal
microorganisms (44). Sand flies can harbour fungi, bacteria
and viruses (44). In addition, there are sand fly-associated
components, such as the saliva and others, that can also
influence immune cells (45). The elaboration of all these
“vector additives” in ECL is very ambitious. We nonetheless
are of the opinion that these factors, most prominent the
microbiota-associated side effects, should not be ignored while
decrypting the function of LCs in ECL. Given the fact that L.
major parasites are transmitted selectively by Phlebotomus (P.)
papatasi (46), this vector-parasite constellation will be
considered in the following paragraphs.

Comparable to the human gut microbiome (47), wild caught
Phlebotomus species (sp.) host distinct microbiomes (2)
(Figure 1B). During the blood meal of sand flies, gut microbes
are egested into the skin - alongside with L. major parasites (89).
This “multicomponent infection” triggers early inflammatory
responses within the dermal compartment, such as
inflammasome activation and neutrophil infiltration (89). The
potential impact of microbes on innate and adaptive immunity
in ECL has been already demonstrated. In this case, a needle
infection of C57BL/6 mice using a combination of
Staphylococcus (S.) aureus plus L. major (90) supports the
recruitment of neutrophil granulocytes, gd T cells, and IL-17
releasing Th17 cells to the dermal compartment (90). These
microbiome-associated side effects seem beneficial for parasite
replication and spreading, based on three reasons: First, L.
major parasites have the ability to maintain infectivity in
neutrophi l granulocytes . Second, the parasi tes use
granulocytes as “Trojan horses” before they enter their
definitive host cells, the macrophages (91, 92). Third, IL-17
favours the recruitment of additional “Trojan horses” such as
neutrophil granulocytes (93). This suggests that the
Frontiers in Tropical Diseases | www.frontiersin.org 3
inflammatory micro milieu mediated by S. aureus is
responsible for exacerbating lesion development (90).
Arthropod-associated microbiota might therefore represent
“natural adjuvants” capable of catalysing parasite spreading.
Whether functional capacities of LCs are also affected, needs to
be analysed. Additionally, it remains speculative whether such
an exacerbation of lesion development is crucial for long-
lasting immunity.

Given the fact that most cell types at the infection site including
LCs, dermal macrophages and keratinocytes, are equipped with
pattern recognition receptors (PRRs), capable of sensing the
bacterial PAMPs (Figure 1A), it is plausible that microbiota-
associated PAMPs strongly influence adaptive immunity in ECL
(Figure 1B). For instance, application of isolated PRR ligands, in
parallel to Leishmania parasites or antigens, displayed beneficial
effects. In addition, C57BL/6 mice treated intradermally with L.
major and the TLR9 ligand CpG oligodeoxynucleotides developed
little or no dermal lesions (94) and the treatment of BALB/c mice
with L-Ag fractions plus the NOD2 ligand muramyl dipeptide
induced resistance against cutaneous leishmaniasis (85).
Moreover, an administration of the TLR2/TLR6 agonist
BPPcysMPEG in combination with fixed L. major parasites
protected BALB/c mice against L. major infection (95). Based on
these and other data, it is obvious that arthropodmicrobiota might
represent important additional parameters in orchestrating
immunity in ECL (96, 97) (Figure 1).
CONCEIVABLE IMPACT OF
ARTHROPOD-ASSOCIATED MICROBIOTA
ON LC FUNCTIONS IN ECL

LCs and other cells associated to the SALT are equipped with
PRRs sensing microbial PAMPs (Figure 1). It is obvious that LCs
must get in contact with bacterial compounds during the blood
meal of vectors, harbouring microbiota and Leishmania
parasites. In this context, LCs will be “stimulated” by PAMPs
based on the expression of the corresponding PRRs (compare
Figure 1B). Additionally epidermal LCs, while migrating
through the dermal compartment, will be exposed to a
micromilieu of soluble factors including cytokines, chemokines
and other metabolites, that are released by keratinocytes or other
dermal immune cells in response to microbial compounds. This
natural Leishmania-infection, in the presence of additional
vector-derived microbes, is might be capable to modify the
transcriptome and proteome of LCs. The consequence remains
still speculative. Many scenarios are conceivable based on the
given expression PRRs and immune receptors sensing the
environment. Here just one example: After PRR-ligation, LCs
can release cytokines such as IL-17 (98), IL-12 (49) and TNF-
alpha (99) - known to support Th-cell polarization and LC
maturation programs (99). Consequently, it is feasible that LCs
might lose their “tolerogenic capacity” (23, 32) and support Th-
cell programs, resulting in adaptive immunity against L. major
parasites (Figure 1B).
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FIGURE 1 | Simplified synopsis of LC-functions in experimental cutaneous leishmaniasis. Comparison of needle infection (A) and transmission by vectors (B). (A) Needle
infection. A.1. Selected PAMPs of Leishmania parasites and their possible interactions with PRRs. *single strand (ss) RNA and *double strand (ds) RNA from Leishmania-
associated viruses (48). A.2. Representative PRRs and assigned symbols. A.3. PRRs expression and interaction with Leishmania (LM)-PAMPs. Pale symbols represent
PRRs that are expressed by the indicated cell subset. Solid symbols represent a possible interaction between PRRs and LM-PAMPs. Keratinocytes (49–53), Fibroblasts
(54–58), TLR8 (54, 59), Neutrophil granulocytes (60–69), Epidermal Langerhans cells (24, 70–73). Dermal Macrophages (69, 74, 75). A.4. Migratory LC that has been
primed in a sterile context (orange contour). This subset can present LM-derived antigens. A.5. LC-driven immune responses in skin-draining lymph nodes. Documented
LC functions such as the induction (highlighted by “+”) of Tfh and Treg cells are highlighted with solid orange arrows. So far unclear (highlighted by “?”) involvement of LCs
in Th1 cells differentiation is depicted with a dashed orange arrow. (B) Natural transmission. B.1. Gut microbiome of P. papatasi. Gram- bacteria: Wolbachia sp. (2),
Klebsiella sp., Serratia sp., Stenotrophomonas gen., Thauera sp (76), Pseudomonas sp (77), Brevundimonas sp., Ochrobactrum gen (76). Gram+ bacteria: Spiroplasma
sp (2) Staphylococcus sp., Micrococcus sp., Corynebacteriaceae sp. (2) Bacillus gen (78), Microbacteria gen (77). Gram+ or gram- Paenibacillus gen (2). B.2. PAMP/
PRR-interactions of gram- bacteria (79–81). B.3. PAMP/PRR-interactions of gram+ bacteria (82–84). B.4. PAMP/PRR-interactions with bacterial components in general
(68, 79, 85–88). B.5. PRRs expression and interaction with LM and bacterial (BAC) PAMPs. Pale symbols represent PRRs that are expressed by the indicated cell
subset. Solid symbols represent a possible interaction between PRRs and LM-PAMPs. Solid symbols highlighted with red lines represent possible interactions with BAC-
PAMPs. B.6. Migratory LC that has been primed in a nonsterile context (red contour). A presentation of BAC- as well as LM-derived antigens is possible. B.7. Putative
(highlighted by “?”) LC-driven immune responses in SDLNs. The LC-driven Th1 and/or Th17 immune responses might be enhanced (+) by LCs that has been primed in a
nonsterile context (solid red arrow). Whether LCs still prime Leishmania-specific Treg or Tfh cell subsets under nonsterile conditions remains speculative (dashed red
arrow). It is possible that LCs fulfill novel functions if conditioned within a nonsterile microenvironment such as the induction of Th17 and Th1 cells. All components and
symbols are explained by the legend below the figure. LPG, Lipophosphoglycan; GIPLs, glycoinositolphospholipids; TLRs, Toll-like receptors; CpG, cytosine-phosphate-
guanine; unmet, unmethylated; LPS, lipopolysaccharide; WSP, Wolbachia surface protein; PGN, peptidoglycan; LTA, lipoteichoic acid; WTA, wall teichoic acid; b1,4-
GlcNAc, b 1,4-N-acetyl glucosamine; LPP, lipoprotein; NOD, nucleotide-binding oligomerization domain; MDP, muramyl dipeptide; LM, Leishmania; BAC, Bacteria; PRR,
pattern recognition receptors.
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CONCLUSION

It is very likely that LCs can support so far unknown immunological
programs in the presenceof distinct sandfly-associated factors.Up to
now, no systematic studies have been performed comparing the
immunological attributes of LCs under “microbiome-free” and
“microbiome-containing” sand fly or syringe conditions. In our
opinion, these aspects need to be deciphered to understand the role
of LCs in adaptive immunity and the generation of long-lasting
immunological memory in detail. This understanding is pivotal for
the improvement of alternative rationally designed vaccination
strategies, using novel vector-associated “natural” microbial
adjuvants. This new studies are more than overdue based on two
aspects: First, L-Ag plus classical adjuvants such as CpG does not
protect mice from ECL after challenge with infected sand flies (100).
Second, people living in endemic areas seem to be “vaccinated” by
multiple sand fly bites in the absence of clinical symptoms of ECL
(101). Let’s get started to decrypt the impact of LCs in ECL under
more physiological conditions.
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