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Pro-inflammatory cytokine
responses to Naegleria
fowleri infection

Ching-wen Chen and E. Ashley Moseman*

Department of Immunology, Duke University School of Medicine, Durham, NC, United States
Naegleria fowleri, or the “brain-eating amoeba,” is responsible for a rare, but

lethal, infection known as primary amoebic meningoencephalitis (PAM).

Confirmed PAM cases have seen both a rise in numbers, as well as expansion

of geographic range over the past several decades. There is no effective

therapy for PAM and the clinical prognosis remains grim with a mortality rate

over 95%. The role of the immune response in disease prevention and disease

severity remains unclear. In this review, we explore potential roles of

inflammatory immune responses to N. fowleri in disease pathogenesis with a

primary focus on pro-inflammatory cytokines IL-1, IL-6, and TNFa. We also

discuss modulating proinflammatory cytokines as an additional immune

therapy in PAM treatment.
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Introduction

Naegleria fowleri, also known as the “brain-eating amoeba,” is a free-living amoeba

ubiquitously found in sources of warm fresh water around the world. N. fowleri belongs

to the phylum Percolozoa, and is one of only four free-living amoebae genera that cause

human disease (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and

Sappinia diploidea) (1). Substantial genetic diversity exists within N. fowleri as eight

genetic variations, or “genotypes,” have been identified around the world in

geographically restricted ranges. Notably, only four genotypes have been reported in

human infections (types 1, 2, 3, and 5). Because N. fowleri is prevalent in fresh water,

human environmental exposure is very common, yet typically non-pathogenic. However,

amoeba contact with the nasal cavity, particular the olfactory regions, can result in

infection and a rare, yet fatal, disease called primary amoebic meningoencephalitis

(PAM), first described by Fowler and Carter in 1965 (2). Naegleria infections are

commonly linked to recreational water activity, but can occur in any situation in

which contaminated water comes into contact with the host nasal cavity (including
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fitd.2022.1082334/full
https://www.frontiersin.org/articles/10.3389/fitd.2022.1082334/full
https://www.frontiersin.org/articles/10.3389/fitd.2022.1082334/full
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fitd.2022.1082334&domain=pdf&date_stamp=2023-01-18
mailto:ashley.moseman@duke.edu
https://doi.org/10.3389/fitd.2022.1082334
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://doi.org/10.3389/fitd.2022.1082334
https://www.frontiersin.org/journals/tropical-diseases


Chen and Moseman 10.3389/fitd.2022.1082334
ritual ablution) (3, 4). Early PAM symptoms, including fever,

headache, nausea, and vomiting, are shared by many illnesses,

making it difficult to establish an early PAM diagnosis. The later

symptoms of PAM include altered mental status, nuchal rigidity,

seizures, and coma. The disease progresses rapidly and is

typically lethal; worldwide, there are only 7 documented

survivors out of 182 cases from 1961 to 2021 (5). In this

review, we focus on the roles that pro-inflammatory cytokines

play in the immune response to N. fowleri infection and propose

targeting cytokines as a therapeutic approach in PAM treatment.
Invasion of Naegleria fowleri

OnceN. fowleri enters the nasal cavity, the amoebamust bypass

several barriers within the turbinate structure and evade local

immune surveillance to reach the olfactory bulb of the central

nervous system (CNS). To start, the amoeba must reach the

olfactory regions, located in the superior regions of the upper

airway. At this point, the first line of defense is the mucus lying on

the olfactory mucosa, secreted by Bowman’s glands (6). This mucus

not only controls the ionic milieu of the olfactory sensory neurons

(OSNs) but also provides a physical barrier to prevent direct

pathogen attachment to the olfactory epithelium (7). Secretory

IgA and IgM antibodies within the olfactory mucus could also

impede pathogen movement in the olfactory tissues (8, 9). Anti-N.

fowleri IgA antibodies have been reported in healthy human serum

and saliva (10) at variable levels (11), however recent work from our

group has indicated that serum antibody titers are poor prognostic

indicators of olfactory protection (12). These data suggest antibody-

based protection may, at best, be insufficient. Besides the pre-

emptive defense potentially provided by antibodies within the nasal

turbinates, an early cellular exudate in the mucus layer has been

characterized in the mouse model of PAM. At 8h post-trophozoite

inoculation, Rojas-Hernández and colleagues reported that

immune cells and trophozoites were embedded in the mucus of

the nasal cavity, suggesting an early cellular defensivemechanism to

N. fowleri (13). However, the source of the immune cells and the

mechanism of immune recognition ofN. fowleri in the mucus layer

remain poorly understood. Tight junction and adherens junctions

lying between microvillar cells, supporting cells, and OSNs in the

epithelium layers also establish a physical barrier to invasion within

the nasal cavity (14). Nonetheless,N. fowleri trophozoites have been

shown to destabilize the expression of tight junction proteins ZO-1,

claudin-1, claudin-5, and occludin in MDCK cells and primary

culture endothelial cells in vitro (15, 16). In the mouse model, N.

fowleri trophozoites can invade the olfactory neuroepithelium

without causing cell death or alarming the immune system at

24h post-infection (13). Notably, one recent in vitro study suggests

that human mucoepithelial cells recognize N. fowleri trophozoites

through TLR2/TLR4, and this further leads to pro-inflammatory
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cytokine production (17). Once the amoeba enters the lamina

propria, it can readily gain access to OSN axon bundles. Olfactory

sensory neuron axon bundles pass through the cribriform plate of

the skull to enter the olfactory bulb within the CNS. The CNS has

several effective barriers to prevent outside infiltration, however,

these cribriform plate passages through the front of the skull,

provide amoeba with a passageway into the brain that bypasses

the blood brain barrier. It remains unclear how, or if, the amoeba

selectively follows these axon bundles toward the brain. Some

groups have suggested that neurotransmitters associated with

olfactory neurons may act as a lure to attract N. fowleri. Indeed,

there is evidence that a G-protein coupled receptor (GPCR) on N.

fowleri surface has structural homology to the acetylcholine binding

muscarinic acetylcholine receptor 1 (mAChR1) in humans (18). As

N. fowleri invades deeper into the olfactory mucosa, entering the

lamina propria and axon bundles (olfactory fascicles), it may

encounter a unique population of extravascular neutrophils, that

have been recently reported to uniquely surveil in the nasal

epithelium and lamina propria under homeostatic condition (19,

20). Extravascular neutrophil encounter with amoeba could elicit a

series of responses, including reactive oxygen or nitrogen species

(ROS, NOS) production, and neutrophils extracellular trap (NET)

formation within the olfactory tissues. Ultimately, in animal

models, these effector functions can reduce the number of

trophozoites invading the olfactory bulb of the CNS and slow

fatal PAM development (21). But in animal models, amoeba

invariably do reach the CNS and upon arrival glial cells have a

minimal capacity to resist N. fowleri trophozoites. Microglia serve

as the primary immune sentinel cell within the brain and these cells

can respond to N. fowleri by activating NLRP3 inflammasome and

MAPK signaling to secrete different pro-inflammatory cytokines

(22). And while, published evidence suggests that microglia are

capable of lysing and ingestingN. fowleri trophozoites, protease and

extracellular vesicles secreted by N. fowleri can also lead to

microglia cell death (23–25). As amoeba feed and divide, their

increasing numbers result in damage that provokes an intense

innate immune activation. Incomplete amoeba control initiates a

feed forward loop of recruited blood-borne innate leukocytes and

proinflammatory cytokine production that leads to a massively

inflamed CNS environment with progressively increasing immune

cell numbers (Figure 1). Innate immune cells are able to slow

amoeba pathogenicity (21), and proinflammatory cytokines likely

play important roles in their anti-amoebic pressure. Yet the

excessive CNS immune response fails to control N. fowleri

infection, and the collateral inflammatory damage leads to

edema, hemorrhage, and elevated intracranial pressure that are

critical factors in PAM pathogenicity. It’s unclear how individual

proinflammatory cytokines are ultimately deleterious or beneficial

to the PAM patients. Here we will further discuss the roles for

proinflammatory cytokines, IL1 a/b, IL6 and TNFa in N.

fowleri infection.
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Pro-inflammatory cytokines in N.
fowleri infection

IL-1a/b

The interleukin-1 (IL-1) cytokine family is a mainstay of

innate immunity and inflammation. IL-1 signaling is a key

feature of “inflammasome” activation and commonly viewed

as a core pro-inflammatory cytokine. Indeed, IL-1 inhibitors

have been clinically successful in treating autoimmune, as well as

variety of inherited and acquired, inflammatory disorders. Two
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IL-1 family cytokines, IL-1a and IL-1b, are both reportedly

produced by multiple cell types during N. fowleri infection

(Table 1). While these IL-1 family members do not have direct

effects on N. fowleri (31), they play critical roles in alerting or

enhancing the immune reaction to N. fowleri infection [26].

Within the airway, nasal epithelial cells are one of first cell

types to contact N. fowleri and in vitro studies suggest that they

may respond with IL-1b secretion. A study of human

mucoepidermal cell line found that IL-1b was secreted within

3h of co-culture with N. fowleri trophozoites. Interestingly, this

study also found that trophozoites could induce mucin
FIGURE 1

In vitro studies suggest a model for pro-inflammatory cytokine production during N. fowleri infection. N. fowleri attach to the olfactory
epithelium and invade into the olfactory bulb through OSN axon tract. In the olfactory epithelium layer, resident macrophages and sustentacular
cells may secrete pro-inflammatory cytokines in response to N. fowleri. In the olfactory bulb, microglia, astrocytes, endothelial cells, and
macrophages may produce multiple pro- inflammatory cytokines after N. fowleri exposure. These cytokines likely play important anti- amoebic
roles, but are also immunopathologic.
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TABLE 1 Studies of pro-inflammatory cytokine response to N. fowleri stimulation.

Author Experiment Cell types Stimulation Findings

Oh, et al. (24) In vitro co- culture Rat primary microglia co-cultured with
N. fowleri
trophozoites

IL-1b gradually increased after 12h, with no change after anti-
Nfa1 antibody treatment. IL-6 secretion detected at 3h,
increasing until 12h, with no change after anti-Nfa1 antibody
treatment. TNF⍺ production peaked at 3h and maintained
similar levels after 12h, anti-Nfa1 antibody reduced TNF⍺
secretion at 3h and 6h only.

Lê, et al. (26) In vitro BV-2 mouse
microglial cells

Recombinant
Cathepsin Bs of N.
fowleri (rNfCBs)

IL-1a and IL-1b mRNA expression were detected at 6h after
rNfCBs stimulation TNF⍺ and IL-6 secretion were increased at
6h after rNfCBs stimulation Cytokine secretion was induced
via NF-kB- and AP- 1-dependent MAPK signaling.

Lee, et al. (27) In vitro BV-2 mouse
microglial Cells

Excretory and
secretory proteins
of N. fowleri
(NfESP)

IL-1a and TNF⍺ mRNA and protein expression increased at
3h post-NfESP stimulation. Cytokine production required
NF-kB- and AP-1-dependent MAPK signaling.

Thái, et al. (23) In vitro BV-2 mouse
microglial cells

recombinant
fowlerstefin of N.
fowleri

TNF, IL-1a, IL-1b, and IL-6 mRNA expression all increased
3h after recombinant fowlerstefin treatment. Cytokine
production was downregulated by inhibition of NF-kB and
AP-1.

Lee, et al. (25) In vitro Rat primary microglia N. fowleri
lysate

TNF⍺ and IL-6 secretion was induced at 3h post-N. fowleri
lysate stimulation. IL-1b expression was detected after 12h
stimulation.

Kim, et al. (22) In vitro co-culture human
macrophage

N. fowleri
trophozoites

IL-1b secretion from THP-1 cells elevated at 3h after

cells (THP-1 cells) (non-contact
system)

stimulation and ASC/NLRP3/Caspase-1 inflammasome was
observed. In addition, NLRP3 and Caspase-1 inhibitors
reduced IL-1b secretion from THP-1 cells after trophozoite
co-culture.

Lertjuthaporn, et al. (28) In vitro co- culture human macrophage
cells (THP-1 cells)

extracellular
vesicles from
N. fowleri

N. fowleri-derived extracellular vesicles drove THP-1 activation
marker expression but not TNF, IL- 1a, IL-6, IL-10, and
CXCL10expression.

Coronado- Velázquez,
et al. (16)

In vitro co- culture primary rat brain
microvascular
endothelial cells
(RBMEC)

co-cultured with
N. fowleri
trophozoites

IL-1b, TNF, and IL-6 expression by RBMEC was detected after
6h co-culture with N. fowleri. Loss of tight junction proteins
was found as early as 30 min of N. fowleri co-culture.

Cervantes- Sandoval, et al.
(29)

In vitro co- culture Human
mucoepithelial NCI-
H292
cells

co-cultured with
N. fowleri at first
6h only

IL-1b mRNA levels were increased after 3h of co- culture with
N. fowleri. In contrast, TNF⍺ expression had no changes.
ROS production and EGFR activation are required for IL- 1b
expression. Mucin production was found after co-culture.

Martıńez- Castillo, et al.
(17)

In vitro co-
cultured

Human
mucoepithelial NCI-
H292
cells

co-cultured with
N. fowleri
trophozoites

IL-1b and TNF⍺ mRNA expression were induced through
TLR4 and TLR2 activation after 3h of N. fowleri exposure.

Kim, et al. (30) In vitro Primary rat astrocytes N. fowleri
lysate

IL-1b and IL-6 mRNA and protein expression were induced at
1h after N. fowleri lysate incubation. IL-1b and IL-6 secretion
dependent on ERK, JNK and MAPKs activation.

Chen and Moseman 10.3389/fitd.2022.1082334
production from human epithelial cells (29). IL-1b secretion

from monocytes or macrophages requires both priming (signal

1) and activation (signal 2) to produce activated cleaved IL-1b.
Briefly, danger associated molecular pattern signals (DAMPs)

activate the transcription factor NfkB (signal 1) leading to

increased pro-IL-1b expression. Pro-IL-1b is an inactive

precursor and requires cleavage by caspase-1 to form the
Frontiers in Tropical Diseases 04
active IL-1b molecule. Perturbation of ionic concentration

(Ca2+ and K+ efflux) or further DAMP stimulation (32, 33)

can lead to caspase-1 activation through the multi-protein

inflammasome complex (inflammasome) (signal 2). In a non-

contact co-culture system, macrophage-like cells (THP-1 cells)

secrete cleaved IL-1b 3h post co-culture with N. fowleri

trophozoites (22). Further analysis showed activation of
frontiersin.org
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caspase-1 and the ASC/NLRP3 inflammasome in THP-1 cells

co-cultured with N. fowleri (22). Interestingly, another study

found that N. fowleri-derived extracellular vesicles did not elicit

IL-1a or IL-1b production from THP-1 cells (28). This finding

implies that extracellular vesicles alone are minimally

stimulatory, and damage caused by factors secreted by live

amoeba is required to trigger IL-1 production. Overall, these

in vitro data suggest that myeloid cells, especially, tissue-resident

macrophages within the olfactory mucosa could respond to N.

fowleri infection by secreting pro-inflammatory cytokines.

In vitro studies of multiple CNS cell types including

microglia, astrocytes, and endothelial cells, have reported their

secretion of IL-1a and IL-1b in response to N. fowleri infection.

In one recent study, Lee et al. demonstrated that purified

excretory and secretory N. fowleri proteins (NfESP) induced

IL-1a and TNFa expression in BV-2 microglial cells (27). The

same group showed that treatment of BV-2 microglial cells with

a N. fowleri derived cathepsin B led to increased expression of

IL-1a, IL-1b, IL-6, and TNF, and these effects are dependent on

the NF-kB, AP-1 and MAPK signaling (26). Similarly, primary

rat astrocytes also secrete IL-1b and IL-6 after being cultured

with N. fowleri lysates and this secretion is dependent on ERK,

JNK, and MAPKs activation (30). In addition to CNS glial cells,

microvascular endothelial cells can express pro-inflammatory

cytokines after contact with N. fowleri in an in vitro model; co-

culture of N. fowleri with rat brain endothelial cells not only

reduces endothelial tight junction protein expression but also

increases expression of IL-6, IL-1b, and TNF (16). In the CNS,

endothelial cells, astrocytes, and neurons, but not microglia,

have been shown to homeostatically express IL-1R1 (34). During

N. fowleri infection, abundant IL-1 release from different cell

types may stimulate endothelial CXCL2 production that

amplifies peripheral neutrophil recruitment and CNS

immunopathology (34). Moreover, the elevated IL-1 may be

responsible for “sickness behaviors” through endothelial IL-1R

cell during N. fowleri infection (34). Unfortunately, current

evidence is almost entirely based on data from in vitro systems

and cell lines, and it remains unclear whether IL-1 signaling is

essential to control N. fowleri infection in vivo and whether IL-1

signaling is ultimately beneficial or detrimental to the host.
IL-6

IL-6 is a pleiotropic cytokine that is involved in the acute

immune response and inflammation to infection. Experiments

have demonstrated that IL-6 is produced by multiple cell types,

including microglia, astrocytes, and endothelium cells after

exposing to N. fowleri in vitro (Table 1). One critical role for

IL-6 in infection is driving the host fever response through brain

endothelium cells (35). The fever response is believed to benefit

the host by generating a less hospitable environment for

pathogens that thrive at or below body temperature. However,
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this is not the case for N. fowleri, which is a thermophilic

organism that readily grows at temperatures above 40-42C.

While IL-6 driven fever may not be an appropriate response to

N. fowleri, IL-6R is highly expressed on neutrophils and

monocytes (36), that are critical innate immune effectors that

infiltrate the CNS during N. fowleri infection. Both monocytes

and neutrophils can shed membrane-bound IL-6R from their

cell surface to provide soluble IL-6R (sIL-6R) into the local

environment (37, 38). Soluble IL-6R binds IL-6 to form a sIL-6R/

IL-6 complex, that potently binds to GP-130 on endothelial cells,

activating STAT3-dependent signaling, and inducing monocyte

recruiting chemokine CCL2 expression (38, 39). Despite the

known pro-inflammatory roles for IL-6 it is still unclear whether

IL-6 can stimulate anti-amoebic function during N. fowleri

infection or if the secondary effects contribute to tissue

damage. More studies are needed to understand how IL-6 may

impact N. fowleri pathogenesis.
Tumor necrosis factor-alpha (TNFa)

TNFa has been frequently linked with anti-amoeba

activities. In 1984, Ferrante and colleagues observed that

conditioned medium from mononuclear leukocytes could

activate human neutrophils to increase N. fowleri killing

functions (40). TNFa has been shown to be the major player

augmenting the neutrophil respiratory burst and lysosomal

enzyme release in response to N. fowleri (41, 42). Myeloid cells

express both TNFR1 and TNFR2, which bind soluble TNFa and

membrane-bound TNFa, respectively. Several studies have

reported TNFa “licensing” neutrophils to enhance or perform

effector functions. TNFR1 signaling was shown to license mouse

neutrophils and increase TLR-dependent cytokine production in

a peritonitis model (43). Similarly, TNFa increased neutrophil

elastase (ELANE) expression and induced NET formation via

TNFR2 in human neutrophils (44), and NETs are reported to

damage IgG opsonized N. fowleri trophozoites (45). In addition

to myeloid cell activation, TNFa is known to potently increase

endothelial cell adhesiveness (46), which in turn facilitates

immune cell extravasation at inflamed sites. In vitro

experiments have described TNFa production from microglia,

endothelial cells, and epithelium cells upon N. fowleri

stimulation. Notably, several in vitro studies have shown that

TNFa release by microglia peaked 3h after N. fowleri exposure-

earlier than observed IL-1b or IL-6 secretion (Table 1),

suggesting that TNFa may contribute to the earliest immune

activity in response to N. fowleri (24, 25, 27). TNFa clearly plays

a key role in innate immune function, particularly through

catalyzing subsequent inflammatory cascades, but more in vivo

and mechanistic studies must be conducted to understand how

TNFa signaling in different cell types and anatomical locations

contributes to N. fowleri immunity.
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Targeting pro-inflammatory
cytokines in PAM treatment

Initial symptoms ofN. fowleri infection (headache and fever)

belie disease seriousness. Even when meningitis is eventually

suspected, delay in initiating treatments likely contributes to the

fatality rate. Current clinical PAM treatment includes supportive

care and broad-spectrum antifungals and antibiotics, including

amphotericin B, fluconazole, rifampin, miltefosine, and

azithromycin (47). External ventricular drain (EVD),

hyperosmolar therapy, hyperventilation, and induced

hypothermia have also been used to resolve cerebral edema

and intracranial pressure in recent cases (5, 48). Nonetheless, the

mortality of PAM remains over 95% and additional therapeutic

approaches are desperately needed.

N. fowleri is not an obligate pathogen, and indeed infection is

best described as opportunistic, but accidental (49). Mammalian

immune systems are poorly adapted to handle the size and speed

of N. fowleri, nevertheless, immune pressure does impede

pathogen growth (21). Innate immune activation and

inflammatory processes that arise within the CNS during

amoeba infection are especially immunopathologic in the

context of the confined CNS space. While the complex

physiology of the CNS is impossible to mimic in vitro, a recent

in vitro study indicated that leukocytes could enhance N. fowleri-

induced cell death of human microvascular endothelial cells in

co-culture experiments (50). This study reinforces the clinical

use of anti-inflammatories for PAM patients and indeed all

North American PAM survivors received dexamethasone, a

corticosteroid with broad anti-inflammatory activities (5). The

clinical utility of dexamethasone during PAM further suggests

that the overwhelming brain inflammatory immune response is

a critically pathologic component of disease. While the

cerebrospinal fluid (CSF) from PAM patients has

unfortunately not been analyzed for inflammatory mediators,

many clinical studies have reported significant pro-

inflammatory cytokine elevations during meningitis and

encephalitis (51–55). These studies of CNS infections strongly

suggest that PAM patient CSF contains high levels of pro-

inflammatory cytokines. Targeted blockade of specific

cytokines may therefore allow novel therapeutic approaches

that alleviate detrimental inflammatory effects while preserving

key immune-enhancing effects in PAM patients. Tocilizumab is

a humanized monoclonal antibody targeting both membrane

and soluble IL-6R, that is FDA approved by for severe cytokine

release syndrome (CRS) (56) and has been issued severe COVID

adults and pediatric patients (57). Tocilizumab delivery into the

CSF space achieves significant in vivo concentrations in rhesus

macaques, making it a candidate for controlling IL-6 signaling in

PAM patients (58). IL-1a and b can be inhibited by recombinant

human IL-1 receptor antagonist (Anakinra). Anakinra blocks
Frontiers in Tropical Diseases 06
IL-1a and IL-1b activities and is FDA approved for different

inflammatory diseases, including rheumatoid arthritis, and

cryopyrin-associated periodic syndromes (59, 60). Notably, the

intravenous injection of Anakinra achieved effective

concentrations in the CNS of subarachnoid hemorrhage

patients, indicating blood-brain-barrier penetration (61).

TNFa blockade has been used clinically for over 20 years

and five FDA approved drugs are currently available to block

TNFa signaling (infliximab, etanercept, adalimumab,

certolizumab pegol, and golimumab) for treatment of

rheumatoid arthritis, psoriatic arthritis, and many other

chronic inflammation diseases. During N. fowleri infection,

excess TNFa within the CNS environments could make TNFa
an appealing target for reducing inflammation. Indeed,

perispinal TNFa blocking with etanercept improved stroke

and traumatic brain injury (TBI) clinical outcomes in an

observational study (62).

TNFa receptors (TNFR1 and TNFR2) have strikingly

different downstream signaling that can drive seemingly

contradictory CNS phenotypes. In neurons, TNFR1 activation

is linked with neuroinflammation; while TNFR2 signaling is

neuroprotective (63–65). The relative importance of TNFa
signaling through either TNFR1 or TNFR2 during N. fowleri

infection has not been fully elucidated. It will be necessary to

dissect the in vivo TNFR1 and TNFR2 function during N. fowleri

infection to determine if there may be clinical utility in TNFa
blockade for PAM patients.
Concluding remarks

While early identification of PAM remains a key clinical

parameter, basic understanding of the immune response during in

vivo N. fowleri infection is critical to improving current clinical

outcomes. Here we have described what is known about pro-

inflammatory cytokine secretion by different cell types in the

context of N. fowleri. Billions of dollars have been spent to

develop exquisitely targeted therapeutics against pro-inflammatory

mediators that are now in widespread clinical use. These drugs offer

opportunities to expand clinical treatment beyond the broad

immunosuppression of corticosteroids, and selectively target

detrimental components of the immunopathologic landscape

during N. fowleri infection. However, additional in vivo

mechanistic studies are needed to understand the specific

beneficial and detrimental roles of the cytokine response in the

CNS. In vivo studies of genetically deficient animals or with in vivo

antibody blockade will be crucial to dissecting each cytokine’s role in

the innate immune response and immunopathology during N.

fowleri infection. Combining these in vivo studies with models of

clinically relevant treatment approaches will support new

therapeutic approaches to PAM.
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