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Effective mosquito surveillance and control relies on rapid and accurate identification of
mosquito vectors and confounding sympatric species. As adoption of modified mosquito
(MM) control techniques has increased, the value of monitoring the success of
interventions has gained recognition and has pushed the field away from traditional
‘spray and pray’ approaches. Field evaluation and monitoring of MM control techniques
that target specific species require massive volumes of surveillance data involving
species-level identifications. However, traditional surveillance methods remain time and
labor-intensive, requiring highly trained, experienced personnel. Health districts often lack
the resources needed to collect essential data, and conventional entomological species
identification involves a significant learning curve to produce consistent high accuracy
data. These needs led us to develop MosID: a device that allows for high-accuracy
mosquito species identification to enhance capability and capacity of mosquito
surveillance programs. The device features high-resolution optics and enables batch
image capture and species identification of mosquito specimens using computer vision.
While development is ongoing, we share an update on key metrics of the MosID system.
The identification algorithm, tested internally across 16 species, achieved 98.4 ± 0.6% %
macro F1-score on a dataset of known species, unknown species used in training, and
species reserved for testing (species, specimens respectively: 12, 1302; 12, 603; 7, 222).
Preliminary user testing showed specimens were processed with MosID at a rate ranging
from 181-600 specimens per hour. We also discuss other metrics within technical scope,
such as mosquito sex and fluorescence detection, that may further support
MM programs.

Keywords: computer vision, mosquito surveillance, artificial intelligence (AI), imaging, species identification,
modified mosquito, GM mosquito, mosquito control organization
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1 INTRODUCTION

In this perspectives paper, we present an overview of critical
needs in mosquito surveillance that frame the use case for an
automated identification system in the context of modified
mosquito populations. These needs have influenced our
development of MosID: a device that allows for systematic,
high-accuracy mosquito species identification to enhance
capability and capacity of mosquito surveillance programs. A
brief update on MosID’s state of development is provided
and we discuss future directions that we are considering as we
aim to develop MosID as a product available to the public
health community.

The control of mosquito populations has for many years
proven to be an effective strategy in preventing the transmission
of mosquito-borne disease (1). Mosquito control programs
depend on vector surveillance to optimize these control efforts
and monitor efficacy (2). Although traditionally used broad-
spectrum adulticides have demonstrated great success as control
methods (3), shifting public perception and increased insecticide
resistance (4–7) have pushed organizations to adopt alternative
control techniques. Many alternative control techniques have
been developed and are in various stages of testing or
deployment, including sterile insect technique (SIT) (8),
genetically modified (GM) populations (9, 10), Wolbachia-
induced cytoplasmic incompatibility (11), and disease
refractory strains (12, 13). Modified mosquito (MM) methods
rely on a detailed understanding of the natural population with
accurate species-level data. When implementing a program
involving release of insects, it is important to collect baseline
data that can inform the parameters of the program, as well as to
monitor the success of that program. Often, organizations
require a significant scale-up in surveillance activities in order
to effectively evaluate and implement these control
techniques (14).

Vector control programs are conducted by a variety of
organizations across the United States including local health
departments, mosquito control districts, and other local
governmental agencies (15). As an umbrella term, these will all
be referred to as Mosquito Control Organizations (MCOs)
moving forward. Despite the recognized need for routine high-
accuracy data, surveillance efforts remain a time consuming and
labor-intensive process, and MCOs often lack the resources
needed to collect essential data. A 2017 survey showed that
only 52% of districts performed routine surveillance, and just
61% were targeting mosquito control based on surveillance data
(15). Limited public funding for US MCOs is recognized as a
main reason for these gaps, causing a lack of preparedness for the
Zika outbreak and contributing to the scale of the outbreak
internationally (16). In 2020, our team participated in the I-
Corps program, an effort sponsored by the National Science
Foundation to identify societal needs and potential research
technologies that could address these gaps. Through interviews
with over one-hundred entomologists, technicians, and
managers of vector control organizations, we identified the
following specific needs:
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1. Capability: Enhance entomological capabilities in public
health labs. Smaller public health departments typically do
not have a professional entomologist on staff. If equipped
with tools capable of accurately identifying vector species,
aggregating data, and guiding decision making, smaller
public health districts could potentially predict increased
risk of vector-borne disease outbreaks and enhance the
impact of their vector control programs.

2. Capacity: Build surveillance capacity in the field and the lab
for conventional best practices. Even medium and large-sized
MCOs, who have the capability of entomological expertise,
sometimes have limited capacity to gather sufficient vector
surveillance data. Technologies that decrease the time and
personnel or training required in the field or lab would be
highly beneficial as they would enable districts to generate
data more quickly and accurately, increasing the effective
allocation of control resources.

3. Modernization and standardization: Modernization
and standardization of surveillance data for historical and
regional comparisons, reporting to state agencies, and
research. Traditional data visualization programs still
require data to be manually input or uploaded to each
system. Poor centralization of data limits vector control
district abilities to review and compare historical data,
restricts the ability of state and federal agencies to
understand local vector control needs, and hinders research
insights. Though some regions have adopted advanced
systems, such as California’s VectorServ (https://vectorsurv.
org/), many regions do not.

4. Access to new precision variables: Develop tools capable of
generating or facilitating generation of new variables or layers
of resolution to precision surveillance data, such as the
abdominal status of specimens (blood-fed vs starved),
specimen age, detection of pathogens, and species-level
surveillance of larvae. This information is largely limited to
research practices, but would provide valuable data that may
enhance effective vector control decision making.

The most prominent alternatives to manual mosquito species
identification include DNA based methods, wing beat frequency
analysis, and computer vision based image analysis. Although
DNA based methods such as DNA barcoding (17) are highly
accurate, they require significant training to implement and are
expensive, limiting their use operationally to research
institutions and large, well-funded MCOs. Analysis of wing
beat frequency using deep learning methods has been
successful in lab environments (18–21), however has faced
significant barriers when deployed in the field due to the high
variability exhibited by field caught specimens (22). In the past
few years, advances in image processing and deep learning,
namely convolutional neural networks (CNNs), have shown
great promise in adult mosquito species identification nearing
99% accuracy across large numbers of species (23–26). The most
notable works have used primarily wild caught specimens in
various states of physical damage (24, 25), assessed differences
between cryptic species within a species complex (23), identified
February 2022 | Volume 2 | Article 810062
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the sex of specimens (23), and determined when a species was
novel to the CNN system, flagging it as an unknown species (25).
Although using relatively small datasets, reducing the variability
in the images through standardized imaging likely contributed to
the success of these works, as compared to other more massive
computer vision datasets such as ImageNet (27) or iNaturalist
(28), which include dramatic variability in image resolution,
background, lighting, and data source. These advances in
computer vision based mosquito species identification warrant
practical implementation of new surveillance tools which address
the needs described above.
2 MOSID DEVELOPMENT

2.1 Hardware and System Design
In response to the need to enhance capability and capacity of
mosquito surveillance programs, we present MosID: a device
that allows for systematic, high-accuracy adult mosquito species
identification using high-fidelity computer vision techniques (see
Figure 1). The device features high-resolution optics to resolve
fine morphological features and batch image capture. The
device’s imaging chamber is enclosed to maintain consistent
lighting independent of the external setting. Light emitting
Frontiers in Tropical Diseases | www.frontiersin.org 3
diodes (LEDs) are arranged above and lateral to the image
plane to optimize illumination while minimizing shadows that
may obscure features. High-resolution imaging is achieved with a
12MP camera and a high resolution 35mm effective focal length
lens, suspended ~250mm or ~12in from the object plane where
specimens are inserted into the device. Thus, the system can
achieve at least 32 lp/mm throughout a 40mm x 30mm field of
view and a 3mm depth of focus, validated in each device using
the USAF 1951 resolution target.

A custom tray was designed to maximize specimen processing
speed while maintaining resolution and depth of focus
requirements. The tray is transparent, allowing the tray to be
flipped and specimens to be imaged from both sides, thereby
providing more information for identification. Current
computer vision methods in MosID rely on a single view
for identification.

The user places a mosquito sample within each of the 12
individual cells, replaces the cover, and inserts the tray into the
device. A website is used to direct the device to take an image,
receive the image and identification data, and display the result
to the user. Users can enter associated data and have the option
of contributing their own species identifications for the
specimens they imaged. The system is designed to require
minimal training.
FIGURE 1 | MosID is a tabletop tool for mosquito identification. (A) The MosID system consists of: a specimen tray, which is loaded with specimens and inserted
into the device; a device, which takes images and processes them prior to sending them to cloud servers; and a web dashboard which is used to control the device
and view the resulting data. (B) The MosID device measures 153mm x 210mm x 335mm. (C) Example of image captured with MosID. Each specimen is placed
individually into a well in the tray prior to inserting into the device.
February 2022 | Volume 2 | Article 810062
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2.2 Species Identification Algorithm
Development
Wild specimens exhibit more variations of phenotype and
physical damage than a homogenous lab colony population.
Wild specimens were captured and identified by various
partner MCOs throughout the United States, then mailed to
Vectech for processing with MosID. We tested the function of
the novel species detection algorithm described by Goodwin et. al
(25)., which uses a three tiered system that analyzes the features
output by the identification CNN, an unmodified xception
network (29). Novel species detection here refers to detecting a
species previously unseen by the CNN species classification
algorithm and classifying it as “unknown”. This feature enables
deployment of an identification algorithm in a region prior to
including every species in the algorithm. The species
identification algorithm, tested across 16 species considered
relevant by partners, achieved a macro F1 score of 98.4 ± 0.6%
across five experiments where the data was folded five times, with
each experiment reserving one fold for the test set, resulting in a
80:20 ratio of training data to test data (see Table 1). Image
preprocessing and CNN architecture training used were
described by Goodwin et al. (25) in the Tier I architecture
section of that work. Species and number of specimens
included in the identification CNN were: Ae. aegypti, n=95; Ae.
dorsalis, n=70; Ae. melanimon, n=96; Ae. nigromaculis, n=62; Ae.
sierrensis, n=59; Ae. taeniorhynchus, n=67; Ae. vexans, n=96; An.
freeborni, n=88; An punctipennis, n=66; Coquillettidia
perturbans, n=96; Culiseta incidens, n=98; Cx. erraticus, n=102;
Cx. pipiens sl, n=141; Cx. salinarius, n=96; Cx. tarsalis, n=128;
and Psorophora ferox, n=63.

In a separate test, the novel species detection algorithm was
trained and tested on a single fold on a data split with 12 known
Frontiers in Tropical Diseases | www.frontiersin.org 4
species, 12 unknown species used in training, and 7 unknown
species reserved for testing and thus novel to the CNN, following
the same methodology as Goodwin et al. (25). The novel species
detection architecture was modified to omit the open set CNN
portion of tier I and tier II for simplicity. All other portions of the
architecture and training methodology were unchanged.
Accuracy, F1-score, precision, and recall were as follows:
88.6%, 92.7%, 90.4%, 95.1%. Known species and specimen
counts were as follows: Ae. aegypti, n=127; Ae. albopictus,
n=143; Ae. melanimon, n=96; Ae. sierrensis, n=72; Ae. vexans,
n=98; An. freeborni, n=88; Cq. perturbans, n=110; Cx. erraticus,
n=103; Cx. pipiens sl, n=144; Cx. salinarius, n=90; Cx. tarsalis,
n=131; Cs. incidens, n=100. Unknown species used in training
and the specimen counts were as follows: Ae. dorsalis, n=69; Ae.
japonicus, n=58; Ae. nigromaculis, n=56; Ae. taeniorhynchus,
n=72; An. punctipennis, n=72; Cx. nigripalpus, n=94; Cx.
restuans, n=12; Cx. stigmatosoma, n=13; Cs. inornata, n=41;
Cs. particeps, n=1; Ps. ferox, n=70; Uranotaenia sapphirina,
n=45. Unknown novel species and specimen counts were as
follows: Ae. canadensis, n=31; Ae. increpitus, n=48; Ae.
triseriatus, n=16; An. quadrimaculatus, n=30; Cx. territans,
n=9; Cs. melanura, n=52; Mansonia titillans, n=36.

2.3 Specimen Processing Speed
Given the large volume of specimens gathered by MCOs during
normal operations, which can be further increased with the
implementation of MM programs, processing speed of batch
collections is a critical metric. This was preliminarily tested by
projecting probable operational workflows of MosID based on
normal MCO identification workflows. Two workflows were
assessed: Process A, where specimens are identified and then
discarded; and Process B, where specimens are identified, and
TABLE 1 | Below is the F1-score, precision, and recall for the algorithm test described in Section 2.2, replicating the Tier I closed set architecture of the species
classification CNN used in Goodwin et al. (25) on the image database of mosquitoes developed using MosID for this work.

Precision Recall F1 score

Aedes aegypti 98.89 ± 2.49% 100 ± 0% 99.43 ± 1.28%
Aedes dorsalis 100 ± 0% 100 ± 0% 100 ± 0%
Aedes melanimon 99.05 ± 2.13% 99 ± 2.24% 99 ± 1.37%
Aedes nigromaculis 99.2 ± 1.79% 100 ± 0% 99.59 ± 0.91%
Aedes sierrensis 96.92 ± 4.21% 98.26 ± 2.39% 97.51 ± 1.65%
Aedes taeniorhynchus 96.64 ± 3.34% 96.23 ± 6.2% 96.26 ± 2.33%
Aedes vexans 98.86 ± 1.57% 96.88 ± 2.07% 97.85 ± 1.52%
Anopheles freeborni 97.37 ± 3.72% 99.44 ± 1.24% 98.38 ± 2.42%
Anopheles punctipennis 100 ± 0% 97.86 ± 3.19% 98.9 ± 1.65%
Coquilitidia perturbans 100 ± 0% 100 ± 0% 100 ± 0%
Culex erraticus 97.51 ± 4.33% 97.62 ± 2.38% 97.5 ± 2.05%
Culex pipiens s.l. 96.57 ± 3.26% 98.94 ± 1.59% 97.71 ± 1.54%
Culex salinarius 99.46 ± 1.21% 98.25 ± 2.5% 98.83 ± 1.19%
Culex tarsalis 97.26 ± 3.01% 96.41 ± 4.94% 96.77 ± 3.01%
Culiseta incidens 99.01 ± 1.35% 98.44 ± 1.43% 98.72 ± 0.89%
Psorophora ferox 100 ± 0% 96.36 ± 8.13% 98 ± 4.47%

Macro F1 score 98.4 ± 0.63%
Acc 98.32 ± 0.71%
February 2022 | Volume 2 |
These results indicate that high accuracy can be achieved given a highly controlled environment for high resolution mosquito imaging, such as is achieved in the MosID device. In order to
be a scalable useful tool for mosquito surveillance, further testing is required to assess how the algorithm functions in other devices of the same design, including end to end testing using
data outside the training distribution.
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then certain specimens are sorted by species for other types of
testing such as pathogen detection. Internal testing with MosID
showed a processing speed of 600 specimens per hour for
identification only (process A), and 430 specimens per hour
for identification with sorting (process B). Partner MCOs also
tested the speed of these processes using MosID. The processing
speeds of MCOs using MosID for identification only and
identification with sorting, respectively, were as follows: Placer
County, CA (330 specimens per hour, and 229 specimens per
hour); Beaufort County, SC (214 specimens per hour, and 182
specimens per hour). MCOs reported the primary rate limiting
factors to be the placement of specimens within each well and the
sorting of specimens after imaging, especially for trap catches
with high species diversity. A significant reduction in processing
speed for a portion of the timed trap catches is attributed to the
entry of specimen identification data during processing (see
Supplementary Information). Other reported factors included
some minor manufacturing issues and occasional generation of
static electricity.
3 DISCUSSION

3.1 Future Work
There has been a considerable amount of successful research in
species identification of mosquitoes using computer vision (23–
26) but the technology has yet to be translated for operational
use. To function well in the practical context, learning algorithms
like CNNs need to be exposed during development to data
representative of the diversity they will encounter when
deployed, an extremely difficult task in the context of scale.
The barriers to achieving consistent deployment accuracy faced
by the BG-Counter smart mosquito trap (22) provide evidence of
this challenge. However, many MCOs are interested in
identification of a small number of key species and therefore
limited species coverage may be acceptable. Focusing on key
species may limit the required data and accelerate deployment.
Additionally, minor variations in images, as may be seen between
imaging devices even of the same design and assembly, can
produce errors in a CNN (26). Further development is required
to scale and deploy an algorithm that is increasingly robust to
expected data variations, such as: minute differences between
devices; differences between specimen capture, handling, and
storage methods prior to imaging; and regional differences in
populations within a species.

Algorithm development thus far has focused on species
recognition and validating that species identification is feasible.
However, similar computer vision techniques can be deployed to
identify additional characteristics within technical scope, such as
mosquito sex and fluorescence detection, that may further
support MM programs.

Sex classification is of particular importance to most MM
programs where the method of intervention is dependent on
release of males. Measuring the ratio of males to females in the
population can serve as a metric for the effectiveness of the
intervention in reducing the size of the population (30). Species
classification requires an individual to have far more training and
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expertise than sex determination, as the features dividing certain
species from each other can be cryptic (e.g., the coloration of
proboscis, the presence of certain hairs on the legs or body) (31),
while those which distinguish sex are more distinct and visible at
a more macro level. Successful determination of mosquito sex
using computer vision has been shown in literature (23) and is
currently in development for MosID.

Altering mosquitoes so that they fluoresce under a particular
wavelength of light can be another method used to monitor GM
program reach. By this method, an organization can monitor the
proportion of a population which stems from the released
specimens, or in the case of gene drive technologies, monitor
the spread of the gene throughout the population (32, 33).
Detecting fluorescence with a device such as MosID follows
the same principle as a fluorescence microscope or macroscope.
To this end, we envision future versions of MosID altered for the
detection of certain fluorescent molecules of interest to
MM programs.

Additional opportunities exist to further enhance the utility of
MosID. For sex classification, fluorescence detection, and species
identification, the ability to rapidly assess thousands of
specimens is highly desirable to enable surveillance at large
scale. Thus, hardware and software workflow modifications to
improve processing speed are in development. Beyond the needs
of enhanced data collection, streamlined and standardized data
entry and presentation stand to expand the impact of
surveillance. Manual data entry slows processing time and
limits the flexibility and impact of the collected data. Recent
advancements in data presentation and data analytics have been
used to provide clear historical and regional comparisons,
combining inputs beyond traditional mosquito surveillance
data, and could be used to produce actionable outputs (34, 35).
Furthermore, improvements in centralization of data would
provide more research level insights into region-wide trends
and provide better visibility on the part of state and federal
agencies to understand local vector control needs. Lastly, MosID
in its current form is a species identification tool and does not
attempt to provide or tie-in additional surveillance data beyond
simple metrics such as trap type, location, and collection date; to
be accurate and reliable as a stand-alone surveillance tool for
users with limited training, predictive variables could be
included, such as species variation due to trap type, habitat
association, and geographic distribution.

3.2 Conclusion
Advancements in computer vision are well-positioned to push
vector surveillance beyond the capability and capacity limitations
currently facing MCOs. MosID, a lab device designed to
implement computer vision based mosquito species
identification, enables species identification without the need
for review by a trained professional, thus eliminating a significant
capability hurdle in mosquito surveillance. We have shown that
high accuracy species identification with this device can be
achieved, with the potential to serve MCOs that monitor a
wide variety of species, as well as mosquito release programs
that are often concerned with the identification of a
single species.
February 2022 | Volume 2 | Article 810062
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Development of MosID thus far represents the transition of
computer vision based mosquito species identification from a
research topic to an operational tool designed to increase
organizational capacity and capability. Of the four critical
surveillance needs of MCOs identified by our team in the NSF
Innovation Core program, MosID provides species identification
expertise, increasing the 1) capacity of organizations that
otherwise would not have this skill in-house. For some larger
or medium sized MCOs where 2) capacity is a limiting factor,
MosID may de-skill the identification process, enabling anyone
with basic computer literacy to identify specimens without
intensive training. Other innovations may address remaining
capacity gaps, such as automating sorting alongside
identification as has been done by Verily in the mass
production of Wolbachia infected male mosquitoes (36), or
smart traps that remotely transmit identification and trap
catch data (21, 37). Depending on the organization, MosID
may serve as an improvement in 3) modernization and
standardization of data due to the inherent digitization of each
specimen during processing. With discussed improvements,
MosID has the potential to introduce 4) access to new
precision variables, such as detection of fluorescence or
colorants. This would be powerful in the context of monitoring
the dynamics and efficacy of control techniques using mass
release of insects, which were previously only accessible to
research organizations and very large MCOs.
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