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Malaria may affect the reliability of SARS-CoV-2 seroassay performance and limit
understanding of SARS-CoV-2 epidemiology in malaria-endemic regions. We present
our experience conducting SARS-CoV-2 serosurveillance in seasonal malaria-affected
communities in Mali and discuss relevant literature regarding the effect of malaria on the
performance of SARS-CoV-2 serodiagnostics, including approaches to minimize the
effect of malaria-associated assay interference.
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INTRODUCTION

There are many possible interfaces for COVID-19 and malaria in malaria-endemic regions,
including pandemic-related program disruptions, shifts in clinical disease burden, and the effect
of malaria on SARS-CoV-2 test performance (1, 2). In partnership with the Malian Ministry of
Health, the Malaria Research and Training Center (MRTC) and the National Institutes of Health
sought to assist in the public health response to COVID-19 in Mali. MRTC maintains clinical and
research laboratory infrastructure in many regions of Mali to develop tools and strategies for
malaria control and elimination. This infrastructure was leveraged to develop COVID-19
serosurveillance testing capacity, and forms part of a large in-country response to swiftly redirect
existing research resources to address the pandemic (3). It is critical to ensure that serosurveillance
tools provide reliable data for use in the local public health response. We discuss relevant literature
regarding the effect of malaria on the performance of SARS-CoV-2 serodiagnostics, present our
experience qualifying assay performance and conducting SARS-CoV-2 serosurveillance in seasonal
malaria-affected communities in Mali, West Africa (4, 5), present new data regarding the effect of
recent malaria infection on SARS-CoV-2 serostatus, and outline approaches to optimize assay
performance in malaria-endemic regions.
MALARIA AND SARS-COV-2 SERODIAGNOSTICS

For serological surveillance to be useful in the public health response to the COVID-19 pandemic,
test selection and validation in the target population must be addressed. High rates of false-positivity
have been described for multiple commercial SARS-CoV-2 serological assays in sub-Saharan Africa
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(6–11), and in other regions (12, 13), conceivably due to cross-
reactivity with other coronaviruses or other endemic infections,
including malaria. This is not a new phenomenon, for example
high rates of false-positivity in HIV antibody tests have been
previously described in Africa (14–16). Poor SARS-CoV-2 test
specificity, particularly in the low or unknown prevalence setting,
risks overestimation of community burden and may cause
unnecessary harm, including diversion of limited public health
resources and inaccurate estimations of population-level
exposure or immunity. To ensure reliable serosurveillance data,
the primary aim of assay qualification must be understanding the
pattern and degree of background reactivity to SARS-CoV-2
antigens in order to optimize assay performance, while
understanding the nature and causes of this reactivity an
important secondary aim. As a result, we conducted extensive
assay qualification to optimize test performance in Mali prior to
conducting SARS-CoV-2 community serosurveillance (5). This
included evaluating negative control samples collected prior to
2020 for background IgG reactivity to commonly tested SARS-
CoV-2 antigens, other betacoronaviruses, and a panel of P.
falciparum antigens, assessing in vitro SARS-CoV-2
pseudovirus neutralizing activity in negative controls, and
evaluating the performance of several test configurations using
local positive and negative controls.

While there has been minimal correlation between exposure
to other human coronaviruses and SARS-CoV-2 seropositivity in
pre-pandemic samples (5, 6, 11, 12, 17), malaria has been
variably associated with poor assay performance (5, 7, 9, 17).
In malaria-endemic regions including Mali, background
antibody reactivity to SARS-CoV-2 antigens is common,
increases with age group, and varies regionally (5, 17).
Increased reactivity with age may suggest cumulative exposures
may be responsible for background signal, and that assay
performance may vary in different age groups. Background
SARS-CoV-2 antigen reactivity may also vary seasonally,
although year-round samples were not available for assessment
in a Malian community with highly seasonal malaria
transmission (Supplementary Figure 1). These observations
implicate malaria as a potential confounder when considering
SARS-CoV-2 seroassay performance.

Several mechanisms for malaria-associated SARS-CoV-2
antigen cross-reactivity have been proposed. SARS-CoV-2
nucleocapsid antibody reactivity by commercial assay has been
associated with the presence of IgG antibodies to some
Plasmodium sp. antigens, and several other neglected tropical
diseases (9), although this is not consistent between SARS-CoV-2
assays. We did not demonstrate any substantial correlation
between SARS-CoV-2 antigen reactivity using our reference
ELISA and a panel of 11 P. falciparum antigens responsible for
both short-lived and long-lived serological response following
malaria infection (5, 18). A weak positive correlation has been
reported between the same SARS-Cov-2 antigen constructs and
AMA-1 ELISA reactivity in malaria-experienced Cambodian
samples (12). While it remains possible that specific antibodies
to Plasmodium sp. antigens could cross-react with SARS-CoV-2
antigens, the effect may not be substantial or predictable across
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assays. Non-specific polyclonal antibodies arising from acute
malaria may also contribute to poor assay performance.
Symptomatic and asymptomatic malaria have been associated
with transient SARS-CoV-2 spike protein antibody reactivity,
attributed to cross-reactive antibodies targeting N-linked glycans
(17). Additionally, commercial spike protein and nucleocapsid
based SARS-CoV-2 assay false-positivity has been associated
with higher parasitemia malaria infections, although the
presence of malaria alone versus no malaria did not reach
statistical significance in this study (7). While acute malaria
may affect SARS-CoV-2 assay performance, similar to cross-
reactive Plasmodium sp. antibodies, this phenomenon may not
be consistent across all groups and assays. As a result, there may
not be a single distinct mechanism through which malaria
induces SARS-CoV-2 assay reactivity. Irrespective of the
stimulus, antibodies responsible for SARS-CoV-2 antigen
background reactivity in malaria-endemic areas do not
demonstrate functional activity in vitro (5, 7, 12, 17).
OPTIMIZING TEST PERFORMANCE IN
MALARIA-ENDEMIC AREAS

The concept of malaria-associated cross-reactivity presents
several challenges to SARS-CoV-2 assay implementation,
where performance must be balanced with cost and the
timeliness of results. Specific collaboration with groups
conducting intensive malaria studies may be warranted to
obtain control samples and address the issue of malaria-
associated assay interference. Ultimately any testing approach
must be pragmatic and suited to local conditions and available
resources. Approaches that may improve test performance
include: comparison of different antigens to select constructs
with lower background reactivity (5, 11, 13, 17), cutoff
adjustment to set population-specific thresholds or relative to
local background reactivity (5, 19), dual antigen testing (5, 19,
20), and avidity testing to eliminate low-affinity cross-reactive
antibodies (9) (Table 1). Groups responsible for testing in
malaria-endemic regions should consider determining
background reactivity/assay false positivity rates in pre-
pandemic samples and make compensatory adjustments if
required before implementing high volume testing. This
approach is outlined in Figure 1 and may include selection of
one or several methods to optimize test specificity.

In our study, a two-antigen ELISA assessing mammalian cell-
expressed SARS-COV-2 spike protein and RBD antigens with
population-specific cutoffs was selected based on the
performance of this configuration in a Malian control
population and the availability of in-country laboratory
facilities and expertise (4, 5). Background ELISA reactivity in
Malian pre-pandemic samples was most pronounced to SARS-
CoV-2 nucleocapsid protein. While spike protein and RBD
signals were comparatively lower, neither was sufficiently
specific for a single-antigen approach without using
prohibitively high assay cutoffs (5). Interestingly, there was
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minimal correlation between SARS-CoV-2 antigen reactivity in
pre-pandemic samples (5), consolidating the concept that a two-
antigen approach may be useful to minimize background signal.

To understand the practical effect of seasonal malaria on the
performance of our assay, we analyzed our Malian
serosurveillance data with respect to malaria transmission at a
community and individual level. Overall, SARS-CoV-2
community seroprevalence was inversely proportional to
seasonal malaria transmission intensity. Both before and after
the 2020 malaria season, SARS-CoV-2 seroprevalence was
consistently higher urban areas compared to rural regions with
higher entomological inoculation rates (4) (Supplementary
Text). In a population of 1037 individuals of all ages that were
SARS-CoV-2 seronegative at the beginning of the 2020 malaria
season, subjects underwent comprehensive malaria monitoring
as part of an MRTC clinical trial supported by EDCTP (21) at the
rural village of Donéguébougou. In this cohort, 33.3% (345/1037)
experienced at least one episode of acute malaria between
serosurvey visit 1 and visit 2, and 24.3% (252/1037)
demonstrated SARS-CoV-2 two-antigen seroconversion during
the malaria season. There was no difference in the rate of malaria
diagnosis in the SARS-CoV-2 seropositive group compared to
the seronegative group (34.9% (88/252) vs 32.7% (257/785),
Fisher exact test p=0.54). In a multiple logistic regression
model including age, an episode of acute malaria was not
Frontiers in Tropical Diseases | www.frontiersin.org 3
associated with SARS-CoV-2 seropositivity (OR 1.13, 95% CI:
0.83-1.53) (Figure 2A). In the subset of 345 individuals
experiencing at least one acute malaria episode, both SARS-
CoV-2 spike protein and RBD reactivity were not correlated with
time since recent malaria diagnosis (Spearman r=-0.04, p=0.46
for spike protein and r=-0.04, p=0.52 for RBD respectively)
(Figure 2B). Furthermore, in a multivariate analysis of these
cases, time since most recent malaria diagnosis (OR 1.00, 95% CI:
0.99-1.01), and number of acute malaria episodes since visit 1
(OR 0.86, 95% CI: 0.51-1.40) were not associated with SARS-
CoV-2 seropositivity at visit 2. Paired with the overall
observation that SARS-CoV-2 seroprevalence was lowest in
communities with the most intense malaria transmission (4)
(Supplementary Text), the lack of association between
recent acute malaria and SARS-CoV-2 serostatus suggests
the two-antigen reference ELISA selected for community
serosurveillance in Mali minimizes the possible interference of
seasonal malaria on SARS-CoV-2 antibody testing.
DISCUSSION

To understand interactions between COVID-19 and malaria it is
critical that reliable SARS-CoV-2 surveillance is available in
TABLE 1 | Effect of several approaches to improve SARS-CoV-2 serology test performance in malaria-endemic regions.

Reference Population Assay(s) Approach Sensitivity
range (%)

Specificity
range (%)

Maximum relative improvement in
false positive rate

Emmerich
et al. (11)

Ghana (NC n=283)
Nigeria (NC n=150)

Various commercial Ghana: 3.9
Nigeria: 6.5

EuroImmun IgG (NCP)
ELISA

N/A Ghana: 83.0
Nigeria: 72.0

EuroImmun IgG (spike)
ELISA

N/A Ghana: 94.3
Nigeria: 90.7

EDI IgG (NCP) ELISA N/A Ghana: 77.7
Nigeria: 39.3

Mikrogen IgG (NCP)
ELISA

N/A Ghana: 89.7
Nigeria: 82.7

Cota et al.
(13)

Brazil Various commercial 24.5

(NC n=116, PC n=173) Vircell IgG (spike and
NCP) ELISA

76.8 53.4

(NC n=116, PC n=109) EuroImmun IgG (NCP)
ELISA

58.7 95.8

(NC n=116, PC n=166) Mbiolog Allserum IgG
ELISA

60.2 98.1

Woodford
et al. (5)

Mali (NC n=312, PC n=23) In-house IgG (RBD)
ELISA

Cutoff adjustment 78.3-82.6 76.5-94.5 4.3

In-house IgG (spike)
ELISA

Cutoff adjustment 82.6-82.6 92.9-95.5 1.6

In-house IgG ELISA Two-antigen* 73.9-82.6 95.5-99.4 7.5
Uyoga et al.
(20)

Kenya (NC n=900, PC
n=147)

In-house IgG (RBD)
ELISA

Cutoff adjustment 80.5-91.3 88.3-99.0 11.7

In-house IgG (spike)
ELISA

Cutoff adjustment 92.5-94.3 90.0-99.0 10.0

In-house IgG ELISA Two-antigen* 91.4-94.3 99.0-99.7 3.3
Steinhardt
et al. (9)

Nigeria (NC n=213, PC
n=32)

EuroImmun IgG
(NCP) ELISA

Urea wash (0M to 4M) 72.7-95.5 84.1-98.5 10.6
Dece
NC, pre-pandemic negative controls; PC, PCR-confirmed positive controls; RBD, receptor binding domain; NCP, nucleocapsid protein; ELISA, enzyme linked immunoassay.
*Comparison between two-antigen and single-antigen spike approach using same cutoffs. N/A, positive control cohort not assessed.
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malaria-endemic regions. In many cases, these regions may be
both disproportionately affected by uncertain assay performance
and most in need of reliable serological tools due to limited
access to gold-standard molecular diagnostics. Careful assay
qualification is required prior to use, particularly where
demographics and exposure histories differ significantly from
the original assay validation population (5, 22). While it appears
that a spike-based assay is likely to have better specificity
compared to other antigens, we are unable to recommend a
specific SARS-CoV-2 serological assay for use in malaria-
endemic regions, as there are limited head-to-head studies,
performance varies regionally, and there may be other local
confounding factors that need to be addressed. Rather, a tailored
Frontiers in Tropical Diseases | www.frontiersin.org 4
approach is needed based on the target population, where one or
several of the approaches presented above are likely to assist in
test optimization. By using a two-antigen test, adjusting
seropositivity thresholds, and reviewing the effect of
intercurrent malaria on serostatus following implementation,
we believe that we have minimized the effect of malaria on
SARS-CoV-2 seroprevalence interpretation in Mali.

Reliable SARS-CoV-2 serosurveillance in communities with
intense seasonal malaria transmission allows for a better
understanding of the twin burdens of COVID-19 and malaria
in Mali. We have identified high rates of seasonal malaria and
COVID-19 infection in Mali, including many individuals with
evidence of adjacent or concurrent infections. Despite rapidly
FIGURE 1 | Considerations to understand and minimize the effect of SARS-CoV-2 serology background reactivity in malaria endemic regions.
A B

FIGURE 2 | Assay absorbance values (OD) for RBD (y-axis) and spike protein (x-axis) at visit 2 (A) in all 1037 participants undergoing intensive malaria surveillance
and (B) in 345 participants experiencing at least one acute malaria episode, stratified by time since time since malaria diagnosis. RBD, receptor binding domain; OD,
optical density. Dotted lines represent assay cutoffs for SARS-CoV-2 seropositivity. In panel (B) darker data points represent a longer time since most recent malaria
diagnosis (weeks).
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increasing seroprevalence, we did not identify a large burden of
COVID-19 attributable clinical disease in community
serosurveillance (4). Combined malaria and SARS-CoV-2
surveillance allows for the informed allocation of resources to
fight the emergent COVID-19 virus and the long-standing
malaria epidemic. Understanding of the COVID-19 pandemic
in Mali may also allow for the safe continuation of the malaria
elimination agenda, and avoidance of excess malaria mortality
due to program disruptions.
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