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Shigellosis is a severe diarrheal disease caused by members of the genus Shigella, with at
least 80 million cases and 700,000 deaths annually around the world. The type III
secretion system (T3SS) is the primary virulence factor used by the shigellae, and we
have previously demonstrated that vaccination with the type T3SS proteins IpaB and
IpaD, along with an IpaD/IpaB fusion protein (DBF), protects mice from Shigella infection in
a lethal pulmonary model. To simplify the formulation and development of the DBF Shigella
vaccine, we have genetically fused LTA1, the active subunit of heat-labile toxin from
enterotoxigenic E. coli, with DBF to produce the self-adjuvanting antigen L-DBF. Here we
immunized mice with L-DBF via the intranasal, intramuscular, and intradermal routes and
challenged them with a lethal dose of S. flexneri 2a. While none of the mice vaccinated
intramuscularly or intradermally were protected, mice vaccinated with L-DBF intranasally
were protected from lethal challenges with S. flexneri 2a, S. flexneri 1b, S. flexneri 3a, S.
flexneri 6, and S. sonnei. Intranasal L-DBF induced both B cell and T cell responses that
correlated with protection against Shigella infection. Our results suggest that L-DBF is a
candidate for developing an effective serotype-independent vaccine against Shigella spp.

Keywords: cross protection, IFN-g, IL-17, vaccine, type III secretion system (T3SS), shigellosis
INTRODUCTION

The shigellae are intracellular bacteria that cause the intestinal disease shigellosis, which can result
in severe diarrhea or dysentery. Shigellosis is a significant public health problem, with children
especially vulnerable to increased morbidity and mortality (1, 2). While most cases of shigellosis
occur in developing nations, the shigellae also cause diarrhea among travelers and military
personnel from developed countries (3). Shigella spp. include S. dysenteriae (Group A), S.
flexneri (Group B), S. boydii (Group C), and S. sonnei (Group D), which are further divided into
more than 50 serotypes based on O-antigen composition (3). S. flexneri is the primary cause of
endemic diarrhea in developing countries where there is limited access to hygienic resources,
whereas S. sonnei is the leading cause of illness in developed countries (3). In addition, S. flexneri is
responsible for a greater number of total deaths from shigellosis than the other species, with
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serotypes 1b, 2a, 3a, 4a, and 6 commonly found in less developed
countries and serotype 2a dominant in moderately developed
countries (1). Recent studies have shown that S. sonnei infections
are increasing and replacing S. flexneri as a cause of shigellosis in
areas as they undergo modernization (4), evincing the need for a
serotype-independent Shigella vaccine.

Although there has been a reduction in the incidence of
shigellosis globally due to improved sanitation, the rise of
antimicrobial resistance in Shigella spp. warrants the
development of a vaccine against this pathogen (5, 6). At
present, there is no licensed Shigella spp. vaccine, however,
some killed cell and live-attenuated vaccines are currently in
clinical trials. Unfortunately, the lack of cross-protection, strict
storage conditions, and potential risks of contamination limit
their use in developing countries (7). To solve these issues,
subunit vaccines, especially those utilizing proteins from the
type three secretion system (T3SS) (see Supplementary Table S1
for the abbreviations used here), have been widely researched (7).

The T3SS is a required virulence factor for the shigellae (8).
The T3SS apparatus (T3SA) tip protein, IpaD, and translocator,
IpaB, are highly conserved among Shigella spp., making them
excellent targets for the development of a serotype-independent
subunit vaccine (8). Research in our lab has established that these
two proteins, with the adjuvant dmLT (double-mutant heat-
labile enterotoxin from enterotoxigenic E. coli (ETEC)), can elicit
cross protection against S. flexneri and S. sonnei when delivered
intranasally (IN) (9). To reduce production costs, we made DBF,
a genetic fusion of IpaD and IpaB (10). DBF adjuvanted with
dmLT induced comparable immune responses in both B and T
cells to those stimulated by the mixture of IpaD and IpaB (10).
Most importantly, DBF admixed with dmLT and administered
IN protected mice in lethal challenges with the homologous S.
flexneri, from which the IpaD and IpaB sequences are derived,
and in challenges with the heterologous S. sonnei and S.
dysenteriae (10).

The dmLT, an AB5 toxoid which induce anti-LT response,
retains the native ADP-ribosyltransferase activity that induces a
strong Th17 response (11). Studies have shown that pre-existing
antibodies to dmLT did not disturb its adjuvanticity to a new
antigen. This suggested that anti-LT antibodies from pre-
exposures of ETEC, which commonly happen in developing
countries, would not affect the adjuvant effects of LTA1 (12).
Th17 responses are known to be especially important for
protection against mucosal pathogens, including Shigella (13,
14). Unfortunately, recent studies showed that dmLT, when
delivered IN, can cause Bell’s palsy (11, 15, 16), however, the
development of Bell’s palsy from dmLT is related to the ability of
the B subunit to bind to the gangliosides of neuron cells. It is the
LTA1 (heat-labile enterotoxin A1) portion of the A subunit that
is responsible for generating the Th17 response (15, 17, 18). To
simplify and lower the costs of producing a Shigella spp. vaccine
for use in developing nations, we genetically fused LTA1 to DBF
to create a monomeric adjuvant-antigen conjugate called L-DBF.

In this study, we demonstrate that IN administration of
L-DBF protects mice against a lethal pulmonary challenge with
S. flexneri 2a, and this protection is associated with significant
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Th1 and Th17 responses. Additionally, we show that IN
immunization with L-DBF protects mice against lethal
challenges with heterologous S. flexneri 1b, S. flexneri 3a, S.
flexneri 6, and S. sonnei. These results show that L-DBF elicits
broad protective efficacy against multiple Shigella serotypes and
is thus a viable vaccine candidate against shigellosis.
MATERIALS AND METHODS

Materials
pACYCDuet-1 plasmid, ligation mix and competent E. coli were
from EMD Millipore (Billerica, MA). Restriction endonucleases
were from New England Biolabs (Ipswich, MA). Chromatography
columns were from GE Healthcare (Piscataway, NJ). All other
reagents were from Sigma or Fisher Scientific. dmLT was from J.
Clements and E. Norton (Tulane School of Medicine, New Orleans,
LA). S. flexneri 2a 2457T was from A.T. Maurelli (University of
Florida, Gainesville, FL). S. flexneri 1b, S. flexneri 3a, S. flexneri 6,
and S. sonnei were from Eileen Barry (University of Maryland
School of Medicine, Baltimore, MD).

Protein Production
Production of IpaD, IpaB and DBF have been described
previously (10, 19). To produce LTA1-GSAAS-DBF (L-DBF),
eltA1 (the coding sequence for LTA1) was cloned in-frame with
the linker gggtccgcggcatcc 5’ to ipaD in the IpaD-IpaB+IpgC/
pACYCDuet-1 plasmid. The resulting plasmid (eltA1-ipaD-
ipaB/ipgC//pACYCDuet-1) was used to transform E. coli Tuner
(DE3) for co-expression of L-DBF and the IpgC chaperone with
the latter possessing a His affinity tagee (HT-IpgC). The
transformed bacteria were grown in a fed-batch mode using
a 10L bioreactor (Labfors 5, Infors USA Inc., MD) equipped
with polarographic dissolved oxygen probe (pO2), pH
probe (Hamilton Company) and advanced fermentation
software. Materials were prepared as per the manufacturer’s
specifications (http://www.infors-ht.com.cn/uploadfile/2018/
0515/INFORS-HT_cookbook_en.pdf). Briefly, pre-culture was
prepared by inoculating a 25-ml aliquot of frozen glycerol stock
into 50 mL of Terific broth (TB) supplemented with
chloramphenicol (34 µg/ml) and allowed to grow overnight at
30°C with shaking at 200 rpm. The inoculum was made by
transferring cells from the pre-culture to 1 L of TB with the same
antibiotic and grown at 30°C until reaching an A600 of ∼2.0.
Then, ~800 mL of inoculum was transferred to the sterilized
bioreactor containing 9 L of TB containing chloramphenicol.
The culture was maintained at 30°C and pH 7, and stirrer speed,
gas mix, and gas flow were adjusted to maintain pO2 (30%).
Protein expression was induced by addition of IPTG to 1 mM
when the culture reached an A600 of ∼25. After 3 h, bacteria were
collected by centrifugation, washed and resuspended in IMAC
binding buffer (20 mM Tris-HCl pH 7.9, 500 mM NaCl, 10 mM
imidazole) with 0.1 mM AEBSF Protease Inhibitor and lysed
using a microfluidizer at 18,000 psi with three passes. The
cellular debris was removed by centrifugation at 10,000xg
for 30 min and loaded onto a 5 ml HisTrap FF column. The
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L-DBF/HT-IpgC was eluted with IMAC elution buffer (20 mM
Tris-HCl pH 8.0, 500 mM NaCl, 500 mM imidazole), dialyzed
into 50 mM Tris-HCl pH 8.0, and loaded onto a HiTrap Q FF
column. The complex was eluted using a gradient of 50 mM Tris-
HCl pH 8 containing 1M NaCl. Lauryldimethylamine oxide
(LDAO) was then added to a final concentration of 0.1% to
release the HT-IpgC. When the LDAO-treated L-DBF/HT-IpgC
complex was passed over an IMAC column, the L-DBF
was collected in the flow-through with the HT-IpgC being
retained on the IMAC column. Finally, L-DBF was dialyzed
into 20 mM phosphate, pH 7.2, with 150 mM NaCl (PBS) with
0.05% LDAO and stored at -80°C. LPS levels were determined
using a NexGen PTS with EndoSafe cartridges (Charles River
Laboratories, Wilmington, MA). All proteins had LPS levels <5
Endotoxin units/mg.

ADP-Ribosylation Assay
LTA1 from ETEC labile-toxin possesses ADP-ribosyltransferase
(ADPr) activity, which is required for adjuvanticity (12). To
assay for L-DBF ADPr activity, L-DBF was added to ADPr buffer
(50 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 mM DTT) to a
concentration of 1.7 µM, with or without 1.7 µM ARF4, the
LTA1 allosteric activator protein. Biotinylated-NAD+ was then
added to a concentration of 8.3 µM and the mixture incubated at
37°C for one hour. The reaction mixtures were then subjected to
SDS-PAGE and then electroblotted onto a nitrocellulose
membrane. The membrane was then incubated in TBS buffer
containing IRDye 800CW streptavidin (LI-COR, Lincoln, NE),
washed, and imaged on a LI-COR Odyssey CLx gel scanner.

Immunization of Mice
The mouse animal protocols were reviewed and approved by the
University of Kansas Institutional Animal Care and Use
Committee Practices (protocol AUS 222-01). Female 6-8 weeks
BALB/c mice were used in this study (n=10/group). For the
initial intranasal (IN) vaccination trial, 20 µg DBF + 2.5 µg dmLT
and 25 µg L-DBF were prepared in 30 µl per mouse for each IN
vaccination. For the intradermal (ID) trial, 100, 250 and 500 ng
L-DBF were diluted to 50 µl per mouse. For the intramuscular
(IM) trial, 80 µg L-DBF + 2.5 µg dmLT and 80 µg L-DBF were
prepared in 30 µl volume for each mouse. For the IN dose
escalation (n=14/group; 10 for challenge and 4 for pre-challenge
immune response assessment), 1, 10, and 25 µg L-DBF were
prepared in 30 µl volume for each mouse. In a separate
experiment, (n=14/group; 10 for challenge and 4 for pre-
challenge immune response assessment), 15, and 25 µg L-DBF
were prepared in 30 µl volume for each mouse. To test for cross-
protection, 25 µg L-DBF and PBS alone were prepared in 30 µl.
All mice, regardless of route, were immunized on days 0, 14
and 28.

Shigella Challenge Studies
Shigella challenge strains were streaked onto tryptic soy agar
containing 0.025% Congo red and incubated at 37°C overnight
and subcultured in tryptic soy broth (TSB) at 37°C until A600

reached 1.0. Bacteria were harvested by centrifugation,
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resuspended in PBS and diluted to the desired concentration in
a 30 µl volume for IN challenge (20). In the cross-protection
study, L-DBF 25 µg and PBS vaccinated mice (n=10 of each
group/serotype) were challenged on day 56 with S. flexneri 2a
(6 x 106 CFU/30 µl), S. flexneri 3a (1 x 106 CFU/30 µl), S. flexneri
6 (1 x 106 CFU/30 µl), S. flexneri 1b (4 x 106 CFU/30 µl), or S.
sonnei (1 x 106 CFU/30 µl). Mice were monitored twice a day for
weight loss and health score for two weeks. Mice were euthanized
if their weight loss exceeded 25% of their original weight for
more than 72 h or their blood glucose reached ≤100 mg/dL with
poor health scores.

IgG and IgA ELISAs
Blood and feces were collected on days 0, 13, 27, 41, and 55 for
antibody detection during the immunization, as described
previously with minor modifications (19). Microtiter wells
were coated with 100 ng IpaB or IpaD in 100 µl PBS,
incubated at 37°C for 3 h and then blocked overnight with
10% nonfat dry milk in PBS. Sera were added to the wells in
duplicates as the primary antibody for 2 h incubation at 37°C.
After washing with PBS-0.05% Tween, HRP-conjugated
secondary antibody (IgG(H+L), 1:1000; IgA, 1:500) was added
and incubated for 1 h at 37°C. After an additional wash, OPD
substrate (o-phenylenediamine dihydrochloride) was added and
the resulting signal detected at 490nm. Endpoint titers were
determined by fitting antibody titrations to a five-parameter
logistic model.

IFN-g or IL-17A ELISpots Analysis
Single cell suspensions from mouse spleens and lungs were
isolated using Spleen or Lung Dissociation Kit (Miltenyi
Biotec, Inc), and were incubated for 24 h at 37°C in the
presence of 5 µg/ml IpaB or IpaD in plates coated with
antibodies against IFN-g or IL-17A using a FluoroSpot assay as
per manufacture’s specifications (Cellular Technology Limited).
The cytokine secreting cells were quantified using a CTL
immunospot reader.

Cytokine Determinations
Splenocytes and lung cells were incubated with 10 µg/ml IpaB,
IpaD or PBS for 48 h at 37°C. Supernatants were collected and
analyzed with U-PLEX kits for cytokines: IFN-g, IL-17A, IL-6,
and TNF-a. Cytokine concentrations were determined using an
MSD plate reader with associated analytical software (Meso Scale
Discovery, Rockville, MD).

Statistics
Graphs were generated using GraphPad Prism 9.0.1. ELISpot
and cytokine secretion were rescaled to the range between zero
and one using the minimum-maximum (min-max)
normalization equation [Ynormal=(Yorigin-Ymin)/(Ymax-Ymin)] for
the purpose of plotting comparative data. The significance of
differences among treatment groups was determined using
ANOVA. Post-hoc comparisons of unvaccinated (PBS) mice
with antigen vaccinated mice were made with Dunnett’s test in
R. A p-value of less than 0.05 was considered significant for all
December 2021 | Volume 2 | Article 729731
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comparisons (*p < 0.05; **p < 0.01; ***p < 0.001). For bacterial
challenges, vaccinated groups were compared to PBS using Log-
rank (Mantel-Cox) tests in GraphPad Prism.
RESULTS

The LTA1 Domain of L-DBF Retains Its
ADP-Ribosyltransferase Activity
When incubated with biotin-labeled NAD+, L-DBF was found to
conjugate biotinylated ADP-ribose to itself and to the LTA1
allosteric activator protein ARF4 (Supplementary Figure S1).
This result does not in itself guarantee that the LTA1 domain
retains adjuvanticity, however, the absence of enzymatic activity
would have precluded the use of L-DBF as a self-adjuvanting
vaccine candidate. It should be noted that recombinant LTA1
sequesters to E. coli inclusion bodies and must be refolded after
solubilization in a denaturing agent such as urea. Because this
would increase the difficulties encountered in formulation, the
use of purified LTA1 with DBF was not included as a vaccine
comparator in the studies that follow.

Mice Immunized Intranasally With L-DBF
Demonstrated Similar Protection Against
a Lethal Shigella Challenge as Those
Treated With DBF + dmLT
To demonstrate that L-DBF could protect mice against an S. flexneri
challenge as well as DBF+dmLT does, we vaccinated mice
intranasally (IN) with 20 µg DBF+2.5 µg dmLT, 25 µg L-DBF or
PBS. After three vaccinations, the mice were challenged with of
6×106 CFU S. flexneri 2a 2457T (Figure 1). While 90% of the mice
vaccinated with PBS died, all mice vaccinated with either DBF
+dmLT or L-DBF survived (Figure 1). These results show that
Frontiers in Tropical Diseases | www.frontiersin.org 4
L-DBF has protective efficacy equivalent to that of DBF with dmLT
and is a viable self-adjuvanting vaccine candidate.

Mice Immunized Intramuscularly
or Intradermally With L-DBF Are
Not Protected Against a Lethal
Shigella Challenge
To determine whether other vaccination routes would also be
protective, we immunized mice with L-DBF intramuscularly (IM)
and intradermally (ID). Mice were vaccinated IM with 80 µg L-
DBF or 80 µg L-DBF+2.5 µg dmLT, or ID with 100, 250 and 500
ng L-DBF. An additional 2.5 µg dmLT was added to one IM group
to boost the production of IL-17A. As a positive control, mice were
vaccinated IN with DBF+dmLT or L-DBF. In contrast to IN
vaccinated mice, only 56% and <30% of the mice vaccinated IM
and ID, respectively, survived (Table 1). The inclusion of
additional adjuvant (dmLT) did not improve the protective
capacity of the L-DBF administered IM (Table 1). Because the
WHO has established >60% vaccine efficacy as a targeted cut-off
value for a preferred Shigella spp. vaccine candidate (21), the IM
and ID routes are thus considered not viable for L-DBF.

Intranasal Immunization With L-DBF
Protects Mice From Five Different
Shigella Serotypes
Five groups of ten mice were vaccinated three times IN with 25 µg
L-DBF. An additional five groups were vaccinated with PBS as
negative controls. Serum IgG and fecal IgA titers against IpaB and
IpaD were then assessed (Supplementary Figure S2). All
vaccinated mice had significantly higher serum anti-IpaB and
anti-IpaD IgG and fecal IgA titers when compared to the negative
control groups. One group of each of the L-DBF or PBS vaccinated
mice were then challenged on day 56 with S. flexneri 2a (6 x 106
FIGURE 1 | Protective efficacy of L-DBF against lethal Shigella challenge in mice. Balb/C mice (n=10) were vaccinated intranasally (IN) on days 0, 14 and 28 with PBS,
20 µg DBF + 2.5 µg dmLT and 25 µg L-DBF. On day 56, the mice were challenged IN with 6 X 106 CFU/mouse of S. flexneri 2a 2457T. Significance was calculated by
comparing vaccinated groups to the PBS group with Log-rank (Mantel-Cox) tests for survival (20 µg DBF + 2.5 µg dmLT vs. PBS: p < 0.001; 25 µg L-DBF vs. PBS:
p < 0.001).
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CFU), S. flexneri 3a (1 x 106 CFU), S. flexneri 6 (1 x 106 CFU), S.
flexneri 1b (4 x 106 CFU), or S. sonnei 53G (1 x 106 CFU), based on
the LD50 of each strain. All vaccinated groups showed >83%
survival when challenged with an S. flexneri serotype, while
protection against S. sonnei was 68% (Table 2 and
Supplementary Figure S3). PBS vaccinated mice also showed
greater weight loss and slower recovery than the L-DBF vaccinated
mice (Supplementary Figure S3). The somewhat rapid weight
gain seen for some of the PBS groups was a result of a small
number of surviving mice, which skewed the average weight
upward at later time points in the experiment. As with IpaB
+IpaD or DBF, the protection seen here demonstrates the broad
serotype-independent efficacy of L-DBF. Notably, there are no
reports of any LPS-based vaccine formulations that provides
protection against five Shigella serotypes simultaneously.
Moreover, anti-Shigella immunity is serotype specific (22–24).

Intranasal L-DBF Stimulates Dose
Dependent Immune Responses and
Protection in Mice
To characterize the dose response of L-DBF, we performed a
dose escalation study by vaccinating mice IN with 1, 10, 15, or 25
µg of L-DBF. The resulting anti-IpaB and anti-IpaD serum IgG
titers from the 10, 15 and 25 µg L-DBF doses were similar
(Figures 2A, B – solid blue, yellow and red lines), while the titers
for the 1 µg L-DBF dose were about one log unit lower
(Figures 2A, B, solid green line). The anti-IpaB and anti-IpaD
fecal IgA titers of 15 and 25 µg L-DBF doses groups were higher
than 1 and 10 µg L-DBF doses groups on Day 42 and Day 55
(Figures 2A, B, dashed lines). Two challenge experiments were
then performed. In the first, mice vaccinated IN with 1, 10, or 25
Frontiers in Tropical Diseases | www.frontiersin.org 5
µg L-DBF were challenged with 1 x 107 CFU/mouse of S. flexneri
2a. The 25 µg L-DBF dose elicited 80% protection, while the 1
and 10 µg doses were not protective (1/10 mice was protected)
(Supplementary Figure S4A). Because the high challenge dose
resulted in some death within the mice receiving the highest
vaccine dose, we performed a second challenge using a slightly
lower challenge dose with mice vaccinated using 15 µg or 25 µg
of L-DBF. In this case the mice were 100% protected from a
challenge dose of 1.5 x 106 CFU/mouse (Supplementary Figure
S4C). It is noted that while some mice failed to be protected at
the higher challenge dose, the overall protection was not
statistically different that the 100% protection at the lower
challenge dose (p = 0.15). Likewise, while the 15 and 25 µg
vaccine doses are somewhat high, it should be noted that the L-
DBF is not yet formulated to maximize the host response to the
vaccine. Formulation will be required prior to use in humans
since monomeric subunit proteins are often not protective in
humans (25, 26). We have determined that formulation of L-PaF,
the Pseudomonas aeruginosa homologue of L-DBF, reduces the
required antigen by 10-fold or more (27).

Lungs From Mice Vaccinated Intranasally
With 15 and 25 µg L-DBF Have Higher
Levels of Cytokines Related to a
Th17 Response
Having demonstrated the successful protective efficacy of 15 and
25 µg L-DBF doses and the failure of 1 and 10 µg doses, the lungs
and spleens from the mice were examined for cellular immune
responses. Cell suspensions from each organ were stimulated
with IpaB or IpaD and the frequency of cells secreting IL-17A
and IFN-g cells enumerated by ELISpot analysis (Figure 3 and
Supplementary Figure S5). In both organs, mice vaccinated with
15 and 25 µg L-DBF generally have higher frequencies of IL-17a
and IFN-g secreting cells when stimulated with either IpaB or
IpaD. Meanwhile the 1 and 10 mg doses do not generate secreting
cell frequencies significantly higher than PBS.

Using these same lung cells, we quantified secreted cytokine
levels after stimulation with IpaB and IpaD (Figure 4 and
Supplementary Figure S6). When compared to the PBS
vaccinated group, significantly higher levels of IL-17A were
secreted from lung cells from all four L-DBF vaccinated groups
after stimulation with IpaB or IpaD. In contrast, IFN-g secretion
from lung cells was significantly higher in all four L-DBF groups
as compared to PBS groups when stimulated with IpaB, but only
in the 15 and 25 µg L-DBF vaccinated group after stimulation
with IpaD. When examining other cytokines, only the 15 and 25
µg L-DBF vaccinated group elicited significantly higher IL-6 and
TNF-a secretion after stimulation with IpaB or IpaD. No
statistical difference was seen in secretion of these cytokines
from splenocytes (Supplementary Figure S7).
DISCUSSION

Diarrheal diseases are a severe global health problem. Shigellosis,
in particular, is often lethal to children under five years of age,
TABLE 2 | Vaccine efficacy of L-DBF against Shigella spp. serotypes.

Challenge strains ARV ARU VE

Shigella flexneri 2a (6 X 106 CFU) 0% 92% 100%
Shigella flexneri 3a (1 X 106 CFU) 14% 86% 83%
Shigella flexneri 6 (1 X 106 CFU) 8% 85% 91%
Shigella flexneri 1b (4 X 106 CFU) 0% 92% 100%
Shigella sonnei 53G (1 X 106 CFU) 21% 67% 68%
Mice (n=10/group) were vaccinated with 25 µg L-DBF (ARV) or PBS (ARU) and challenged
with the indicated serotype at the indicated dose. Vaccine Efficacy (VE) is shown where
VE = 1 – Attack Rate Vaccinated (ARV)/Attack Rate Unvaccinated (ARU).
TABLE 1 | Vaccine efficacy (VE) FOR L-DBF administered via different routes.

Vaccination regimen VE

20 µg DBF + 2.5µg dmLT IN 100%
25µg L-DBF IN 100%
80µg L-DBF IM 56%
80µg L-DBF + 2.5µg dmLT IM 56%
500ng L-DBF ID 30%
250ng L-DBF ID 0%
100ng L-DBF ID 20%
*VE (vaccine efficacy) = 1 - ARV/ARU.
Mice (n=10) were vaccinated with the indicated formulation and via the indicated route on
days 0, 14 and 28. They were then challenged with 6 X 106 CFU/30 µl S. flexneri 2a 2457T
on day 56. Vaccine Efficacy (VE) is shown where VE = 1 – Attack Rate Vaccinated/Attack
Rate Unvaccinated.
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especially those living in developing countries where access to
basic life-saving treatments and hygienic resources are limited
(28). Although the morbidity and mortality of shigellosis have
diminished in recent years, the emergence of antibiotic resistance
among the shigellae, which can cause an infection with as few as
200 organisms, calls for an effective vaccine against shigellosis.
Because target populations for vaccination reside in low and
middle-income countries, a major concern in Shigella vaccine
development is cost, which is negatively impacted by the need for
a cold chain and the lack of public health resources. Broadly
protective vaccines with simplified formulations and storage
condition could meet the low-cost requirement.
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In this study, we genetically fused the LTA1 subunit of dmLT
with DBF. We found L-DBF provided comparable protection as
DBF+dmLT when delivered IN but not when delivered via IM or
ID routes. Vaccine efficacy depends on the route of administration.
Before choosing the IN route, other routes, such as, ID, IM were
tested with limited to no success, which was consistent with
previous work (9) and unpublished results). Transport of the
administered immunogen to the local lymph nodes are an
important determinant towards generation of a strong humoral
and cellular response. Previous studies showed IM injected
immunogens to be transported to the local nodes and is not
disseminated systematically. In case of mice, IM injected
A B

FIGURE 2 | Kinetics of serum IgG and fecal IgA responses. Mice were vaccinated IN three times (Day 0, 14 and 28). Blood and fecal samples were collected and
measured titers for anti-IpaB (A) or anti-IpaD (B) IgG (solid lines) and IgA (dotted lines) by ELISA. The individual titers are represented as EU ml-1. Each point
represents the mean and error bars represent SD of each group (n=14/group).
FIGURE 3 | Frequency of IL-17A and IFN-g secreting cells after antigen-specific stimulation. Single cell spleen (left) and lung (right) suspensions were used to assess
antigen specific IL-17A and IFN-g secreting cells. Cells were incubated with 10 µg IpaB or IpaD. IL-17A and IFN-g secreting cells were enumerated by ELISpot and
are presented here as spot forming cells/106 cells. The original data were rescaled and normalized using the equation Ynormal=(Yorigin-Ymin)/(Ymax-Ymin). The data are
boxed from minimum to maximum for each group after normalization. Significance was calculated by comparing groups that were unvaccinated (PBS) and mice
vaccinated with antigens using Dunnett’s test. *p < 0.05; **p < 0.01; ***p < 0.001.
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immunogens are generally processed in the subiliac and popliteal
lymph nodes, which are far from mucosal sites. IN route, on the
other hand, showed significantly better response due to the presence
of a strong mucosal immune response against the immunogen
(20, 29).

Additionally, L-DBF provides the much-desired cross-
protection that is lacking with traditional LPS based vaccines
including whole killed, live-attenuated and O-antigen based
vaccines that are considered serotype specific. In contrast, the
T3SS proteins IpaB and IpaD are conserved among all serotypes
and have been considered attractive target antigens in subunit
vaccine development (30, 31). Early studies showed that DBF
with dmLT administered IN protected mice against S. flexneri, S.
sonnei and S. dysenteriae. In this study, intranasal L-DBF
vaccinated mice elicited effective protection against five Shigella
spp. subtypes, S. flexneri 2a, S. flexneri 3a, S. flexneri 6, S. flexneri
1b, and S. sonnei 53G.

The increase in the frequency of IL-17A and IFN-g secreting
cells, as well as the secretion of these cytokines by lung cells from
mice vaccinated with 15 and 25 µg L-DBF, suggests that IL-17
and IFN-g responses are required for protection. Additionally,
the lack of an IFN-g response after stimulation of lung cells from
the 1 and 10 µg vaccinated mice, coupled with the reduced
protection at these doses, points to the importance of the IFN-g
response. While we have previously published that vaccine
formulations containing IpaD and IpaB trigger IL-17A and
IFN-g responses (10, 19), we have not shown that the absence
of such a response shows a parallel lack of protection.
Furthermore, mice vaccinated with 15 and 25 µg L-DBF, which
showed maximum protection against an S. flexneri challenge,
elicited higher secretion of IL-6 and TNF-a. Pro-inflammatory
mediators like TNF-a and IL-1b stimulate the expression of IL-6
Frontiers in Tropical Diseases | www.frontiersin.org 7
(32). Recent studies showed that sIgA could induce IL-6 by
normal human lung fibroblasts (NHLFs) (33). Moreover, sIgA
has been found that could enhance Shigella taken up by M cells,
which reduced the invasion of pathogens (34). Our results also
detected higher titers of fecal IgA in mice vaccinated with 15 and
25 µg L-DBF, suggested a correlation between IgA and the IL-6
secretion. Further work will be required to demonstrate a
correlation of protection of these cytokines.

A Th17 response is considered essential in the host immune
defense against pathogens that target mucosal surfaces (35–37).
Early studies suggested that a Th17 response was important for
host survival in a lethal Shigella challenge (14, 38). Therefore, a
vaccine that induces a mucosal Th17 response would be expected
to increase its efficacy (13). Our lab has shown that intranasal
DBF with the adjuvant dmLT induced significantly higher IL-
17A in mouse models, which is associated with successful
protection against lethal challenge (10). Because DBF alone
does not induce IL-17 when administered IN, dmLT must be
responsible for IL-17 stimulation. Similar outcomes were found
in this study for L-DBF. The results shown here also suggest
there is a dose-dependent increase in IFN-g production in L-DBF
vaccinated groups. Research has shown that Th1 plays a
significant role in protection of mice after Shigella challenge
(39, 40), with IFN-g especially important for clearing
intracellular Shigella via macrophage activation, which restricts
intracellular growth of the pathogen (41, 42). Stimulation of high
levels of both IL-17 and IFN-g, as well as the Th17 and Th1
related cytokines IL-6 and TNF-a, demonstrate that L-DBF
mainly elicits Th1 and Th17 responses to protect mice against
S. flexneri infection. In this study, we did not detect IL-4 or IL-5
(data not shown), which are related to the Th2 differentiation
and response (43).
FIGURE 4 | Levels of T cell related cytokines secreted from lung cells after stimulation with IpaB or IpaD. The single lung cell suspensions were used to assess
antigen specific IFN-g, IL-17A, IL-6 and TNF-a secretion from lung cell suspensions. Cells were incubated with 10 µg IpaB (left) or IpaD (right). Cytokine levels were
determined by Meso Scale Discovery analysis as per manufacturer’s specifications and are presented here as pg/ml/106 cells. The original data were rescaled and
normalized for comparative purposes using the equation Ynormal=(Yorigin-Ymin)/(Ymax-Ymin). The data are boxed as minimum to maximum in each group after
normalization. Significance was calculated by comparing groups that were unvaccinated (PBS) and mice vaccinated with antigens using Dunnett’s test. **p < 0.01;
***p < 0.001.
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These data show that the adjuvant-antigen conjugate L-DBF is a
viable candidate for a broadly protective Shigella vaccine. Intranasal
immunization with L-DBF induces strong anti-IpaB and anti-IpaD
IgG responses, as well as significant Th1 and Th17 response in lung,
yielding effective protection against lethal pulmonary challenges
with five Shigella spp. strains. Furthermore, the single protein nature
of the LTA1-DBF conjugate simplifies and reduces the cost of
vaccine production and formulation. While the mouse pulmonary
model is not ideal, it is accepted in the field (20). It is a simplified
model to study pathobiology of human adapted Shigella spp. Like
the intestine, the lung is a lymphoid organ with antigen presenting
cells, T helper and suppressor cells and B cells. In addition, the
bronchus constitutes a mucosal surface similar to the intestinal
mucosa with occasional lymphoid follicles like Peyer’s Patches
(PPs) (44).
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