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The enterotoxigenic Escherichia coli (ETEC) are a diverse and genetically plastic
pathologic variant (pathovar) of E. coli defined by their production of heat-labile (LT) and
heat-stable (ST) enterotoxins. These pathogens, which came to recognition more than
four decades ago in patients presenting with severe cholera-like diarrhea, are now known
to cause hundreds of millions of cases of symptomatic infection annually. Children in low-
middle income regions of the world lacking access to clean water and basic sanitation are
disproportionately affected by ETEC. In addition to acute diarrheal morbidity, these
pathogens remain a significant cause of mortality in children under the age of five years
and have also been linked repeatedly to sequelae of childhood malnutrition and growth
stunting. Vaccines that could prevent ETEC infections therefore remain a high priority.
Despite several decades of effort, a licensed vaccine that protects against the breadth of
these pathogens remains an aspirational goal, and the underlying genetic plasticity of E.
coli has posed a fundamental challenge to development of a vaccine that can encompass
the complete antigenic spectrum of ETEC. Nevertheless, novel strategies that include
toxoids, a more complete understanding of ETEC molecular pathogenesis, structural
details of target immunogens, and the discovery of more highly conserved antigens
essential for virulence should accelerate progress and make a broadly protective
vaccine feasible.

Keywords: adhesins, Escherichia coli, heat-labile toxin, vaccine, heat-stable toxin, diarrhea, global
health, malnutrition
1 THE ETEC DISEASE BURDEN AND THE NEED FOR A VACCINE

Enterotoxigenic E. coli (ETEC) are ubiquitous pathogens in areas of the world where clean water
and sanitation remain limited. Worldwide, ETEC are responsible for hundreds of millions of cases
of diarrheal illness (1), disproportionately affecting young children under the age of five who have
yet to become immune through prior exposure (2). ETEC remain a one of the principal causes of
death due to diarrheal illness in young children in low-middle income countries (3). Although
deaths from infectious diarrhea have declined over the past few decades due to introduction of oral
rehydration and other measures, ETEC continue to exact a heavy toll in acute morbidity as well as
associated sequelae that include malnutrition and growth stunting (4). Moreover, malnutrition
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linked to ETEC is also associated with excess mortality beyond
direct deaths from acute diarrheal illness (5, 6). Ideally, an ETEC
vaccine would prevent both the acute illness as well as the
attendant sequelae.

Notably, while ETEC are more prevalent among young
children in LMICs, they are not limited to any particular age
group and can be found globally. These pathogens are also a
major cause of diarrheal morbidity in older children and adults
of LMICs (7), and perennially the most common etiology of
diarrhea in travelers to LMICs. Moreover, both sporadic cases (8)
as well as multiple large scale outbreaks (9–16) are well-
documented in the United States and other industrialized
regions demonstrating that even where clean water and
sanitation are widely available these organisms can
be problematic.

Accurate estimation of ETEC disease burden is critical to
future development of vaccines, as these estimates underly
calculation of value assessments by the WHO and other
agencies in prioritization of vaccines most likely to have a
sustained impact on public health. Although, heterogeneity of
disease burden estimates (1, 4, 17–19), can significantly
confound cost-effectiveness estimates fundamental to setting
vaccine development priorities, ETEC vaccines remain high
priority targets of advisory groups including the World Health
Organization (WHO) Product Development Vaccines Advisory
Committee (PDVAC) (20).
2 ETEC MOLECULAR PATHOGENESIS

2.1 Classical Paradigm for ETEC
Pathogenesis
The discovery of toxin-producing E. coli in patients presenting
with clinical cholera-like diarrheal illness (21–23) soon led to the
discovery of the responsible cholera toxin-like heat-labile toxin
(LT) and heat-stable (ST) enterotoxins as well as the first
plasmid-encoded fimbrial antigens, known as colonization
factors (CFs) (24). Early controlled human infection studies
demonstrated that a plasmid-cured version of ETEC (H10407-P)
was avirulent when compared its parent (H10407) provided
additional validation of the importance of CFs (25). From these
early discoveries a model of ETEC pathogenesis evolved in which
ETEC colonized the small intestine using CFs to support the
delivery of enterotoxins that drove fluid export, and diarrhea.
Although to date, a wide variety of plasmid encoded CFs and
colonization surface (CS) antigens (more than 25 to date) have been
discovered, the basic archetypical model of ETEC molecular
pathogenesis stood.

2.2 Contribution of Noncanonical Antigens
to ETEC Virulence
A potential pitfall of this limited view of virulence is that it
potentially constrains ETEC vaccinology around a subset of
canonical antigens, the CFs and toxins. A number of recent
studies suggest that this classical paradigm for ETEC molecular
pathogenesis is incomplete, and that additional molecules could
Frontiers in Tropical Diseases | www.frontiersin.org 2
potentially be targeted to expand and complement the existing
antigenic repertoire.

Two plasmid-encoded antigens identified in the course of
studies to identify novel molecules that are either surface-
expressed or secreted by ETEC, now appear to play important
roles in molecular pathogenesis. Both molecules are relatively
conserved within the ETEC pathovar, potentially attesting to
their viability as vaccine targets and their importance for
virulence. Of note, both antigens were discovered on the same
CFA/I-encoding plasmid [which also encodes a copy of STh
(26)] that was cured in the H10407-P strain, indicating that
multiple virulence factors were eliminated with CFA/I in
preparation of this isolate.

The first of these, EatA, is a member of the serine protease
autotransporters of Enterobacteriaciae (SPATE) family. EatA
(27), a close homologue of SepA, a major secreted protein
discovered in Shigella flexneri (28), appears to function
primarily to degrade MUC2 mucin (29) secreted by goblet cells
of intestinal epithelia, potentially overcoming the mucin barrier
to accelerate access of the bacteria to the epithelial surface, and
promote successful delivery of both enterotoxins.

A second secreted molecule which appears to be exclusive to
ETEC is encoded by the etpBAC locus of three plasmid-borne
genes that result in production of a two-partner secretion system
in which EtpB corresponds to an outer membrane transporter
for EtpA, a secreted adhesin that is glycosylated by the EtpC
glycosyltransferase (30). EtpA appears to act by serving as
molecular bridge between the bacterial surface and its flagellar
appendages (31) and GalNAc-containing host cell glycans
including those present in mucin (32) and the human A blood
group (33).

Both EtpA and the 110 kd secreted EatA passenger domain are
recognized during the course of natural and experimental
controlled human infections. Both proteins are immunogenic in
preclinical vaccine animal studies and antibodies against these
proteins impact small intestinal colonization in mice (29, 34–37),
as well as bacterial adhesion and toxin delivery in vitro.Other than
LT and ST, these proteins appear to be the most highly conserved
virulence proteins specific to the ETEC pathovar, and are widely
distributed in a global collection of strains from diverse geographic
sources (38–41). In a recent analysis of a birth cohort of young
children in Bangladesh followed from birth to 24 months of age,
both proteins were highly associated with symptomatic infection
(42). Conversely, acquisition of antibodies to either protein was
associated with asymptomatic intestinal colonization. The
preponderance of evidence now suggests that these more
recently discovered proteins play vital roles in the molecular
pathogenesis of ETEC, although additional studies will be
required to examine their role as protective antigens.

A third antigen, YghJ (SslE), is encoded on the chromosome
of multiple ETEC isolates immediately upstream from the type II
secretion system that is responsible for export of both LT and
YghJ (43). YghJ degrades intestinal mucins to promote access of
bacteria to intestinal epithelial cells promoting toxin delivery
(44). YghJ is highly conserved, is not specific to the ETEC
pathovar, and is found in extraintestinal E. coli (ExPEC) as
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well as some commensal isolates, including the well
characterized Nissle 1917 strain. It appears to play important
roles in biofilm formation and intestinal colonization in murine
models of infection, where it has also been shown to be effective
as a protective antigen (45, 46).
3 IMPACT OF GENOMICS AND
IMMUNOPROTEOMICS ON ETEC
VACCINOLOGY

E. coli in general exhibit remarkable genetic plasticity with an
“open” pangenome, such that each sequenced genome results in
the identification of approximately 300 unique genes (47),
potentially posing a challenge to development of a broadly
protective vaccine. The diversity of ETEC is further reflected in
the multiple O and H serotypes that express one or both
enterotoxins suggesting that the plasmids encoding ETEC
virulence factors are widely distributed in an otherwise diverse
population of E. coli (48, 49). However, the availability of
hundreds of ETEC genomes has recently permitted an
unprecedented ability to assess antigenic conservation across a
wide variety of isolates from disparate sources (50). In addition,
databases that incorporate hundreds of genomes are now easily
accessible through online data visualization tools to facilitate
comparison of bacterial genomes and associated metadata (51).
Data for more than 1000 sequenced ETEC genomes and their
associated metadata appear here: https://microreact.org/project/
2ZZzaHzeXbMEw9U2MAk7pK?tt=cr. Despite the extraordinary
heterogeneity of ETEC genomes, a number of recent studies now
suggest that successful lineages of ETEC share common
virulence plasmids (41, 50, 52), and a finite number of
potential surface-expressed antigenic targets restricted to ETEC
(53) that might be exploited to complement canonical
approaches to vaccine development (38, 40, 54).

Access to multiple genomes has also accelerated the
advancement of ETEC proteome microarrays that include
hundreds of antigens that can be screened with convalescent
sera or following vaccination. Exploitation of these microarrays
can further inform vaccine antigen selection by highlighting
candidate immunogens. Arrays developed recently used reverse
vaccinology pipelines to identify candidate surface antigens
common to large numbers of ETEC but absent from
sequenced commensal or laboratory isolates of E. coli. Notably,
even with an open-aperture approach that encompasses many
potential as well as known surface protein use of these arrays has
revealed that the ETEC-specific immunoproteome is restricted to
a finite number of surface antigens with a surprisingly small
number of molecules that are recognized during the course of
infection (42, 55, 56). As prior infection with ETEC is associated
with protection, these studies can likewise highlight potential
protective antigens. Indeed, using these platforms to compare
responses to vaccination with the live-attenuated ETEC ACE527
vaccine to those following infection with ETEC revealed
responses unique to infection that were absent following
vaccination (56).
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4 CORRELATES OF PROTECTION
FOLLOWING ETEC INFECTION AND
VACCINATION

4.1 Immunity Following Natural and
Experimental Human Infection
The incidence of ETEC diarrhea among children in LMICs peaks
before 2 years of age (2) with subsequent declines thereafter such
that the bulk of symptomatic infections occur in children under
the age of 5 years (57). At present there is no clear mechanistic
correlate of protection following ETEC infection (58–60), and
studies vary with regard to the overall impact of prior infection
(61, 62) or infection with strains of particular toxin/CF profiles
and protection against symptomatic diarrhea with strains of the
same profile (59, 63, 64). Notably, homologous re-challenge with
the same strain following controlled human infection typically
results in robust protection, while rechallenge with a different
strain has not (65), suggesting that homotypic immunity
develops following an initial ETEC infection, while heterotypic
immunity may be limited.

4.1.1 The Importance of Memory
Although secretory IgA directed at ETEC virulence factors is
widely thought to be important, sustained protection likely
requires development of effective B cell memory responses
(66, 67). Studies in human volunteers further also suggest that
a subset of CD4 cells, a4b7-expressing circulating antigen-
specific T follicular helper cells home to gut associated
lymphoid tissues to interact with B cells to elicit B memory
responses (68). Here, higher levels of a4b7 expression were
associated increased antigen-specific IgA B cell memory and
with lower stool volumes in volunteers following challenge.

Likewise, in naturally infected Bangladeshi adults ETEC
infections were associated with specific memory B cell
responses to colonization factors and heat labile toxin (69).
These responses were associated with development high avidity
antibodies to these antigens suggesting that they may participate
in neutralizing anamnestic responses.

Similar memory responses can be elicited by vaccination with
the oral whole-cell killed ETEC vaccine ETVAX. Studies in
human volunteers demonstrated that re-administration of the
ETVAX more than one year later elicited substantial increases in
antibody lymphocyte supernatant (ALS) IgA directed at CFs and
LT, evidence that the vaccine induced sustained mucosal
immunological memory (70). As seen with infection with wild
type ETEC, vaccination with ETVAX also led to increases in
circulating activated T follicular helper cells (cTfh) that
correlated with vaccine-specific ALS IgA production (71),
suggesting that measuring these cells could serve as an effective
markers of vaccine “take” and prediction of long term mucosal
memory responses.

4.1.2 The Impact of Repeated Natural Infection in
Endemic Regions
In contrast to travelers, children in LMICs are repeatedly
exposed to ETEC, potentially providing a strong and repetitive
September 2021 | Volume 2 | Article 709907
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antigenic stimulus following initial exposure. Repeated
symptomatic infections in this population (2) make it clear
that natural infection does not necessarily induce sterilizing
immunity, although re-exposures in highly endemic
environments may elicit anamnestic responses that sustain
protection following vaccination

4.1.3 Protection Following Vaccination
As data from cohort studies in which children were followed
from birth to the age of 24 months demonstrate that
symptomatic re-infection with ETEC strains expressing the
same colonization factor (CF) is not common (2), most
vaccines have attempted to elicit vaccine responses to CFs (72–
74) and to correlate mucosal responses to the targeted antigens to
protection. While precise mechanistic correlates of protection are
not evident from studies to date, comparison of immune profiles
generated during controlled human infection model (CHIM)
studies (55) to vaccination can be instructive. Proteome
microarray profiling of immune responses to the live
attenuated ETEC vaccine ACE527 with or without the mucosal
adjuvant dmLT (LT R192G/L211A) revealed that both ACE527
(protective efficacy, PE~27%) (75) and ACE527 + dmLT
(PE~66%) (76) elicited similar responses to canonical antigens
targeted in the vaccine (CS1,CS2, CS3, CS5, CS6, CFA/I, LT-B),
yet failed to elicit responses to other antigens, including EtpA
and flagellin, recognized following challenge with wild type
ETEC, which affords almost complete protection on
homologous re-challenge (55, 56). Although clinical trials of
ETEC vaccines have attempted to correlate responses to
colonization factors and LT with protection, the studies of
ACE527 highlight difficulties inherent in attempting to mimic
the complex and multifaceted responses to infection that
ultimately result in protection.

4.1.4 Cytokine Responses to ETEC Infection
Controlled human infection model (CHIM) studies have
provided some insight into the nature of cytokine responses
related to acute ETEC infections. In volunteer studies, serum
levels of IL-17 and interferon g increase significantly in subjects
with moderate-severe diarrheal illness (77). In the gut IL-17 is
produced by a variety of cell types, including Paneth cells which
reside at the base of the crypts in the small intestine. Here, IL-17
plays a critical role in maintaining mucosal integrity, in
promoting release of antimicrobial compounds including
defensins, and in stimulating pro-inflammatory cytokines (78).
Importantly, LT has been shown to induce production of IL-1ß
and IL-23 secretion by dendritic cells which then promote
antigen-specific IL-17 and interferon-g production in CD4+ T
cells. A mixed Th1/Th2 response accompanied by robust Th17
induction and migration of gut homing a4ß7-expressing
lymphocytes account for the potent adjuvant activity of LT
(79). The B-cell help provided by IL-17 promotes germinal
center formation (80) and elicits production of secretory IgA at
mucosal surfaces to neutralize the pathogen and/or its toxins.
Incorporation of dmLT or other adjuvants that can recapitulate
responses to the native toxin will likely be important in achieving
robust and sustained mucosal protection against ETEC (81).
Frontiers in Tropical Diseases | www.frontiersin.org 4
5 VACCINE PIPELINE

A number of candidate vaccines ETEC based on the canonical
virulence paradigm have progressed to clinical investigation.
Each of these is designed to target multiple CF/CS antigens ±
LT (Table 1).

5.1 Cellular Vaccines Based on the
Classical ETEC Pathogenesis Paradigm
All ETEC vaccines to enter clinical testing thus far are centered
on the classical paradigm for ETEC virulence and attempt to
interrupt intestinal colonization by engendering responses to
select colonization factor (CF or CS) antigens and LT. These have
taken the form of mixtures of whole cell killed (91, 92), or live-
attenuated (75, 76, 93) ETEC strains engineered to express one or
more CF/CS antigens. Most studies indicate that multiple CF/CS
antigens would be needed to afford broad coverage in an ETEC
vaccine although when combined they could cover ~3/4 of all
isolates expressing the most common colonization factors (94),
and 1/4 of more of the strains lack one of the established,
previously characterized CF/CS antigens (54, 95–98).

ETVAX is a whole-cell inactivated mixture of ETEC strains
developed at the University of Gothenburg to target major CFs/
CS antigens (CFA/I, CS3, CS5, CS6) and includes a novel LT
toxoid LCTBA in addition to the double mutant LT adjuvant,
dmLT. In a randomized placebo-controlled double-blind phase
1/II dose escalation study in Bangladeshi children 6-59 months
of age, the vaccine was generally safe and the majority of vaccine
recipients mounted significant mucosal IgA responses against
each of these antigens (73), suggesting that it could effectively
prevent infection in a major target population.

ETVAX has also been studied (phase 2b) in Finnish travelers
to Benin, West Africa where there was an appreciable attack rate
of ETEC diarrhea, and ETEC featured prominently in (~75%)
cases of severe diarrhea (>16 loose stools/24 hours). In vaccine
responders the protective efficacy was ~52%, and far fewer
vaccine recipients required antimicrobial treatment to mitigate
severe illness suggesting that the vaccine was generally effective
(20, 99).

ACE527 is an orally administered vaccine mixture of three
live-attenuated strains engineered to express CFA/I and CS1-
CS3, CS5, and CS6 in addition to the B subunit of heat-labile
toxin (LT-B) (93, 100). Controlled human infection model
studies of ACE527 demonstrated that when given alone, it
failed to significantly protect against more severe forms of
diarrhea upon challenge with ETEC H10407, although it did
reduce colonization (75). In contrast, addition of dmLT to
ACE527 resulted in marked decrease in shedding of the
H10407 challenge strain commensurate with a significant
increase in protective efficacy (66%) against H10407 challenge
(76). Subsequent protein microarray studies undertaken to
examine differences in immune responses to wild type H10407
relative to ACE527 and ACE527 adjuvanted with dmLT revealed
that the vaccine with or without dmLT engendered comparable
immune responses to target canonical antigens, but that immune
responses to potentially protective novel antigens including the
EtpA adhesin, the YghJ metalloprotease, and flagellin were
September 2021 | Volume 2 | Article 709907
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markedly diminished or absent relative to wild type H10407
challenge (56). While ACE527 is not currently under further
development, these studies importantly emphasized responses
following ETEC infection that are distinct from vaccination and
which may be critical for efficient protection.

A second live-attenuated platform under development by the
Center for Vaccine Development (CVD) at the University of
Maryland relies on heterologous presentation of ETEC antigens
in Shigella. The prototype Shigella strain CVD 1208S, derived
from Shigella flexneri 2a, contains attenuating mutations in
guaBA, and two enterotoxin genes sen and set, and was found
to be safe and immunogenic in phase 1 clinical studies
(NCT01531530) (101). This strain has been engineered to
express CFA/I and the A2 and B subunits of LT (LThA2B)
from the chromosome, and tested in murine models where it was
shown to mitigate weight loss and diarrhea following challenge
with either CFA/I-expressing ETEC or Shigella flexneri 2A (102).
CVD is currently engineering a multivalent Shigella-ETEC
vaccine that incorporates DguaBADsenDset mutations in the
most prevalent serotypes of Shigella flexneri (2a, 3a, 6, 1b)
found in the Global Enteric Multicenter Study (GEMS) (3), in
addition to Shigella sonnei and dysenteriae, with each expressing
heterologous antigens to cover CS1-3, CS5,CS6, CS14 and CFA/I
with the LThA2B toxoid (82).

5.2 Acellular Subunit Candidates
5.2.1 Development of Toxoids
Successful delivery of ETEC ST and LT enterotoxins is the sine
qua non of ETEC molecular pathogenesis. Theoretically,
interruption of any step which mitigates toxin binding to the
Frontiers in Tropical Diseases | www.frontiersin.org 5
respective epithelial cell surface receptors, including toxoids,
could be exploited in development of a vaccine. Indeed,
toxoids form the basis for a number of licensed subunit
childhood subunit vaccines against toxigenic bacterial
pathogens including diphtheria, and pertussis, suggesting that
this is a viable approach. Similarly, there is ample reason to hope
that toxoids against both LT and ST could form the basis of a
broadly protective vaccine strategy.

LT is inherently immunogenic, and most studies have
demonstrated that there is a robust response to the toxin
following infection. Studies of the oral whole-cell cholera
vaccine combined with cholera toxin (CT) B subunit (Dukoral)
in travelers demonstrated significant cross protection afforded by
the antigenically similar CT B subunit against LT+ ETEC (103),
providing enthusiasm for targeting LT. Subsequent studies of LT
transdermal delivery via patch demonstrated efficacy in
mitigating the severity and duration of diarrheal illness
following controlled clinical challenge with a strain that
produces both LT and ST (104). Likewise transdermal delivery
of LT demonstrated some efficacy in lessening the severity of
traveler’s diarrhea caused by strains that produced LT, and
overall in preventing more severe forms of diarrheal illness of
all causes (105). In a larger phase III study in travelers, protective
efficacy (~61%) was limited to strains which produced LT only
(106). Altogether, these results suggest that direct targeting of LT
using some version of LT toxoid would at least provide some
protection against LT-producing ETEC, although other antigens
would almost certainly be required for broad protection (107).

The double mutant LT(R192G/L211A) form of LT (dmLT)
(Figure 1A) retains ADP-ribosylating activity and the
TABLE 1 | Current landscape of ETEC vaccine development.

Vaccine candidate Vaccine type/description Target antigens Clinical phase Reference(s)

pre 1 2 3

Whole cell-bacteria

ETVAX ± dmLT whole-cell inactivated, recombinant LTCBA CFA/I, CS3,5,6; LT a (73)
ACE527 ± dmLT live-attenuated, recombinant LT-B CFA/I, CS1-3,5,6, LT b (75)
Shigella-ETEC multivalent live-attenuated Shigella-ETEC heterologous expression CFA/I, CS1-6, 14; LThA2B (82)

Recombinant subunits
dmLT LT(R192G/L211A) recombinant antigen/adjuvant LT c-f (73, 75, 83, 84)
LT-ST fusion (ENTVAC) recombinant toxoid fusion STa(N12S)3-LT(R192G/L211A) LT/ST (85, 86)
fimbrial tip adhesins recombinant dscCfaE + LT(R192G) CFA/I, LT g h (87)

recombinant cssBA ± dmLT CS6, LT i (88)
chimeric recombinant dsc14CfaE-sCTA2/LTB5 CFA/I, LT j (89)

MEFA multi-epitope fusion antigen + dmLT CFA/I, CS1-6, LT (90)
EtpA recombinant adhesin EtpA (36, 37)
EatA recombinant mucin-degrading protease EatA (29)
YghJ(SslE) recombinant metalloprotease YghJ(SslE) (45)
S
eptember 2021 | Volume 2
Clinical trials identifier.
aNCT02531802, NCT03729219.
bNCT01739231.
cNCT02052934 (sl dmLT).
d NCT01147445 oral dose escalation.
eNCT02531685.
fNCT03548064 oral, sublingual, intradermal in Bangladesh.
gNCT01382095.
hNCT01922856.
iNCT03404674cssBA.
jNCT01644565.
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immunogenicity of the parent molecule and exhibits potent
mucosal adjuvant activity for co-administered antigens, making
it an ideal component of ETEC vaccines (81). dmLT has proven
to be safe when administered either orally (83), via sublingual
route (84), or parenterally. Doses of 50-100 µg are well-tolerated
orally, and elicit significant mucosal antibody responses against
LT (83). Encouraging data from both preclinical and clinical
studies have accelerated inclusion of dmLT in candidate
vaccines, and the significantly enhanced protective efficacy
observed on administration of dmLT with the live-attenuated
ACE527 ETEC vaccine highlights its utility as a potent mucosal
adjuvant (76).

Until recently, heat-stable toxins were not considered to be
viable candidates for toxoid development for a number of reasons.
First both versions of heat-stable toxin found in strains that infect
humans, ST-H and ST-P, are small (19 and 18 amino acids,
respectively) poorly immunogenic peptides (Figure 1B). In
addition, both molecules bind to quanylate cyclase C (GC-C) on
the surface of enterocytes where they act as molecular mimics for
the peptides guanylin and uroguanylin which normally regulate
fluid homeostasis in the human gastrointestinal tract. Indeed, the
FDA-approved drug linaclotide, a close relative of ST-H, differs
from the core region of the toxin by only a single amino acid (112),
and is designed to exploit this mimicry in the treatment of chronic
constipation and irritable bowel syndrome. Therefore, there was a
legitimate concern that engendering antibodies against ST peptides
would cross react with the endogenous peptide ligands and interfere
with fluid homeostasis. This concern was substantiated in studies in
which antibodies raised against STh or STp conjugates cross-reacted
with both endogenous peptides (113, 114).

Detailed screening of a library of STh amino acid substitutions
has however delineated mutations within STh such as A14T
Frontiers in Tropical Diseases | www.frontiersin.org 6
(Figure 1C) that exhibit substantially reduced toxicity and
induce ST neutralizing antibodies (113, 115–117) which do not
cross react appreciably with either of the endogenous GC-C agonist
peptides. Similarly, presentation of STh (A14T) on the surface of
self-assembling nanoparticles elicited robust ST neutralizing
antibodies without substantial cross reaction with either guanylin
or uroguanylin (118).

The promise of toxoids to afford protection is further highlighted
by studies in which copies of mutant ST were genetically fused to
LTA (R192G/L211A) and single copy of LTB. Immunization of
pregnant pigs with this construct adjuvanted with dmLT yielded
substantial protection against diarrhea in suckling pigs following
challenge with an ST-producing strain (85).

In summary, the current evidence suggests that both toxins
could be effectively targeted to engender neutralizing antibody
responses, interrupting a critical step in ETEC molecular
pathogenesis. These collective advancements in development of
toxoids for both ST and LT provide strong impetus for pursuing
their development as protective immunogens.

5.2.2 Development of CF and CS Subunit Vaccines
Elegant structural studies of CF and CS biogenesis have informed
the development of protective antigenic subunits (119). The most
advanced of these, based on the donor strand complemented (dsc)
tip adhesin structure of CFA/I, dscCfaE, was used previously to
generate bovine immune colostral IgG antibodies that afforded
robust passive protection against subsequent challenge with
H10407 (120). This tip adhesin complex was subsequently tested
for immunogenicity when delivered transcutaneously with mutant
LT (R192G) via patch in human volunteers (87). Although these
studies indicate that additional effort will be required for optimal
delivery of the fimbrial tip adhesin complex (121), recent studies of
A B

C

FIGURE 1 | Molecular basis of toxoid development for ETEC. (A) ETEC heat-labile toxin based on Protein Data Bank (PDB) structure 1LTS (108), with the A1
subunit in blue, A2 in yellow, and the pentameric B subunit in green. Location of R192G and L211A mutations in dmLT are indicated by the arrows. (B) Sequence
alignment of ETEC heat-stable toxins STh and STp, linaclotide, and native peptides guanylin and uroguanylin. Disulfide bonds are indicated above and below the
alignment. Numbers refer to the amino acid sequence of STh. (C) Surface structural model of core ST toxin domain of (amino acids C6-C18) based on STp PDB
structure 1ETN (109). Regions in blue depict location of cysteines. Location of candidate toxoid mutation at A14, part of the putative GC-C receptor binding site
formed by N12-A14 (110), is shown in yellow. Molecules shown were displayed using ChimeraX v1.1.1 (111).
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dscCfaE genetically fused in a chimeric complex with the A2
subunit of cholera toxin and the B subunit of LT (dscCfaE-
sCTA2/LTB) resulted in substantial protection in an Aotus
nancymaae model of infection, following intradermal vaccination
with mLT(R192G) (89).

Similar preclinical studies of CS6, an antigen present in ~ 1/5 of
ETEC strains have been ongoing. CS6 is comprised of two major
subunits CssA and CssB, and early results with recombinant CssBA
of CssAB heterodimers suggest that it is possible to generate
neutralizing antibodies to CS6 (88). A phase 1 safety and
immunogenicity study of CssBA + dmLT administered IM has
been completed although data on protective efficacy is currently
pending. Interestingly, however administration of hyperimmune
bovine IgG against recombinant CS6 did not afford significant
protection against moderate to severe diarrhea upon challenge with
a well-characterized CS6-producing strain B7A (122).

A potential pitfall inherent in the adhesin subunit approach is
that more than 25 distinct CF/CS antigens have been identified to
date, complicating the path to a broadly protective multivalent
vaccine. Although it remains to be seen to what degree broad-
based protection can be achieved with a limited number of
antigens, there is significant cross immunologic reactivity of
class 5 fimbrial tip adhesins (72, 123, 124).

Development of a multiepitope fusion antigen (MEFA) that
incorporates epitopes from multiple antigens represents an attempt
to overcome valency thresholds that would be required to achieve
broad protection. The most recent iteration of the MEFA platform
incorporates ST-LT fusion toxoid molecules combining both anti-
adhesin and toxoid approaches (125). Notably, this latest iteration of
MEFA was protective in a porcine challenge model suggesting that
the toxoid induces effective neutralizing antibodies.

5.2.3 Non-Canonical Antigen Subunits
A potential complementary approach to achieving broad coverage
against a diverse population of ETEC would be to target other
surface-expressed “non-canonical” antigens (i.e., other than the CF/
CS antigens and toxins) that could be targeted to mitigate effective
toxin delivery. Expanded genomic, immunoproteomic, molecular
pathogenesis, as well as clinical investigation efforts have highlighted
several antigens including the EtpA adhesin, the EatA mucinase,
and the YghJ (SslE) metalloprotease that have not traditionally been
targets for ETEC vaccines.

The relative conservation of each of these antigens within the
ETEC pathovar, their immunogenicity during natural (42) and
experimental human infections (55), and molecular pathogenesis
studies all suggest that these antigens, which have not been targets of
ETEC vaccines to date, play important roles in ETEC infection.
Nevertheless, additional effort will be needed to accelerate their
implementation in future iterations of ETEC vaccines.

Interestingly, although these antigens have demonstrated
some efficacy in animal models of infection (29, 37), it is not
currently known whether any of these molecules (all of which are
secreted from ETEC) would have been retained in whole cell
vaccines such at ETVAX which have reached advanced stages of
development. Notably, genes responsible for secretion of EtpA
were inadvertently deleted in construction of ACE527, likely in
engineering of the parent strains to remove toxin genes (93, 100),
Frontiers in Tropical Diseases | www.frontiersin.org 7
and each of the resulting vaccine strains were immotile
potentially impacting efficacy of relative to challenge with wild
type bacteria (56).
6 CHALLENGES FOR DEVELOPMENT

The Department of Immunization, Vaccines and Biologicals of the
WHO has published “Preferred Product Characteristics” to guide
development of ETEC vaccines designed for target populations in
LMICs (126). In this context, a vaccine that is affordable and that
significantly reduces mortality and morbidity associated with
moderate to severe diarrhea among children under the age of 5
years in LMICs is the primary aspirational goal.

A number of challenges present barriers to achieving this
goal. These include lack of broadly applicable testing to assess
disease burden, particularly in remote areas where incidence may
be quite high; lack of clear correlates of protection; as well as
animal models that do not completely recapitulate human
disease necessitating a reliance on controlled human infection
models (CHIM) (127) testing for accurate prioritization and
down-selection of vaccine candidates.

Affordability will undoubtably play an essential role in guiding
global vaccine value assessments for vaccine prioritization. The
complex nature of ETEC and the underlying genetic plasticity of E.
coli could impede progress toward development toward a broadly
protective vaccine suitable for deployment to LMICs.

The extraordinary CF/CS structural and antigenic diversity poses
a substantial challenge to vaccine approaches exclusively centered
on these antigens. Antibodies that recognize several closely related
CF adhesin molecules may have functional activity restricted to a
single antigen (123), highlighting difficulties inherent to practical
development of a vaccine solely based on CFs.

Additional effort will therefore be needed to define complementary
strategies. Advanced development of hybrid toxoids that protect
against ST and LT, a more complete understanding of ETEC
molecular pathogenesis that intensifies focus on more highly
conserved virulence features, particularly those which play a role in
developmentofmore severe formsof illness (42), andelucidationof the
cellular events underlying ETECs relationship to sequelae including
stuntingandmalnutritionmaybeneeded to informtheconstructionof
a truly affordable and broadly protective vaccine.
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