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Understanding the mosquito antiviral response could reveal target pathways or genes of
interest that could form the basis of new disease control applications. However, there is a
paucity of data in the current literature in understanding antiviral response during the
replication period. To illuminate the gene expression patterns in the replication stage, we
collected gene expression data at 2.5 days after Dengue-2 virus (DENV-2) infection. We
sequenced the whole transcriptome of the midgut tissue and compared gene expression
levels between the control and virus-infected group. We identified 31 differentially
expressed genes. Based on their function, we identified that those genes fell into two
major functional categories - (1) nucleic acid/protein process and (2) immunity/oxidative
stress response. Our study has identified candidate genes that can be followed up for
gene overexpression/inhibition experiments to examine if the perturbed gene interaction
may impact the mosquito’s immune response against DENV. This is an important step to
understanding how mosquitoes eliminate the virus and provides an important foundation
for further research in developing novel dengue control strategies.
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INTRODUCTION

Dengue virus (DENV) is a mosquito-borne virus that has greatly impacted human health and is a
global issue in tropical and sub-tropical areas (1). The dengue disease burden worldwide is
estimated to range from 100 to 400 million infections each year (2), and its occurrence closely
mirrors that of its primary vector, Aedes aegypti. According to the World Health Organization, the
largest number of dengue cases reported in 2019 were 3.1 million cases in the American region and
more than 1 million cases around southeast Asia. Dengue virus is described as having four
serotypes, DENV-1, DENV-2, DENV-3, and DENV-4, all of which cause dengue fever. In some
individuals, dengue fever can progress to severe dengue with life threatening complications (3, 4).

The time required for a virus to replicate and become transmissible in the mosquito is called the
extrinsic incubation period (EIP) (5). To become transmissible, the virus must pass through several
major barriers in the mosquito: the midgut infection barrier (MIB), the midgut escape barrier
(MEB), the salivary gland infection barrier (SGIB), and the salivary gland escape barrier (SGEB) (6).
After a female Ae. aegypti ingests virus particles contained in a blood meal, the virus binds to
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receptors on the midgut-cell surface and enters the cell through
endocytosis (7). The initiation of infection and replication in the
midgut during the first two days is called the eclipse period, in
which the virus titer decreases on day 1 and then continues to
decline until day 2 post-ingestion (8). At 2 days post-infection,
around 30% of midgut epithelial cells are infected (9). After 3
days post-infection, the virus can spread laterally to infect
neighboring midgut epithelial cells (9). Infected midgut cells
often become degenerated and cell-cell adhesion is often
disrupted which may be the path for viral escape from the
midgut epithelium (6). The duration of the EIP varies
depending on the genotypes of both the mosquito and the
virus, as well as on environmental conditions (10).

These processes rely on complex chains of virus-host
interactions, many of which are still poorly characterized. The
virus must evade the host immune system and co-opt host
machinery to complete its replication cycle. There are a wide
range of different host immune processes that can prevent the
virus from using resources or disturbing critical processes
essential for cell function. This includes passive processes and
processes triggered by recognition of pathogen-associated
molecules, which have been shown to limit pathogen infection
and transmission (11). The RNA interference (RNAi) pathway,
which limits viral replication by targeting viral RNAs for
degradation has been found to play a major role in the
antiviral response (12–14). Three other innate immunity
pathways involving pattern recognition and signal transduction
have an identified antiviral role: the Toll (15, 16), IMD (17, 18),
and JAK/STAT (19, 20) pathways. Activation of these pathways
leads to the induction of antimicrobial peptides and other
immune effectors. A further pathway, apoptosis, the process of
programmed cell death, is also crucial to limiting viral titer (21).
Infection with DENV, Zika, and chikungunya viruses often
induces the expression of other immune genes, including
cysteine-rich venom proteins, clip-domain serine proteases,
C-type lectins, and serine proteases, with the effect varying
between mosquito populations (22–25).

In addition to those canonical immune pathways, substantial
numbers of other mosquito genes unrelated to immunity often
display altered transcription levels in response to virus infection,
and some might impact virus replication in mosquitoes (26). For
example, transcript levels of genes related to the cytoskeleton (15,
27, 28), heat-shock response (27, 29), detoxification (e.g.,
cytochrome p450s) (27, 30), cell proliferation (30, 31), DNA
replication, and fatty acid biosynthesis (30, 32, 33) exhibited
altered expression patterns during arboviral infection and some
non-immune-related genes have a demonstrated impact on virus
infection (31, 34, 35).

The early phase of the viral replication cycle is critical, as it
shapes the course of infection and ultimately determines whether
the mosquito becomes competent to transmit the virus (36).
Most transcriptomic assays in mosquitoes that examined
arbovirus infection were conducted within 48 hours of
infection (27, 30, 32, 34) or 7-10 days post-DENV infection
(16, 17, 19, 37). However, the time between 2 and 3 days after
virus infection may be a crucial time point corresponding to the
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end of an infection bottleneck before viral titers spike and the
virus particles escape the midgut epithelium (8, 9, 36). Mosquito
host-virus interactions at this stage are still not well defined, so
examining transcript differences associated with infection at this
key time point could improve our overall understanding of
DENV infection in mosquitoes, and produce candidate genes
that might be used to develop for new strategies aimed at
preventing arbovirus transmission.

Here we investigate transcriptomic changes in mosquito
midguts after 60 hours of DENV infection, which corresponds
to the end of the eclipse phase when virus replication rates and
DENV titers begin to increase (36). Through RNA-Seq analysis,
we evaluate the impact of DENV infection in the Ae. aegypti
Vero Beach strain to identify differentially expressed genes
associated with the virus replication cycle. A total of 31 genes
had transcripts that showed differential expression following
DENV infection. Our results provide important insight into
DENV replication and indicate differential regulation of genes
in two major functional categories - (1) nucleic acid/protein
process and (2) immunity/oxidative stress response, during this
stage of infection.
MATERIALS AND METHODS

Mosquitoes
Aedes aegypti Vero strain F20 was used in this study. The strain
was originally collected in Vero Beach, Florida in 2015.
Mosquitoes were reared at 28°C and 60-80% relative humidity
in a climate-controlled room with a light: dark cycle of 14:10
hours. Upon hatching, larvae were separated into pans (35cm x
20cm x 6cm) with approximately 200 larvae per pan and fed a
mixture of 0.5% brewer’s yeast and 0.5% liver powder (MP
Biomedicals, Solon, OH, USA). Adults were fed with 20%
sucrose solution-soaked cotton rolls (Carolina Absorbent
Cotton, Charlotte, NC, USA). Mosquito eggs were collected to
maintain the colony as described in (38), and female mosquitoes
were blood-fed from chickens following standard approved
protocols (IACUC protocol 201807682).

Virus Infection Experiments
Four- to five- day old adult female mosquitoes were transferred to
16 oz cardboard cartons (WebstaurantStore, Lancaster, PA, USA)
one day before infection and placed in an incubator at 28°C and
60-80% relative humidity. The sucrose solution-soaked cotton
rolls were removed and only water-soaked cotton rolls provided.
In the virus-infected group, DENV-2 strain New Guinea C
(GenBank Accession # KM204118) was incubated at a
multiplicity of infection of 0.01 viruses per cell in Vero cells
(African green monkey kidney cell line) for 5 days. Supernatant
from the virus culture was mixed with defibrinated bovine blood
(Hemostat, Dixon, CA, USA) and fed to female mosquitoes with
an artificial feeding apparatus (Hemotek, Lancashire, United
Kingdom) with membranes made from sausage casings. In the
control group, bovine blood was mixed with M199 culture media
August 2021 | Volume 2 | Article 708817
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(Corning, Manassas, VA, USA) from uninfected Vero cells 5 days
after splitting following the same procedure as the infected group.
Three fully blood-engorged mosquitoes were collected at 1-hour
post-feeding to quantify the ingested DENV titer. After the
removal of non-blood fed mosquitoes across both feeding
group, the remaining mosquitoes were placed into cartons and
maintained in the incubator at 28°C and 60-80% relative
humidity. 20% sucrose solution-soaked cotton rolls were
provided and changed every day. At 60 hours post-infection,
180 mosquitoes from both treatment and control groups were
immobilized on ice. Midguts were dissected in sterile saline
solution and immediately transferred to an eppendorf tube on
dry ice. All the tissue samples were stored at -80°C.

Transcriptome Sequencing
A total of 90 midguts from treatment and control groups,
separately, were divided in triplicate sample each contained
with 30 midguts. RNA from a total of 6 samples was extracted
using the standard Trizol protocol (38, 39). The three biological
replications of control and three infected group samples were
sent to the Novogene Bioinformatics Technology Co. (Durham,
NC, USA) for library generation and Illumina HiSeq6000 paired-
end 150bp sequencing.

All RNA samples passed quality control for RNA purity,
integrity and potential contamination before library
construction, and mRNA was enriched using oligo dT beads.
The enriched mRNA was fragmented and cDNA synthesized
using random hexamers. After cDNA was synthesized, a custom
second-strand synthesis Illumina buffer was added with dNTPs,
RNase H, and Escherichia coli polymerase I to generate the
second strand through nick-translation. The cDNA library was
finalized after the application of terminal repair, poly-A tailing,
sequencing adapter ligation, size selection, and PCR enrichment.
The cDNA libraries were quantified and placed into Illumina
sequencer to generate the sequencing reads (Novogene
Bioinformatics Technology Co., Durham, NC, USA).

Differential Gene Expression Analysis
The data from Illumina sequencing were transformed and
recorded in a FASTQ file. Quality control indicated the clean
reads were more than 98% and the error rate was below 0.03%.
The HISAT2 version 2.1.0-beta was used to map the filtered
sequenced reads to Aedes aegypti LVP_AGWG AaegL5
chromosome and transcripts reference files available from
VectorBase (https://vectorbase.org/) (40). Gene expression level
was measured as the Fragments Per Kilobase of transcript
sequence per Millions of base pairs sequenced (FPKM) values.
HTSeq software version v0.6.1 was used to calculate FPKM.

To analyze the difference of FPKM between control and
infected groups, T-tests were used to determine if average
expression levels between the control and infected groups were
equal. We then calculated the false discovery rate (FDR) with the
Benjamini-Hochberg procedure (41) implemented in Python
SciPy version 1.5.4 (https://scipy.org/), with a FDR under 0.2
considered as a significant difference. This method has been
routinely used over the classic correction methods such as
Frontiers in Tropical Diseases | www.frontiersin.org 3
Bonferroni (42) or Sidak (43) in high-throughput science
allowing discovery of novel genes or genic regions with
relatively small sample sizes (44, 45).

To identify the function of gene, several approaches were
applied. Gene IDs were annotated using VectorBase (https://
vectorbase.org/) and Uniprot (https://www.uniprot.org/) to
obtain gene names and full-length sequences. Gene ontology
(GO) terms were also used to estimate gene function, as well
as homology with putative orthologs from other mosquito
species. Sequences were then examined using BLASTx (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) to match identities and
characterize conserved domains. Information on key
differentially expressed genes was also collected and predicted
through literature review.

Impact on Canonical Immune Genes
To assess the impact of DENV infection on Ae. aegypti immune
pathways, we compiled a list of 352 genes that fall into 23 gene
families or 4 functional groups, all implicated in the innate
immune response of dipteran insects to bacterial, viral, or
parasitic infections. This list was derived from the ImmunoDB
database (http://cegg.unige.ch/Insecta/immunodb), which
categorizes loci into families based on homology among Ae.
aegypti, Anopheles gambiae, and Drosophila melanogaster (46).
Gene accession numbers and annotations were updated using
the Ae. aegypti genome (AaegL5.3) on VectorBase (www.
vectorbase.org). Accession numbers of previously identified
genes were searched, and their functional roles were confirmed
by at least one of three sources: protein domain information,
orthology/paralogy with a gene(s) of similar function, or gene
ontology (GO) terms. In addition, VectorBase was searched
using the name of each gene family with results filtered by the
organism (Ae. aegypti, genome release AaegL 5.3). The names of
immunity genes and gene families in our list are in accordance
with annotations from ImmunoDB. The final list was intended to
err on the side of inclusivity and may include genes without a
confirmed role in innate immunity but are closely related to loci
(i.e., belong to the same gene family) with empirical support for a
role in some aspect of the immune response.

Validation of Gene Expression Differences
and Viral Titer Measurement
RNA from the same samples used to generate the transcriptome
was used to validate expression profiles of a subset of genes
determined to have differential expression due to DENV infection
via RNA-Seq. Gene expression was quantified using a Bio-Rad
CFX96™ Real-Time PCR system and the iTaq Universal SYBR
Green One-step kit (Bio-Rad, Hercules, CA, USA), with specific
primer sets designed for each gene (Table S3). Four candidate
genes were selected from both upregulated and downregulated
expression groups and from the two major functional categories
we identified (Tables 1, 2). The PCR products from specific
primer sets were sequenced to confirm the targets were correct.
Ae. aegypti ribosomal protein S7 gene (GenBank Accession #
AY380336) was picked as a control for standardizing gene
expression level (39). The qRT-PCR conditions were one cycle
August 2021 | Volume 2 | Article 708817
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of 50°C for 10 min, one cycle of 95°C for 1 min, then 40 cycles of
95°C for 10 s, and 60°C for 30 s, followed by melt curve analysis.
The 2[-Delta Delta C(T)] method was applied to analyze the
relative changes in gene expression from real-time quantitative
PCR results (47). Gene expression data were analyzed by the
Wilcoxon Method from JMP Pro (www.jmp.com), to comparing
group means, calculate the p-value and determine the presence of
significant differences between treatment groups.

To determine virus genome equivalents in blood and freshly
fed mosquitoes from the infection study, DENV-2 specific
primers (38) were used with the iTaq Universal SYBR Green
One-step kit and the Bio-Rad CFX96™ Real-Time PCR (Bio-
Rad, Hercules, CA, USA). The qRT-PCR conditions were as
described above. Viral genome equivalents were calculated based
on a standard curve and recorded as log (base 10) plaque-
forming unit equivalents per milliliter (log PFUe/ml). The
standard curves for DENV genome equivalents were described
previously (38). The blood mixture contained 9.3 log PFUe/ml of
DENV-2. The freshly fed mosquito contained 5.78 ± 0.07 log
PFUe/ml of DENV-2. The virus titer at 60 hours after infection
in the midgut was 6.25 ± 0.74 log PFUe/ml of DENV-2.
RESULTS

Transcriptome
An average of 48.4 million reads was generated per sample, of
which 90% were clean reads. The average sequencing error rate
was 0.03 [Qphred=-10log10(e)] and the average GC content was
46.86%. The mapping percentage (total number of reads that
could be mapped to the reference genome) was 87.7%, and more
Frontiers in Tropical Diseases | www.frontiersin.org 4
than 90% of mapped reads corresponded to known exon regions.
An average of 9.25% reads were mapped to multiple locations
and 78.42% reads were uniquely mapped. The full dataset of
FKPM values and the FDR rate for each of 15,173 genes are
provided as supplemental Table S1.

Differentially Expressed Genes
We identified 31 genes that were significantly differentially
expressed (DEGs) between the control and infected groups
based on a false discovery rate of 0.2 (Tables 1–3). These
included 8 genes located on Chromosome 1, 15 genes on
Chromosome 2, and 7 genes on Chromosome 3 (Figure 1).
Eleven genes were upregulated, and 20 genes were
downregulated after 60 hours of virus infection in the midgut.

Based on data from Vectorbase, only 7 of the DEGs had an
annotated function, with 24 described as having an ‘unspecified
product’ based on AaegL5 annotation. Through BLASTx analysis
we identified conserved domains in a further 13 DEGs, making a
total of 20 annotated genes. Based on their predicted functions
from Vectorbase and BLASTx analysis, 9 DEGs were grouped as
having a role in immunity or oxidative stress response (Table 1).
A further 10 DEGs had a putative role relating to nucleic acid or
protein process (Table 2). One gene, AAEL023615-RA, was
associated with both immunity and nucleic acid processes. The
13 DEGs not linked to these functions are recorded in Table 3.

Effect on Canonical Immune Genes
The 352 genes known to be involved in the dipteran immune
response covered 23 families including Toll, IMD, JAK/STAT,
and RNAi pathways. The list was split into 4 functional
categories, defined as (i) pathogen/parasite recognition, (ii) signal
modulation, (iii) signal transduction, and (iv) effector,
TABLE 1 | The immunity/oxidative stress response-related genes with differences between the control and DENV-2 infected midgut.

Gene ID Chr Ctrl DVI D FDR Blastx match cd_id Product Predicted function

AAEL014372* 3 0.363 ± 0.007 0.643 ± 0.02 ↑ 0.028 XP_001648624.2 cl21453 Juvenile hormone-inducible
protein, putative, Pkc-like
activity

Ras-GRP activity. ERK pathway
and AMP activity

AAEL014890* 1 0.000 0.09 ± 0.01 ↑ 0.150 XP_001649935.3 cl12078 Cytochrome p450 6a13 Detoxification, metabolism,
oxidative stress

AAEL023151 2 14.09 ± 0.46 10.5 ± 0.05 ↓ 0.185 XP_021702613.1 cl27223 CCAAT/enhancer-binding
protein zeta

Cell proliferation inhibitor.
Apoptosis pathway.

AAEL008841* 2 10.03 ± 0.07 7.48 ± 0.304 ↓ 0.163 XP_001653457.2 cl09933 Peroxisomal acyl-coenzyme A
oxidase 3

Oxidoreductase, Lipid
metabolism, generation of H2O2

AAEL012507* 2 64.4 ± 1.44 47.77 ± 0.8 ↓ 0.134 XP_001656123.2 pfam01920 Putative prefoldin subunit Chaperone linked to the
cytoskeletal formation.

AAEL017315* 3 154.3 ± 0.65 132.6 ± 2.15 ↓ 0.101 XP_021708353.1 cd10228 Heat shock 70 kDa protein 4
isoform X2

Chaperone

AAEL001417* 2 0.074 ± 0.002 0.042 ± 0.001 ↓ 0.018 XP_001659165.1 cl40328 Leucine-rich immune protein
LRIM7

Putative immune receptor.
Antiviral immunity, anti-
Plasmodium immunity

AAEL027736 NA 0.133 ± 0.002 0.000 ↓ 0.000 QIH12032.1 cl00275 cytochrome oxidase subunit I,
partial, Heme-copper oxidase
subunit I

Mitochondria function, Electron
transport chain, NO reduction

AAEL023615* 2 0.043 ± 0.001 0.000 ↓ 0.000 XP_001849146.1 cl37801 Topoisomerase II-associated
protein PAT1

Cell maintenance and division,
speculative link to apoptosis
August 2
Chr, chromosome; Ctrl, control group; DVI, DENV infected group; Ctrl/DVI columns represented the average of FPKM value ± standard deviation; D, change in expression level in DENV
infected group vs control group, ↑ indicated the expression level was significantly higher in the DENV infected group and ↓ showed the expression level was significantly higher in the control
group; FDR, false discovery rate; cd_id, conserved domain id on NCBI conserved domain database (CDD); *indicated the transcript was identified in previous arbovirus studies.
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oxidation-reduction, and reactive oxygen species. However,
when the expression level differences between control and
DENV-2 infected mosquitoes at 2.5 days post-infection in the
data from this study were examined, 315 genes had FPKM data
but none of the canonical immune genes showed expression level
differences with a FDR below 0.2 (Table S2).

Validation
Four genes were validated with qRT-PCR and supported the
RNA-Seq results with the same pattern of expression (Figure 2).
The relative transcript expression fold change of AAEL014890
was 2.15 ± 0.96 (p = 0.02), AAEL028039 was 3.1 ± 1.68 (p = 0.02),
AAEL008841 was 0.87 ± 0.15 (p = 0.38) and AAEL001417 was
1.04 ± 0.41 (p = 0.77). Although two transcripts did not have
statistically significant differences, the relative expression
patterns were the same as the RNA-Seq FPKM results.
DISCUSSION

We investigated the transcriptional response in midgut tissue of
Ae. aegypti at 2.5 days post-infection with DENV-2. Although
DENV is detectable in mosquito midgut epithelial cells at 2 days
post-infection, the subsequent 24 hours are crucial for the virus
to replicate and infect surrounding cells. This makes 2.5 days
post-infection a critical timepoint for studying viral replication.
We identified 31 transcripts with significantly altered expression
Frontiers in Tropical Diseases | www.frontiersin.org 5
levels following DENV infection, and based on their putative
functions, grouped the majority as being linked either to
immunity/oxidative stress response or to nucleic acid/protein
processes. This finding provides new information on the nature
of mosquito-virus interactions during the replication and
assembly stages of the DENV replication cycle, and offers 7
new target genes with their potential function that could interfere
with the virus infection process in a mosquito host.

Canonical Immune Genes Expression
Canonical immune pathways and genes are generally thought to
play a crucial role in a mosquito’s ability to restrict viral
infection, with many canonical immune transcripts displaying
altered activity after infection (16, 30). Several immune pathways
such as the Toll (16), JAK/STAT (19) and RNAi pathways (12)
have a demonstrated ability to limit DENV infection in the
mosquito. However, in our dataset there were no significant
differences in the expression of 352 canonical immune genes
(Table S2), which suggests there might be a distinct,
uncharacterized aspect of the immune response and host-virus
interactions at this time point and in the midgut tissue
we investigated.

Based on previous midgut transcriptome studies, canonical
immune genes were generally not identified as significantly
associated with the DENV replication cycle, although there
were a few exceptions. The Inhibitor of apoptosis protein-1
(AAEL009074) and SCF ubiquitin ligase Rbx1 component
TABLE 2 | The nucleic acid/protein process-related genes with differences between the control and DENV-2 infected midgut.

Gene ID Chr Ctrl DENV D FDR Blastx match cd_id Product Predicted function

AAEL023671 3 0.000 0.059 ± 0.002 ↑ 0.001 KXJ62396.1 cd09272 RP20, Ribonuclease H1
(putative)

DNA replication of the
mitochondrial genome. Cleavage of
RNA from RNA/DNA substrate.

AAEL028039 1 0.000 0.032 ± 0.001 ↑ 0.001 XP_021707667.1 pfam00751 Doublesex- & mab-3-related
transcription factor 2

Zinc-binding transcription factor.
Sex determination

AAEL009892* 3 0.098 ± 0.01 0.256 ± 0.01 ↑ 0.101 XP_001654084.2 pfam09789 Uncharacterized coiled-coil
protein (DUF2353) –
homology to Basic leucine
zipper domain

Potential transcription factor

AAEL001191* 2 12.25 ± 0.18 10.17 ± 0.19 ↓ 0.177 XP_001658187.1 cd07401 Transmembrane protein 62 Metallophosphatase. genome
stability and pre-mRNA splicing

AAEL017421 1 65.08 ± 1.9 47.8 ± 0.8 ↓ 0.154 XP_011493522.1 COG1498 Nucleolar protein 56, RNA
processing factor Prp31,
contains Nop domain

RNA silencing, RNA splicing, stress
response, snoRNA-binding domain.
Methylation and pseudouridylation

AAEL012250* 3 23.26 ± 0.37 18.71 ± 0.4 ↓ 0.153 XP_001662357.1 COG1163 Developmentally regulated
GTP-binding protein 2,
Ribosome-interacting
GTPase 1

Ribosome structure & protein
translation

AAEL007573 2 18.63 ± 0.68 10.93 ± 0.35 ↓ 0.096 XP_001658467.1 COG2319 U3 small nucleolar RNA-
associated protein 18
homolog

Pre-ribosomal RNA processing

AAEL007382* 2 32.2 ± 0.35 25.61 ± 0.43 ↓ 0.030 XP_001652722.1 cd00200 serine-threonine kinase
receptor-associated protein

Signal transduction, pre-mRNA
processing and cell cycle control

AAEL025585 2 0.026 ± 0.001 0.000 ↓ 0.000 EAT36231.1 pfam00096 Zinc finger, C2H2 type DNA/RNA/protein binding
AAEL023615* 2 0.043 ± 0.001 0.000 ↓ 0.000 XP_001849146.1 cl37801 Topoisomerase II-associated

protein PAT1
Cell maintenance and division,
potential role in apoptosis
Augus
Chr, chromosome; Ctrl, control group; DVI, DENV infected group; Ctrl/DVI columns represented the average of FPKM value ± standard deviation; D, change in expression level in DENV
infected group vs control group, ↑ indicated the expression level was significantly higher in the DENV infected group and ↓ showed the expression level was significantly higher in the
control group; FDR, false discovery rate; cd_id, conserved domain id on NCBI conserved domain database (CDD); *indicated the transcript was identified in previous arbovirus studies.
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(AAEL004691) were increased in the susceptible population after
48 hours of infection (48). The cecropin gene (AAEL017211), an
antimicrobial peptide, was downregulated after 24 hours of
infection (27). Several immunity-related genes including serine
protease inhibitors (AAEL003182 and AAEL002704), Clip
domain serine protease (AAEL002124 and AAEL001098),
C-type lectin (AAEL005641), and fibrinogen-related protein
genes (AAEL006704) were differentially expressed after 4 days
of infection in the midgut (27). However, the canonical immune
gene activity described in these studies was noted to occur either
in the early infection stage or late replication phase (36) but not
during the early replication phase. These observations in
conjunction with our results suggest that distinct patterns of
gene expression might underlie host-virus interactions during
different phases of the DENV replication cycle. Moreover,
gene expression likely varies among different Ae. aegypti
populations if they have different genetic backgrounds. A
previous study showed genome-wide divergence of Ae. aegypti
populations (49).
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The Immunity/Oxidative Stress
Response-Related Genes
Based on conserved domains, we identified 9 other DEGs with a
putative role in immunity or redox-associated processes, which
can be immunomodulatory in Ae. aegypti (50–52). Two DEGs,
AAEL014372-RA and AAEL014890-RA, both linked to oxidative
stress and immunity, were upregulated after infection (Table 1).
AAEL014372-RA is a juvenile hormone-inducible protein, that
was thought to regulate the expression of many other genes in D.
melanogaster (53). The conserved protein domain cl21453 from
AAEL014372-RA belongs to the PKc_like superfamily which was
mainly composed of the catalytic domains of serine/threonine-
specific and tyrosine-specific protein kinases. The Ras/ERK
signaling pathway is included in the PKc_like superfamily and
was shown to play a role in resistance of Aedes mosquitoes to
DENV infection (52). AAEL014890-RA is a known Cytochrome
p450 gene associated with metabolic detoxification and
insecticide resistance (54). Cytochrome p450 genes as
monooxygenases were upregulated in the refractory Ae. aegypti
TABLE 3 | The unspecified products with differences between the control and DENV-2 infected midgut.

Gene ID Chr Ctrl DENV D FDR Blastx match cd_id Product Predicted function

AAEL023122* 2 0.000 0.078 ± 0.00 ↑ 0.001 EAT38714.1 no match ncRNAs
AAEL023696 2 0.000 0.123 ± 0.00 ↑ 0.001 no match no match ncRNAs
AAEL028030* 1 0.000 0.037 ± 0.00 ↑ 0.001 no match no match ncRNAs
AAEL024626 1 0.000 0.03 ± 0.00 ↑ 0.001 no match no match ncRNAs
AAEL025494 3 0.000 0.04 ± 0.00 ↑ 0.001 no match no match ncRNAs
AAEL023254* 1 0.000 0.055 ± 0.00 ↑ 0.001 no match no match ncRNAs
AAEL023456 3 0.31 ± 0.00 0.23 ± 0.00 ↓ 0.185 no match no match ncRNAs
AAEL025431* 2 18.63 ± 0.36 13.24 ± 0.32 ↓ 0.065 XP_021699911.1 pfam02099 Josephin domain Deubiquitination, endocytosis.
AAEL027382 2 0.25 ± 0.00 0.143 ± 0.00 ↓ 0.018 no match no match ncRNAs
AAEL021814 2 0.046 ± 0.00 0.000 ↓ 0.000 no match no match ncRNAs
AAEL022994 2 0.099 ± 0.00 0.000 ↓ 0.000 no match no match ncRNAs
AAEL025183 1 0.068 ± 0.00 0.000 ↓ 0.000 EAT42613.1 no match ncRNAs
AAEL020974 1 0.169 ± 0.00 0.000 ↓ 0.000 no match no match ncRNAs
August 2021
Chr, chromosome; Ctrl, control group; DVI, DENV infected group; Ctrl/DVI columns represented the average of FPKM value ± standard deviation; D, change in expression level in DENV
infected group vs control group, ↑ indicated the expression level was significantly higher in the DENV infected group and ↓ showed the expression level was significantly higher in the control
group; FDR, false discovery rate; cd_id, conserved domain id on NCBI conserved domain database (CDD); *indicated the transcript was identified in previous arbovirus studies.
FIGURE 1 | The chromosomal location of differentially expressed genes with relative expression differences [=(Edvi-E ctrl)/Ectrl where Ectrl denotes FPKM value in the
control group and Edvi denote FPKM value in DENV-infected group]. Red dots indicate genes where the DENV-infected group had higher gene expression level. Blue
dots indicate genes where the control group had higher gene expression levels.
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in response to DENV infection (30). Although cytochrome p450s
are associated with viral infection-induced inflammation and
oxidative stress in mammals (51), the role in virus infection in
mosquitoes is still unclear.

Most of the downregulated DEGs related to oxidative stress
and immunity were associated with cell death and survival,
which are key processes associated with virus infection (55,
56). Seven DEGs, AAEL023151-RA, AAEL008841-RA,
AAEL012507-RA, AAEL017315-RA, AAEL001417-RA,
AAEL023615-RA and AAEL027736-RA were downregulated in
response to DENV infection (Table 1). Based on BLASTx results,
AAEL023151-RA is a CCAAT/enhancer-binding protein zeta,
which has been implicated in growth arrest and the control of
apoptosis in mammals (57). However, its role in mosquitoes still
needs further investigation. AAEL008841-RA is acyl-coenzyme
A oxidase which produces H2O2 and is involved in lipid
metabolism (58). AAEL012507-RA has the conserved protein
domain pfam01920, indicating it is likely a prefoldin. Prefoldin is
a co-chaperone protein that transfers unfolded polypeptides to
the chaperonin containing tailless complex polypeptide (59). On
the other hand, AAEL017315-RA has the conserved protein
domain cd10228 that suggests it is a 70 -kDa heat shock
protein 4 (Hsp70) which is expressed under stress and is an
important component of the chaperone system (60). Together,
both AAEL012507-RA and AAEL017315-RA might be involved
in chaperone activity where the chaperone function of Hsp70
protects the cell from stress-induced apoptosis (61).
AAEL001417-RA is a leucine-rich immune protein (LRIM)
which is activated as a complement-like defense response (62).
Most of the studies of LRIMs have focused on their ability to act
against malaria parasites in Anopheles mosquitoes (63).
However, increased levels of LRIM16 transcripts were observed
in Mayaro Virus-infected Aedes mosquitoes (64), although their
exact role in arboviral infection remains to be determined. The
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presence of a conserved protein domain cl37801 in
AAEL023615-RA could indicate a function similar to that of a
topoisomerase II-associated protein (PAT1), which has
conserved roles in the 5!3 mRNA decay pathway in both
Drosophila and humans (65). Furthermore, PAT1 might affect
cell survival and regulation of viral gene expression (66).
AAEL027736-RA is predicted as cytochrome oxidase subunit I
which is one of the proteins encoded from mitochondria DNA
(67). The cl00275 domain AAEL027736-RA contained in the
Heme-copper oxidase superfamily (68) which is involved in the
reduction of oxygen.

Based on the potential functions of oxidative stress and
immunity, we propose that DENV induces stress in midgut
cells after entry. Altered mitochondrial function leads to changes
in oxidative stress and oxidative homeostasis. Mass production
of viral protein induces the unfolded protein response (69).
Although the genes did not have a direct link to mosquito
immunity, the higher levels of reactive oxygen species and
unfolded protein could stimulate apoptosis (70, 71). Further
experiments must be done to establish the connections between
the genes we identified in the midgut and apoptosis and,
moreover, their potential to moderate virus infection.

Nucleic Acid/Protein Processes-Related
Genes
We identified 9 DEGs associated with nucleic acid/protein
processes (Table 2). Three DEGs, AAEL023671-RA,
AAEL028039-RA, and AAEL009892-RA, were upregulated
after 2.5 days post-infection and were associated with DNA
binding and DNA replication. Cd09272 is the conserved domain
of AAEL023671-RA and belongs to the family of Ribonuclease H
(RNase H). RNase H cleaves the RNA of RNA/DNA hybrids and
is critical during DNA replication (72). AAEL028039-RA
maintains the conserved protein domain pfam00751 which is a
FIGURE 2 | Validation of expression levels on selected genes using qRT-PCR. The differences in relative expression level between the control (Ctrl) and DENV
infected (DVI) groups showed a patterns consistent with the RNA-Seq FPKM data.
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DNA binding domain (73) and has been shown to dimerize and
bind palindromic DNA (74). The AAEL009892-RA conserved
protein domain pfam09789 identifies as an uncharacterized
coiled-coil protein with homology to the basic leucine zipper
domain, a large group of transcription factors (75).

There were a further 7 DEGs related to the nucleic acid/
protein process that were downregulated (Table 2). Most of
these genes were associated with mRNA and rRNA processing.
The mRNA splicing machinery was shown to be hijacked by the
DENV NS5 protein to improve viral replication (76). On the
other hand, DENV NS1 protein interacted with ribosomal
proteins associated with DENV translation and replication (77).
The possible involvement of DENV proteins might be a reason we
identified the genes related to mRNA and rRNA processing.
AAEL001191-RA has the conserved protein domain similar to
that of transmembrane protein 62, which is a member of the
metallophosphatase (MPP) superfamily. MPPs have diverse
functions including Mre11/SbcD-like exonucleases which are
critical to genome stability (78) and Dbr1-like RNA lariat
debranching enzymes which are key factors of pre-mRNA
splicing (79). AAEL017421-RA is orthologous to nucleolar
protein 56. Although a specific function has not been identified
(80), other nucleolar proteins are important for the maintenance
of heterochromatin and ribosomal RNA (81). Moreover,
AAEL017421-RA has a conserved domain, COG1498, that
indicates similarity to RNA processing factor Prp31. The Nop
domain in RNA processing factor Prp31 is required for ribosome
biogenesis (82) and pre-mRNA splicing (83). The conserved
protein domain COG1163 in AAEL012250-RA suggests
ribosome interacting GTPase 1 which is important to ribosomal
structure and biogenesis (84). AAEL007573 is the U3 small
nucleolar RNA-associated protein 18 homolog which functions
in the maturation of the small subunit rRNA (85). AAEL025585-
RA contains a conserved protein domain pfam00096 and is the
structure of the zinc finger that recognizes and binds DNA (86).
AAEL007382-RA has the conserved protein domain cd00200
indicates WD40 which involved in many biological processes
such as signal transduction, pre-mRNA processing, and cell cycle
control (87, 88).

Since viruses utilize host transcription and translation
machinery to replicate (76, 77), the genes we identified in
Table 2 could be linked to viral RNA translation and
replication. Furthermore, the virus might subvert the host cell
cycle or nucleic acid processes to keep the cell in a state where
viral replication is promoted (89). However, more studies are
needed to understand the DENV replication process and to
investigate interactions between the DEGs and virus.

Other Genes and the Potential Genes Had
Conserved Response Associated With
DENV Replication Stage
We reported 13 DEGs were not listed in either immunity/
oxidative stress response or to nucleic acid/protein processes
(Table 3). Twelve DEGs were identified as non-coding RNAs
(ncRNA), specifically long non-coding RNAs (lncRNA) (90).
Expression of cellular lncRNAs may be altered in response to
Frontiers in Tropical Diseases | www.frontiersin.org 8
viral replication and induced antiviral response (91). A previous
study has shown that DENV-2 infection in Ae. aegypti increased
the abundance of a number of long ncRNAs, which might be
involved in the response to viral infection (92).

To determine if any of the 31 DEGs had a previously
discovered change in expression due to arboviral infection, we
compared our data with previous reports describing
transcriptomic response to arboviral infection in Ae. aegypti
(22, 93). Four DEGs were previously described as having
transcript level differences under DENV or Zika virus infection
(AAEL001417-RA, AAEL023122-RA, AAEL028030-RA and
AAEL023254-RA). Moreover, if we expand the database to a
virus-injected transcriptomic response study (34), a total of 15 of
our DEGs were reported to have expression levels altered in
response to infection with at least one of DENV, Zika virus,
Yellow fever virus, or West Nile virus. However, 16 DEGs from
our studies were not reported in previous studies. For the
previously reported 15 DEGs, 9 were affected by DENV at
1 day post infection (dpi), 2dpi or 7dpi (AAEL014372-
RA, AAEL008841-RA, AAEL001417-RA, AAEL023615-RA,
AAEL009892-RA, AAEL023122-RA, AAEL023254-RA,
AAEL025431-RA and AAEL007382-RA) and 6 DEGs
(AAEL014890-RA, AAEL012507-RA, AAEL001191-RA,
AAEL012250-RA, AAEL017315-RA and AAEL028030-RA)
were only expressed differentially following infection with other
viruses. Elucidation of potential genes involved in the replication
cycle revealed altered expression of 5 DEGs at 1dpi or 2dpi after
DENV infection (AAEL023615-RA, AAEL023122-RA,
AAEL023254-RA, AAEL025431-RA, and AAEL007382-RA).

The AAEL023615-RA (PAT1) and AAEL007382-RA was
described above and is crucial for cell survival (66, 88).
AAEL025431-RA has the conserved domain Josephin, which
might regulate cell motility, and endocytosis (94). The Josephin
domain-containing protein is also involved in de-ubiquitination
(95). AAEL023122-RA and AAEL023254-RA are potential
lncRNAs that could participate in antiviral responses (92). The
fact that the five DEGs exhibited differential expression across
multiple studies of DENV or ZIKV infection in mosquitoes could
indicate that they play important roles during arboviral infection,
making them important candidates for future study.

Gene Location and Potential Connection
to QTLs
A quantitative trait locus (QTL) is a chromosomal region
responsible for variation of a quantitative trait and several
QTLs that control Ae. aegypti susceptibility to virus infection
and dissemination have been identified (96–98). Across the 31
DEGs we identified, there were 8 genes located on Chromosome
1, 15 genes on Chromosome 2, 7 genes on Chromosome 3, and 1
that was not assigned (Figure 1). To date, six DENV-2 midgut
infection barrier (MIB) QTLs and two DENV-2 midguts escape
barrier (MEB) QTLs have been identified across all three
chromosomes (36, 99). However, none of the 31 genes we
discovered overlapped with the predicted QTL locations. On
the other hand, Aubry et al. detected five highly significant QTLs
and four QTLs with lower statistical support Chromosome 2 that
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were associated with Zika virus infection status in Ae. aegypti
(100). Three of our DEGs, AAEL022994-RA, AAEL012507-RA,
and AAEL008841-RA, fell in the highly significant QTLs regions.
Additionally, three further DEGs, AAEL023696-RA,
AAEL027382-RA, and AAEL007573-RA, were located within
the less significant QTLs regions. These findings suggest that
Zika virus-associated QTLs might also be involved in the
response to DENV infection.

Study Caveats, Future Directions
and Conclusions
A greater number of differentially expressed genes may have
been identified as significant if sample sizes had been larger. For
example, if the same expression pattern held but we had 6 control
and treatment groups, the number of genes below P-value of 0.05
after Sidak correction would have been 121. The number of genes
greater than 95% power using false discovery rate 0.2 would have
been 1,480. Nevertheless, the 31 DEGs we have identified here
are those that demonstrated the most extensive response to
DENV infection.

Our data revealed key time-specific differences in gene
expression when compared to previous transcriptomic studies
of DENV-infected midguts (27, 48). Given differences in gene
expression between carcass and midgut samples after DENV
infection (27), our findings highlight the value of time- and
tissue-specific transcriptional studies to investigate viral infection
in mosquitoes. Further research in this area will likely be crucial
to improving understanding of the virus infection process. For
example, DENV-2 dissemination to the abdominal fat body was
detected in 35% of mosquitoes between 2 and 3 days post-
infection (9). The fat body-mediated antiviral response of
mosquitoes (101) and transcriptomes also changed after blood
feeding (102). On the other hand, expanding the sampling time
points for transcriptional response during the virus replication
process could be applied with dual RNA-seq and provide a
different view of pathogen- host interactions, moreover, the
impact from the endogenous viral elements (103). All in all,
our results provide a missing piece of mosquito’s early response
against DENV and could offer potential targets for developing
novel arbovirus control strategies.
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