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Schistosomiasis is a chronic neglected tropical disease saddling millions of people in the
world, mainly children living in poor rural areas. Praziquantel (PZQ) is currently the only
drug used for the treatment and control of this disease. However, the extensive use of this
drug has brought concern about the emergence of PZQ-resistance/tolerance by
Schistosoma mansoni. Studies of Schistosoma spp. genome, transcriptome, and
proteome are crucial to better understand this situation. In this in vitro study, we
compare the proteomes of a S. mansoni variant strain stably resistant to PZQ and
isogenic to its fully susceptible parental counterpart, identifying proteins from male and
female adult parasites of PZQ-resistant and PZQ-susceptible strains, exposed and not
exposed to PZQ. A total of 60 Schistosoma spp. proteins were identified, some of which
present or absent in either strain, which may putatively be involved in the PZQ-resistance
phenomenon. These proteins were present in adult parasites not exposed to PZQ, but
some of them disappeared when these adult parasites were exposed to the drug.
Understanding the development of PZQ-resistance in S. mansoni is crucial to prolong
the efficacy of the current drug and develop markers for monitoring the potential
emergence of drug resistance.

Keywords: praziquantel resistance, Schistosoma mansoni, proteomics, 2D-electrophoresis, mass spectrometry,
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INTRODUCTION

Schistosomiasis is one important intravascular parasitic infection,
being endemic in 76 countries with more than 97% of infected
people living in Africa and parts of South America. This disease
infects an estimative of 290 million people worldwide, especially
children, living in poor rural areas of low and middle-income
countries (1–4). Schistosoma mansoni and S. haematobium are the
two major endemic parasite species causing Schistosomiasis. S.
mansoni cercariae (shredded by snail hosts) penetrate the human
skin and migrate into the vascular system, where mature male
and female worms mate and produce ≈ 300 eggs per day (5).
S. mansoni eggs provoke inflammatory responses and liver
damages, which can lead to liver cirrhosis and portal
hypertension, as well as an inability to perform a daily activity,
headache, fever, syncope, nausea, elevated liver enzymes, malaise,
fatigue and nocturnal sweats (4, 5).

Despite many efforts to control the transmission of this
disease (6–8), essential ly after the introduction of
chemotherapeutic treatment in the 1980s, schistosomiasis is
still highly prevalent (9). Its control is based on chemotherapy
treatment using Praziquantel (PZQ) (10–16), which is effective,
inexpensive, and easy to use (10, 16). However, frequent
schistosome reinfection occurs, PZQ has minor activity against
juvenile parasite forms but has a strong impact on adult worms
(10, 17, 18). Because of its high prevalence, schistosomiasis has
earned a Category II disease, ranking next to malaria, for
importance as a target tropical disease by the World Health
Organization special program for research and training in
tropical diseases (1–3). Although the impact of schistosomiasis
could be dramatically reduced by improvement in education and
population awareness, basic sanitation conditions, as well as
elimination of the intermediate host snails, such methods are
not sufficient to control or eradicate this parasitosis. In the
absence of vaccines (4), the control of this disease relies on
chemotherapy to ease symptoms and reduce transmission. It is
possible to induce resistance of S. mansoni and S. japonicum to
PZQ in mice under laboratorial conditions, and reduced
susceptibility to PZQ in the field isolates of S. mansoni has
been found in many foci. Also, there are several schistosomiasis
cases caused by S. haematobium infections in which repeated
standard treatment fails to clear the infection (10, 19, 20).
Understanding the development of PZQ-resistance in S.
mansoni is crucial to prolong the efficacy of the current drug
and develop markers for monitoring drug resistance (19, 20).

The identification of proteins is important for understanding
how schistosomes regulate host immune systems to establish
chronic infections and also elucidate other aspects of
parasite–host interaction (21). Furthermore, a comprehensive
deciphering of the schistosome genome, transcriptome, and
proteome has become increasingly central for understanding
the complex parasite–host interplay (12, 22–24). Therefore, such
information can be expected to facilitate the discovery of
vaccines and new therapeutic drug targets, as well as new
diagnostic reagents for schistosomiasis control (21–23), and
may aid the development of protein probes for selective and
sensitive diagnosis of schistosomiasis (25). Proteomics
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approaches encompass the most efficient and powerful set of
tools for the identification of protein complexes (26–28) and
have been widely used to decipher the proteome of parasites such
as nematodes (29) and trematodes (30–33). For Schistosoma spp.,
the proteome has been studied in many developmental life stages
(34), including lung-schistosomula (35, 36), cercariae (36–38),
egg (36, 39) and, adult worms (24, 25, 36, 40–42).

Two-dimensional electrophoresis (2-DE) is a technique for
the separation and identification of proteins, based on pI values
(isoelectric focusing, IEF) in one dimension and molecular mass
by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel
electrophoresis) in the other (43). Liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) is one
of the most commonly used methods to identify and characterize
peptides and proteins in complex samples (44). To our
knowledge, the S. mansoni PZQ-resistant strain proteome has
not been yet reported thus an examination of global changes in
gene expression following drug treatment or between isolates
showing differential drug susceptibility may provide an entrée
into the identification of genes underlying drug action
or resistance.

Based on the need to identify the genes that underly drug
action or resistance, this work aimed to compare the proteomes
of a S. mansoni variant strain stably resistant to PZQ and
isogenic to its fully susceptible parental counterpart, identifying
proteins from male and female adult parasites of PZQ-resistant
and PZQ-susceptible strains, exposed and not exposed to PZQ.
This information represents substantial progress towards
deciphering the adult parasite proteome. Furthermore, these
data may constitute an informative source for further
investigations into PZQ-resistance and increase the possibility
of identifying proteins related to this condition, possibly
contributing to avoid or decrease the likelihood of
development and spread of PZQ-resistance. Improving the
understanding of PZQ-resistant and PZQ-susceptible proteome
would increase the possibilities of clarification of PZQ mode of
action and resistant phenotype.
MATERIAL AND METHODS

Chemical and Reagents
Acetic acid, acetonitrile (ACN), ammonium bicarbonate
(NH4HCO3), bovine serum albumin (BSA), chloroform,
dithiothreitol (DDT), fetal bovine serum (FBS), formic acid
(FA), glycerol, iodoacetamide (IAA), isopropyl alcohol, L-
glutamine, penicill in–streptomycin solution, phenol,
polyacrylamide gel, Praziquantel (C19H24N2O2), RPMI-1640
medium, sodium dodecyl sulfate (SDS), thiourea, triton X-100,
tris(hydroxymethyl)aminomethane hydrochloride (Tris–HCl),
urea, 1,2-diheptanoyl-sn-glycero-3-phosphatidylcholine (DHPC),
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES) were purchased from Sigma-Aldrich/Merck
(Darmstadt, Germany). Agarose and Trizol Invitrogen® reagent
were by Thermo Fisher Scientific® (Waltham, Massachusetts,
July 2021 | Volume 2 | Article 664642
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USA). Complete mini protease inhibitor cocktail tablets were
obtained from Roche Diagnostics GmbH® (Mannheim,
Germany). Bromophenol blue, Coomassie brilliant blue R-350,
IPG buffer, and immobiline dry strip IPG (13 cm; pH 3−10
nonlinear gradient) were obtained from GE Healthcare®

(Chicago, IL). Methanol and trifluoracetic acid (TFA) were by
Panreac Quıḿica S.L.U. ® (Barcelona, Spain). Trypsin modified
sequencing grade and trypsin came from Promega Corporation®

(Madison, WI). Water was previously distilled and further
deionized using a Milli-Q system Millipore (Millipore, Bedford,
MA). All solutions were prepared on the day of the experiments.

Ethical Statement
The research study was reviewed and approved by the Ethics
Committee and Animal, Faculty of Veterinary Medicine, UTL
(Ref. 0421/2013). Animals were maintained and handled
following the National and European Legislation (DL 276/2001
and DL 314/2003; 2010/63/EU adopted on September 22, 2010),
concerning the protection and animal welfare, and all procedures
were performed according to the National and European
Legislation. Anesthetics and other techniques were used to
reduce the pain and adverse effect on animals.

Parasite Samples
A resistant strain (RS) of S. mansoni that tolerates up to 1,200 mg
PZQ/kg of mouse body weight (this dose compares to a dose of a
single-dose treatment regime of 80 mg/kg in humans) was
developed recently (45). As previously described in this strain
the female and male parasites phenotypically presented different
reactions to PZQ both in vivo and in vitro (males being more
resistant than female parasites). This S. mansoni variant strain
was selected from a fully susceptible parasite strain, by stepwise
drug pressure, and is isogenic, except for the genetic
determinants of PZQ-resistance phenotypes, and significantly
different from the counterpart S. mansoni susceptible strain. As
such, this S. mansoni PZQ-resistant strain represents a distinct
and valuable model for the study of PZQ-resistance.

Thus, two different parasite isolates were used in this study:
S. mansoni BH PZQ-susceptible strain (SS) from Belo Horizonte
(BH), Minas Gerais state, Brazil, and a stable PZQ-resistant
strain (RS) (IHMT/UNL) obtained from the same BH strain, as
described by Pinto-Almeida et al. (45). These two parasite strains
are routinely kept in their intermediate host Biomphalaria
glabrata snails at the IHMT/UNL (Instituto de Higiene e
Medicina Tropical, IHMT; Universidade Nova de Lisboa, UNL,
Lisboa, Portugal).Mus musculus CD1 line male mice was chosen
as the animal model for S. mansoni infection because it is a good
host for this parasite mimicking the S. mansoni human infection
(46). Mice infection occurred by natural transdermal penetration
of cercariae, by exposing mice tails to about 100 cercariae of S.
mansoni each.

Eight- to ten-week old adult parasites were recovered by
perfusion of the hepatic portal system and mesenteric veins,
according to Lewis (47), and washed twice in RPMI-1640, to
remove contaminating hair and blood clots. Males and females of
S. mansoni (resistant strain—RS and susceptible strain—SS to
Frontiers in Tropical Diseases | www.frontiersin.org 3
PZQ) were analyzed separately. Regarding the groups of adult
parasites exposed to PZQ (EPZQ), after collecting, the parasites
were transferred to 24-well culture plates containing RPMI-1640
culture medium, 0.2 mol/L L-glutamine, 0.01 mol/L HEPES,
0.024 mol/L NaHCO3, 10,000 units penicillin, and 10 mg
streptomycin/ml, pH 7 and supplemented with 15% FBS. Five
adult parasites were added on each well for each studied group
for PZQ treatment: 1) PZQ-susceptible male (SM); 2) PZQ-
susceptible female (SF); 3) PZQ-resistant male (RM), and
4) PZQ-resistant female (RF). Adult parasites were treated in
culture, with 3.0 × 10−5 mol/L of PZQ during 24 h (this dose was
chosen and used because it was optimized in our previous
published work (45), it allowed us to differentiate between
susceptible and resistant parasites in culture, it has an effect on
the parasites but that it does not kill them) and, then washed
twice with saline solution to clean any traces of culture medium
and stored in Trizol at −80°C, for protein extraction later.

For the groups of adult parasites not exposed to PZQ
(NEPZQ), adult parasites were kept in RPMI-1640 medium
with no addition of drug during 24 h and then washed twice
with saline solution to clean any traces of culture medium and,
also stored in Trizol at −80°C, for post protein extraction. There
are three experimental variables; (1) exposure (E) to Praziquantel
(PZQ) or non-exposure (NE), (2) the strain of S. mansoni,
susceptible (S) or resistant (R), and (3) the sex of the parasite
(M/F). Accordingly, the experimental set up consisted of eight
sample groups, four for parasites not exposed to PZQ (RM-
NEPZQ, RF-NEPZQ, SM-NEPZQ, and SF-NEPZQ), and four
for parasites exposed to PZQ (RM-EPZQ, RF-EPZQ, SM-EPZQ,
and SF-EPZQ), all experimental groups were done in technical
triplicate (2-DE gels were run three times on a single drug treated
sample). After the treatment period, the proteins were
immediately extracted, all worms were alive prior the protein
extraction. In each experimental group proteins were extracted
in bulk. The effect of male and female separation on parasite
development was not tested in vitro in this work.
Preparation of Protein Extracts
S. mansoni adult parasite protein extracts were obtained using
Trizol protocol, according to the manufacturer’s instructions
(48). Briefly, the parasites were lysed and homogenized directly
in Trizol reagent at room temperature (≈25°C). The
homogenized samples were incubated at room temperature to
permit complete dissociation of the nucleoprotein complex.
After homogenization, we proceeded to the separation phase,
adding chloroform and centrifugation of samples. The aqueous
phase was removed and the interphase and organic phenol–
chloroform phase was used for the protein isolation procedure.
Next, isopropyl alcohol precipitation was performed and the
pellet was solubilized in SBI buffer (7 mol/L urea, 2 mol/L
thiourea, 0.015 mol/L DHPC, 0.5% Triton X-100, 0.02 mol/L
DTT, and complete mini protease inhibitor cocktail tablets),
according to Babu et al. (49) and stored at −80°C until use.
Protein concentration in protein extracts was measured by
Bradford assay (50), and the quality of the extract was verified
in 12% uniform SDS-PAGE gels (42).
July 2021 | Volume 2 | Article 664642
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Two-Dimensional Electrophoresis
Two-dimensional electrophoresis (2-DE) gels was performed in
triplicate with 240 mg of protein extracts, for each eight sample
group (four not exposed and four parasites exposed to PZQ). To
prepare samples for 2-DE, protein samples were diluted in
rehydration solution containing 7 mol/L urea, 2 mol/L
thiourea, 4% CHAPS, 0.5% IPG buffer, 1% DTT, and 0.002%
bromophenol blue. The rehydration was carried out passively
overnight for 12 h in a 13 cm pH 3–10 strip. The strips were then
applied on an Ettan IPGphor 3 System (GE Healthcare,
Piscataway, NJ, USA), for protein separation by isoelectric
focusing (IEF), using the following conditions developed for
this work: at a constant current 50 mA/strip, the voltage program
started with a gradient up to 3.5 kV in 3 h, then a step of 3 h at
3.5 kV, then a total voltage of 64.0 kVh to the end.

After focusing, the strips containing proteins were reduced in
an equilibration solution (50 mol/L Tris–HCl, pH 8.8, 6 mol/L
urea, 20% glycerol, 2% SDS) containing 2% DTT, and then
alkylated in the same solution containing 2.5% IAA. The
Immobilized pH gradient (IPG) strips and molecular weight
standards were then transferred to the top of 12% uniform SDS-
PAGE gels, and sealed with 0.5% agarose. The second dimension
was carried out using a Protein Plus Dodeca cell system (Bio-Rad
Laboratories, Inc., Hercules, CA) under an initial current of 15
mA/gel for 15 min, followed by increasing the current to 50 mA/
gel until the end of the run.

For 2-DE experiments, three biological sample replicas were
done for the two-dimensional polyacrylamide gel electrophoresis
for each group, thus making our experimental procedure more
reproducible. Gels were fixed in 40% methanol/10% acetic acid
solution and stained with coomassie brilliant blue R-350. The
spots were visually normalized and evaluated using the
ImageMaster® 2D Platinum 7.0 software (GE Healthcare Bio-
Sciences, Uppsala, Sweden), according to the number of spots
matching, and the results were exported and evaluated in
SIMCA-P software (Umetrics, Umeå, Sweden) as previously
described. Here, we built PCA models, from which it was
possible to obtain statistically valid spots between groups using
t-test and Jackknife. This was done in a way that the software
would inform us on the proteins spots of interest (51).

In-Gel Digestion and Peptide Preparation
for Mass Spectrometry Analysis
We selected spots that were consistently found in all replicates
for each condition, and were large enough to excise and retain
sufficient material for downstream processing. The protein spots
selected for each group were manually excised, destained,
reduced, alkylated, and digested in-gel with trypsin from the
corresponding 2-DE gel for mass spectrometry (MS)
identification. First, spots were washed in ultrapure water and
then destained in a solution containing 50% methanol/2.5%
acetic acid, for 2 h at room temperature. This step was
repeated until clear of blue stain. The gel fragments were
incubated in 100% ACN with occasional vortexing until gel
pieces became white and shrank. Then, the solution was
removed and spots were completely dried and ready for
Frontiers in Tropical Diseases | www.frontiersin.org 4
digestion. The in-gel digestion with trypsin modified
sequencing grade reagents was done according to Shevchenko
et al. (52). Briefly, protein digestion was conducted at 37°C
overnight. After the incubation, the supernatant was transferred
to a clean tube, and 30 ml of 5% FA/60% ACN solution was added
to gel spots for the extraction of tryptic peptides. This procedure
was performed two times for 30 min, under constant agitation.
The supernatant was pooled to the respective tube containing the
initial peptide solution. This solution was dried in a Speedvac
concentrator Thermo Fisher Scientific (Waltham, MA) and the
peptides were re-suspended in 8 ml of 0.1% FA solution. The
peptides were desalted in reverse phase micro-columns ZipTip®

C18 (Millipore Corporation, Billerica, MA), according to the
manufacturer’s instructions (53). Peptides were dried again and
resuspended in 50% ACN/0.1% TFA solution.

Nanoflow LC-MS/MS Analysis
and Protein Identification
The digested peptides (50 µg) were analyzed in an Easy-nLC II
nanoflow liquid chromatography system (nano-LC-MS/MS)
(Thermo Fisher Scientific, Waltham, MA) in tandem with an
LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific), which was equipped with a nanoelectrospray Nano-
Flex II (Thermo Fisher Scientific) operating in a positive ion
mode (24). Nanoelectrospray voltage was set to 4.5 kV and
source temperature at 220°C. The precursor ion was isolated
using the data-dependent acquisition mode with a 2 m/z
isolation width and sequentially the ten most intense ions were
selected for fragmentation event by collision-induced
dissociation (CID), at 35% normalized collision energy and 10
ms activation time. Maximum ion injection times were set to 100
ms for MS and 500 ms for MS/MS, with a resolution of 60,000
and a scan withinm/z range from 400 to 2,000. Chromatographic
separation was carried out a Thermo C18 capillary column
(10 cm × 75 µm, 3 µm, 120 Å) protected by a guard Thermo
C18 capillary column (2 cm × 100 µm i.d., 5 µm particle, 120 Å
pore size). Ultrapure water containing 0.1% FA (solvent A) and
ACN containing 0.1% FA (solvent B) was used as mobile phase.
The separation was performed at room temperature with a
constant flow rate of 0.3 µl/min, with a total acquisition time
of 90 min, by employing the elution program as follows: linear
gradient of 5% of solvent B during 5 min, ranging to 80% of
solvent B over 85 min. Data acquisition was controlled by
Xcalibur® 2.0.7 Software (Thermo Fisher Scientific) and
converted in mgf files using MassMatrix® MS Data file
conversion version 3.9 software.

Bioinformatics
The list of peptide and fragment mass values generated by the mass
spectrometer for each spot were submitted to an MS/MS ion search
using the Mascot® 2.0 software online search engine (Matrix Science
Inc, Boston, MA, USA) to search the Nanoflow LC-MS/MS data
against the NCBInr database Schistosoma_mansoni_NCBI_112014,
November 2014. Mascot® software (used at the Mass Spectrometry
Laboratory at Brazilian Biosciences National Laboratory, CNPEM,
Campinas, Brazil) and also against WormBase ParaSite, was set with
July 2021 | Volume 2 | Article 664642
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two tryptic missed cleavages, a peptide ion mass tolerance of 10 ppm,
a fragment ion mass tolerance of 0.02 Da, a peptide charge state of
2+ and 3+, variable modifications of methionine (oxidation), and
fixed modifications of cysteine (carbamidomethylation).

During the analysis, our samples were checked against a
contaminant database supplied by the Global Proteome Machine
[GPM-web-based, an open-source user interface for analyzing and
displaying protein identification data by Craig and Beavis (54)]. All
validated proteins had at least two independent spectra, with greater
than 95.0% probability estimated by the Peptide Prophet algorithm
of being present in the S. mansoni database as at least one unique
peptide. To avoid random matches, only ions with an individual
score above the indicated by the Mascot® to identity or extensive
homology (p <0.05) were considered for protein identification.
However, when the Mascot® score was not significant, but the
percentage coverage and root mean squared error (RMSE) were in
the same range as those of proteins with a significant match,
proteins were deemed identified if additional parameters, such as
its calculated pI andMw, were in agreement with those observed for
the actual gel spot and the species matched was S. mansoni.

The molecular function and biological process were assigned
for the proteins identified according to information obtained
from the Gene Ontology® (GO) database (55). The exact
annotation for each protein was used in most cases. However,
the catalytic activity category was used for all proteins with
molecular functions associated with (GTPase, hydrolase,
isomerase, kinase, ligase, lyase, oxidoreductase, transcription,
and transferase activities). Binding category was used for all
types of ligand identified (actin, ATP, calcium, GTP, magnesium
ion, metal ion, protein domain-specific, and nucleotide
bindings). Furthermore, there were other molecular function
categories classified such as chaperone, motor, regulation of
muscle contraction, structural, and transport. The proteins that
had no associated known function were classified as “unknown”.

The list of proteins that were identified in all the experiments
was analysed using the webserver g:Profiler, to perform
functional enrichment analysis . Briefly, the g:GOSt
functionality was used, considering a g:SCS threshold <0.05 for
statistical significance (56).
RESULTS

2-DE Separation of Proteins From
S. mansoni PZQ-Resistant and
PZQ-Susceptible Adult Parasites
Eight protein extracts were analyzed: four from parasites not
exposed to PZQ (NEPZQ) [resistant males and females (assigned
as RM-NEPZQ and RF-NEPZQ, respectively), and susceptible
males and females (assigned as SM-NEPZQ and SF-NEPZQ,
respectively)] and another four samples from parasites exposed
to PZQ (EPZQ) [resistant males and females (assigned as RM-
EPZQ and RF-EPZQ, respectively), and susceptible males and
females (assigned as SM-EPZQ and SF-EPZQ, respectively)]. All
protein extracts presented high purity and good quality for
posterior 2-DE (Figure 1) and nano-LC-MS/MS analysis. The
Frontiers in Tropical Diseases | www.frontiersin.org 5
quality/purity of the protein extract was assessed as previously
described by Rayna et al. (57), the quality/purity of the extract
was verified in 12% uniform SDS-PAGE gels.

Analytical 2-DE gels were produced, to reproducibly resolve
protein spots in a broad pH range and molecular weight, and to
compare the protein pattern of S. mansoni proteome from the
two strains (PZQ-resistant and PZQ-susceptible) not exposed
(Figure 2) and exposed to PZQ (Figure 3). See Figures 2, 3, and
Supplementary Data.

Two-DE maps constructed with coomassie blue-stained gels
showed reasonably comparable numbers of spots in all the
samples. In total 133 ± 14, 265 ± 20, 142 ± 8, and 188 ± 34
spots were detected in proteins from RM-NEPZQ, RF-NEPZQ,
SM-NEPZQ, and SF-NEPZQ, respectively (Table 1). For
parasites exposed to PZQ, 203 ± 14, 133 ± 9, 220 ± 34, and
99 ± 19 spots were detected in RM-EPZQ, RF-EPZQ, SM-EPZQ,
and SF-EPZQ, respectively (Table 1). Table 1 includes the data
from the replicates. The spots that were validated were the same
in each replicate. The only protein spots whose analysis was
continued, were those where a protein spot is consistently
expressed in the three replicates, if the protein spot is only
expressed in one or two replicas then this spot is excluded from
the subsequent analysis.

Nanoflow LC-MS/MS Analysis and
Protein Identification
Gels were compared between replica and the only spots that were
chosen to be excised were the ones that were more intense and
that were present in all three replicas. The spots were excised
from preparative gels for each sample, digested by trypsin, and
identified by nanoflow LC-MS/MS. For RM-NEPZQ, 64 spots
were successfully analyzed by nano-LC-MS/MS, as well as 69
from RF-NEPZQ, 67 from SM-NEPZQ, 68 from SF-NEPZQ, 68
from RM-EPZQ, 69 from RF-EPZQ, 67 from SM-EPZQ, and 66
spots from SF-EPZQ (Supplementary Material Tables 1–3).
The nano-LC-MS/MS results were employed to search the
database (NCBInr) by the Mascot® search engine, and the
matched proteins are listed in Supplementary Tables 1, 2.
Some proteins were identified in only one individual spot, but
on several occasions, more than one spot in a gel corresponded to
the same protein, or better, same protein species (Figures 2, 3,
and Supplementary Material Tables 1–3).

Sixty individual protein species were identified on samples
from parasites not exposed to PZQ, of which 45 were present in
RM-NEPZQ, 52 in RF-NEPZQ, 45 in SM-NEPZQ, and 47
proteins in SF-NEPZQ (Supplementary Material). In this
group of NEPZQ parasites, 35 proteins were common to all
four protein extracts, eight occurred only in resistant adult
parasites, eight only in susceptible adult parasites, four in
female parasites, and three were only present in resistant
females (Figure 4). Interestingly, two proteins that have shown
to be common in RM-NEPZQ, RF-NEPZQ, and SM-NEPZQ
preparations, namely serine/threonine phosphatase and
troponin I, did not appear in SF-NEPZQ (Table 2).

The total number of proteins identified was reduced to 55
proteins on the protein extracts from parasites exposed to PZQ.
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Forty-eight of those proteins were present in RM-EPZQ, 52 in
RF-EPZQ, 45 in SM-EPZQ, and 46 in SF-EPZQ (Supplementary
Material Tables 1–3). Forty-two proteins appeared to be
common to all the four protein extracts of EPZQ parasites.
Besides, four proteins were present only in resistant strain, one in
susceptible strain, three were exclusive of female parasites, two
proteins were present only in male parasites, and three were only
in resistant females (Figure 4). Five proteins that were present on
parasites not exposed to PZQ, namely, collagen alpha chain,
dopamine transporter, twister (putative), ubiquitin-specific
peptidase 30 (C19 family), and Smp_162220, did not appear
here (Table 2).

Molecular Function of Identified Proteins
The proteins identified by nano-LC-MS/MS, summarized
in Supplementary Tables 1, 2, were generally categorized by
their molecular function, according to information obtained
from the GO database (Table 3), we consider that this general
classification in large groups of protein functions is fundamental
as a basis for future proteomics and transcriptomic tests. When
proteins had another function annotation, they were shown in
brackets. The biological process and subcellular localization
assigned to each protein in that database are also included in
Table 3. The results allowed the identification of proteins
categorized as binding, catalytic, transport, regulation of
Frontiers in Tropical Diseases | www.frontiersin.org 6
muscle contraction, chaperone, motor, structural activities, and
proteins of unknown functions. Among the molecules identified
as binding proteins, most of them were ATP, nucleotide, protein,
and ion binding proteins. The proteins categorized correspond to
a variety of biological processes, nevertheless, most of them were
glycolytic enzymes and proteins related to the metabolic process.

Regarding the subcellular localization, the proteins identified
were classified, as cytoskeletal, cytosolic, nuclear, membrane
proteins, and some of them were located on extracellular
matrix. Among them, those most abundantly identified were
cytosolic proteins. There were fifteen and seven proteins whose
biological process and subcellular localization, respectively, were
not predicted (Table 3).

Functional Enrichment Analysis
In all experimental conditions, except in both exposed or not
exposed susceptible females, the GO Molecular Processes with
the highest p-values were related to muscle contraction
(GO:0006936, GO:0003012, GO:0003008), corresponding to
UniProt geneIDs P42637, P42638, G4VGQ7, G4LYF7.
However, in susceptible females, both exposed and unexposed,
the Molecular Processes with the highest p-values were unique
and related to ADP metabolic process and ATP generation from
ADP (GO:0046031, GO:0006757, GO:0009135, GO:0006096,
GO:0009179, GO:0009185, GO:0006165, GO:0046939,
FIGURE 1 | SDS-PAGE gel of the protein preparations in all eight conditions, improving the quality of the protein extracts studied. RM, resistant males; SM,
susceptible males; RF, resistant females; SF, susceptible females; Mr, Molecular marker reference.
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GO:0006090, and GO:0009132). These GO terms were
associated with gene IDs P53442, P20287, G4VJD5, and
G4VQ58 (Table 4) (Supplementary Tables 1, 3).
DISCUSSION

Nowadays the control of schistosomiasis is based on PZQ, which
is the only drug available for its treatment. TheWHO strategy for
schistosomiasis control focuses on reducing disease through
periodic, targeted treatment with PZQ through the large-scale
treatment of affected populations. It involves regular treatment of
all at-risk groups (6, 8, 12, 16). However, the existence of reports
of PZQ-resistance cases by S. mansoni (as well as by S.
haematobium) has become a serious problem that needs to be
solved. Some studies have suggested that resistance to
Schistosoma infection can be acquired naturally or induced by
the drug (20, 45, 58–60). For example, Sanchez et al. (20)
examined the effect of PZQ in strains of S. mansoni. The
authors noted a reduced miracidia susceptibility after exposure
Frontiers in Tropical Diseases | www.frontiersin.org 7
to 2 × 50 mg/Kg of PZQ. It has also been reported the
susceptibility of worms in vivo (mice infected with
schistosomes) after a lethal dose of 3 × 300 mg/kg of PZQ,
reducing in only 10% the worm number in infected rodents.
Besides experimental evidence, reports of treatment failure in
Senegal and Egypt with reduced susceptibility to PZQ were
obtained (61, 62) and, further in vitro experiments have
confirmed the development of PZQ-resistance (9, 10, 43, 61–64).

In the present study we identified 60 different proteins on
S. mansoni proteome, this corresponds to 0.42% of the full
S. mansoni proteome (https://www.uniprot.org/proteomes/
UP000008854). All those proteins were present in adult
parasites not exposed to PZQ, but some of them disappeared
when these adult parasites were exposed to the drug. This result
could indicate the involvement of PZQ exposure on those
protein expressions in resistant and susceptible strains. With
this, we are not unequivocally stating that these proteins are the
only ones or that they are at all responsible for the phenotype of
PZQ drug resistance but this work opens the door to new studies
using proteomics, transcriptomics, and metabolomics on the
FIGURE 2 | Comparative two-dimensional gel electrophoresis of protein samples from S. mansoni adult parasites not exposed to PZQ (baseline experiment), using
13 cm, pH 3-10NL strips and SDS-PAGE 12%, stained by coomassie brilliant blue: (A) SM-NEPZQ; (B) RM-NEPZQ; (C) SF-NEPZQ; (D) RF-NEPZQ. The identified
spots, which were analyzed and identified by Nanoflow LC-MS/MS. All the identified proteins are listed in Supplementary Material Tables 1–3.
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importance of these proteins in the phenotype and genotype of
resistance to PZQ.

Although previous studies of Schistosoma proteome had been
performed using protein extracts and Schistosoma species
different from ours, some proteins, such as 14-3-3 protein,
HSP-70, GAPDH, glutathione S-transferase 28 kDa, enolase,
fructose-bisphosphate aldolase, actin, triosephosphate
Frontiers in Tropical Diseases | www.frontiersin.org 8
isomerase, calponin, elongation factor 1-a, phosphoglycerate
kinase, phosphoglycerate mutase, myosin, and paramyosin
were commonly identified (36, 42, 65–70). In addition, some
proteins that have already been tested as vaccine candidates, as
glutathione S-transferase 28 kDa (71), triosephosphate isomerase
(71, 72), and paramyosin (71), were also identified in the present
study. Major egg antigen, troponin T, disulphide-isomerase ER-
FIGURE 3 | Comparative two-dimensional gel electrophoresis of protein samples from S. mansoni adult parasites exposed to PZQ using 13 cm, pH 3-10NL strips
and SDS-PAGE 12%, stained by coomassie brilliant blue. (A) SM-EPZQ; (B) RM-EPZQ; (C) SF-EPZQ; (D) RF-EPZQ. The identified spots, which were analyzed and
identified by Nanoflow LC-MS/MS. All the identified proteins are listed in Supplementary Material Tables 1–3.
TABLE 1 | Summary comparison of the number of protein spots in the 2-DE maps for the eight different proteome samples analyzed.

Not exposed to PZQ (NEPZQ) Exposed to PZQ (EPZQ)

RM RF SM SF RM RF SM SF

Replica 1 145 243 151 150 215 124 242 80
Replica 2 135 270 138 200 188 135 181 99
Replica 3 118 281 136 215 207 141 237 117
Mean ± SDa 133 ± 14 265 ± 20 142 ± 8 188 ± 34 203 ± 14 133 ± 9 220 ± 34 99 ± 19
July 2021
 | Volume 2 | Article
aSD, standard deviation.
The only protein spots whose analysis was continued, were those that where a protein spot is consistently expressed in the three replicates, if the protein spot is only expressed in one or
two replicas then this spot is excluded from the subsequent analysis.
In bold Mean ± SD.
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60, and actin, proteins that we also found, have already been
clustered as immunoreactive proteins in serum pools of infected
or non-infected individuals from endemic area (42).

Looking at the proteomes from both genders, in this survey,
four proteins were only present in females from both strains,
even under exposure to PZQ, namely, cytosol aminopeptidase,
inosine-5′-monophosphate dehydrogenase (IMPDH), ubiquitin
Frontiers in Tropical Diseases | www.frontiersin.org 9
protein ligase E3a, and collagen alpha chain. Cytosol/leucine
aminopeptidase catalyzes the hydrolysis of amino acid residues
from the N-terminus of proteins and peptides (73), and it has
already been assessed as a vaccine candidate against the infection
of Fasciola hepatica (74). This protein has previously been
identified in S. mansoni eggs (75). Regarding IMPDH, this
protein is responsible for the rate-limiting step in guanine
nucleotide biosynthesis (76), and it has previously been
identified in the Schistosoma genome and transcriptome (77).
E3 ligase enzyme catalyzes protein ubiquitination, which
regulates various biological processes through covalent
modification of proteins and transcription factors, and
ubiquitin is the most important protein of this process (78,
79). Ubiquitination is of interest in S. mansoni because this
process could be a potential target for the design of new drugs
(80), being ubiquitin protein ligase E3a a good target to be
studied. Concerning collagen alpha chain, Yang et al. (81)
described that silencing the expression of a type of collagen
(type V collagen) significantly affects the spawning and egg
hatching of S. japonicum, and it also affects the morphology of
the adult parasites (81). Therefore, it would be very interesting to
evaluate the role of each of these proteins in PZQ-resistance,
especially, collagen alpha chain, since it seems to produce
morphological alterations in eggs and adult parasites of S.
mansoni PZQ-resistant strain (10, 11). Moreover, females of
this species, the only gender in which those proteins were found
in this work, are more tolerant to PZQ treatment than
males (45).
FIGURE 4 | Number of shared proteins identified from parasites not exposed
and exposed to Praziquantel.
TABLE 2 | Summary comparison of the specific proteins identified from parasites not exposed (NEPZQ) and exposed (EPZQ) to Praziquantel.

Proteins Not exposed to PZQ Exposed to PZQ

SM RM SF RF SM RM SF RF

ATP-dependent transporter Yes – Yes – Yes Yes Yes Yes
Beta1,3-galactosyltransferase – – – Yes – – – Yes
Cathepsin L – – – Yes – – – Yes
Collagen alpha chain – – Yes Yes – – – –

Cytosol aminopeptidase – – Yes Yes – – Yes Yes
Dopamine transporter – Yes – Yes – – – –

Galactokinase – Yes – Yes – Yes – Yes
Inosine-5’-monophosphate dehydrogenase – – Yes Yes – – Yes Yes
Lysine tRNA ligase Yes – Yes – Yes Yes Yes Yes
Ornithine aminotransferase – Yes – Yes – Yes – Yes
Phosphopyruvate hydratase Yes – Yes – Yes – Yes –

Protein kinase Yes – Yes – Yes Yes Yes Yes
Rab6-interacting protein 2 (ERC protein 1) – Yes – Yes – Yes – Yes
Receptor for activated Protein Kinase C (PKC) – – – Yes – – – Yes
RNA m5u methyltransferase Yes – Yes – Yes Yes Yes Yes
Serine/threonine phosphatase Yes Yes – Yes Yes Yes – –

Suppressor of actin (Sac) Yes – Yes – Yes Yes Yes Yes
Transducin beta-like - Yes – Yes – Yes – Yes
Troponin I Yes Yes – Yes Yes Yes – –

Twister (putative) – Yes – Yes – – – –

Ubiquitin protein ligase E3a – – Yes Yes – – Yes Yes
Ubiquitin-specific peptidase 30 (C19 family) – Yes – Yes – – – –

Uncharacterized protein, Smp_018790 (91.6% identity with PP2C-like domain-containing protein - S. haematobium) Yes – Yes – Yes Yes Yes Yes
Uncharacterized protein, Smp_161260 (63.4% identity with SJCHGC05745 protein—S. japonicum) Yes – Yes – Yes Yes Yes Yes
Uncharacterized protein, Smp_162220 (88% identity with SJCHGC07938 protein—S. japonicum) – Yes – Yes – – – –
July 2021 | Vol
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SM, susceptible male; RM, resistant male; SF, susceptible female; RF, resistant female; Yes, protein expressed; –, protein not expressed.
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TABLE 3 | Proteins identified by MS/MS and categorized by their molecular function according to information obtained from GO database.

Term name Accession n° Protein Exposed to PZQ Not Exposed to PZQ

1 Actin cytoskeleton P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

2 Actin filament P42637 Tropomyosin-1 Yes Yes
3 ADP metabolic process P53442 Fructose bisphosphate aldolase Yes Yes

P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

4 ATP generation from ADP P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

5 Biosynthesis of amino acids P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase No Yes

6 Carbohydrate catabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

7 Carbon metabolism P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VBJ0 Malate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase No Yes

8 Carboxylic acid metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4M0E0 Lysine tRNA ligase Yes Yes
G4VBJ0 Malate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

9 Contractile fiber P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

10 Cytoskeleton P53470 Actin-1 Yes Yes
Q26595 Alpha tubulin Yes Yes
P14202 Tegument antigen (Antigen SmA22.6) Yes Yes
P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes
C4QIC0 Tubulin beta chain Yes Yes

11 Generation of precursor metabolites and energy P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VBJ0 Malate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

12 Glycolysis / Gluconeogenesis G4LWI3 Aldehyde dehydrogenase Yes Yes
P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase No Yes

13 Glycolytic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

14 Monocarboxylic acid metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

15 Muscle contraction P42637 Tropomyosin-1 Yes Yes

(Continued)
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TABLE 3 | Continued

Term name Accession n° Protein Exposed to PZQ Not Exposed to PZQ

P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

16 Muscle system process P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

17 Muscle thin filament tropomyosin P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes

18 Myofibril P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

19 Myofilament P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

20 Nucleoside diphosphate metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

21 Nucleoside diphosphate phosphorylation P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

22 Nucleotide phosphorylation P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

23 Organic acid metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4M0E0 Lysine tRNA ligase Yes Yes
G4VBJ0 Malate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

24 Oxoacid metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4M0E0 Lysine tRNA ligase Yes Yes
G4VBJ0 Malate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

25 Polymeric cytoskeletal fiber Q26595 Alpha tubulin Yes Yes
P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
C4QIC0 Tubulin beta chain Yes Yes

26 Purine nucleoside diphosphate metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

27 Purine ribonucleoside diphosphate metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

28 Purine ribonucleotide metabolic process P53442 Fructose bisphosphate aldolase No Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase No Yes
G4V9I5 Inosine-5’-monophosphate dehydrogenase No Yes
G4VJD5 Phosphoglycerate mutase No Yes
G4VQ58 Phosphopyruvate hydratase No Yes

29 Purine-containing compound metabolic process P53442 Fructose bisphosphate aldolase No Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase No Yes
G4V9I5 Inosine-5’-monophosphate dehydrogenase No Yes
G4VJD5 Phosphoglycerate mutase No Yes
G4VQ58 Phosphopyruvate hydratase No Yes

(Continued)
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Another large difference between the proteome of both
genders was the expression of troponin I and serine/threonine-
protein phosphatase. These proteins were present in males
independently of drug exposure, but in females, they were only
present in resistant females not exposed to PZQ. Troponin I
belongs to the troponin complex that mediates Ca2+ regulation
that governs the actin-activated myosin motor function in
striated muscle contraction (82). On the other side, protein
kinases and phosphatases, as is the case of serine/threonine-
Frontiers in Tropical Diseases | www.frontiersin.org 12
protein phosphatase, are essential for the normal functioning of
signaling pathways since it is well known that reversible
phosphorylation of proteins is a ubiquitous mechanism crucial
for the regulation of most cellular functions (83). In S. mansoni,
a phosphatase 2B (calcineurin) has been described as a
heterodimer with a catalytic subunit and a regulatory subunit,
which bind to Ca2+ increased the phosphatase activity (84). Thus,
protein phosphatases represent crucial molecules for the parasite
and hence potential chemotherapeutic targets (85).
TABLE 3 | Continued

Term name Accession n° Protein Exposed to PZQ Not Exposed to PZQ

30 Pyruvate metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

31 Ribonucleoside diphosphate metabolic process P53442 Fructose bisphosphate aldolase Yes Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes
G4VJD5 Phosphoglycerate mutase Yes Yes
G4VQ58 Phosphopyruvate hydratase Yes Yes

32 Ribonucleotide metabolic process P53442 Fructose bisphosphate aldolase No Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase No Yes
G4V9I5 Inosine-5’-monophosphate dehydrogenase No Yes
G4VJD5 Phosphoglycerate mutase No Yes
G4VQ58 Phosphopyruvate hydratase No Yes

33 Ribose phosphate metabolic process P53442 Fructose bisphosphate aldolase No Yes
P20287 Glyceraldehyde-3-phosphate dehydrogenase No Yes
G4V9I5 Inosine-5’-monophosphate dehydrogenase No Yes
G4VJD5 Phosphoglycerate mutase No Yes
G4VQ58 Phosphopyruvate hydratase No Yes

34 Sarcomere P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

35 Striated muscle thin filament P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

36 Structural constituent of muscle P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes

37 Supramolecular complex Q26595 Alpha tubulin Yes Yes
P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes
C4QIC0 Tubulin beta chain Yes Yes

38 Supramolecular fiber Q26595 Alpha tubulin Yes Yes
P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes
C4QIC0 Tubulin beta chain Yes Yes

39 Supramolecular polymer Q26595 Alpha tubulin Yes Yes
P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes
C4QIC0 Tubulin beta chain Yes Yes

40 System process P42637 Tropomyosin-1 Yes Yes
P42638 Tropomyosin-2 Yes Yes
G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes

41 Troponin complex G4VGQ7 Troponin I Yes Yes
G4LYF7 Troponin T Yes Yes
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Regarding resistant strain parasites, it is notable the finding of
eight proteins exclusively present in those S. mansoni adult
parasites. From those eight proteins, dopamine transporter,
twister (putative), ubiquitin-specific peptidase 30 (C19 family),
Frontiers in Tropical Diseases | www.frontiersin.org 13
and uncharacterized protein smp_162220 were not detected in
the proportion of the proteome we analysed in S. mansoni PZQ-
exposed adult parasites. However, galactokinase, ornithine
aminotransferase, Rab6-interacting protein 2 (ERC protein 1),
TABLE 4 | Summary comparison of the specific proteins identified from parasites not exposed (NEPZQ) and exposed (EPZQ) to Praziquantel on gene ontology analyses.

Exposed Non Exposed

term_name term_id Resistant
Females

Resistant
Males

Susceptible
Females

Susceptible
Males

Resistant
Females

Resistant
Males

Susceptible
Females

Susceptible
Males

p_value p_value p_value p_value p_value p_value p_value p_value

Structural constituent of muscle GO:0008307 0.049870 0.049910 0.049916 0.033353 0.04991
muscle system process GO:0003012 0.003688 0.000010 0.002188 0.000010 0.000017 0.000010 0.00218 0.00001
muscle contraction GO:0006936 0.003688 0.000010 0.002188 0.000010 0.000017 0.000010 0.00218 0.00001
glycolytic process GO:0006096 0.018497 0.010990 0.000121 0.000106 0.014460 0.009647 0.00012 0.00010
ATP generation from ADP GO:0006757 0.018497 0.010990 0.000121 0.000106 0.014460 0.009647 0.00012 0.00010
purine ribonucleoside
diphosphate metabolic process

GO:0009179 0.018497 0.010990 0.000121 0.00106 0.014460 0.009647 0.00012 0.00010

purine ribonucleotide metabolic
process

GO:0009150 0.004901

ribonucleotide metabolic process GO:0009259 0.008112
purine-containing compound
metabolic process

GO:0072521 0.010564

ribose phosphate metabolic
process

GO:0019693 0.008674 0.014460 0.009647 0.00012 0.00010

purine nucleoside diphosphate
metabolic process

GO:0009135 0.018497 0.010990 0.000121 0.000106 0.014460 0.009647 0.00012 0.00010

ribonucleoside diphosphate
metabolic process

GO:0009185 0.018497 0.010990 0.000121 0.000564 0.014460 0.009647 0.00012 0.00010

ADP metabolic process GO:0046031 0.018497 0.010990 0.000121 0.000106 0.033912 0.022665 0.00039 0.00034
nucleoside diphosphate
phosphorylation

GO:0006165 0.043351 0.025790 0.000396 0.000348 0.033912 0.022665 0.00039 0.00034

nucleotide phosphorylation GO:0046939 0.043351 0.025790 0.000396 0.000348 0.047993 0.032107 0.00064 0.00056
pyruvate metabolic process GO:0006090 0.036510 0.000640 0.000564 0.047993 0.032107 0.00064 0.00056
nucleoside diphosphate
metabolic process

GO:0009132 0.036510 0.000640 0.000564 0.000882 0.000510 0.03651 0.00056

system process GO:0003008 0.000640 0.036510 0.000564 0.00241 0.00212
carbohydrate catabolic process GO:0016052 0.002413 0.002126 0.02205 0.01786
carboxylic acid metabolic
process

GO:0019752 0.022050 0.017865 0.02063 0.01823

monocarboxylic acid metabolic
process

GO:0032787 0.020630 0.018232 0.02383 0.01929

oxoacid metabolic process GO:0043436 0.023804 0.019293 0.02664 0.02160
organic acid metabolic process GO:0006082 0.026642 0.021605 0.03437 0.02913
generation of precursor
metabolites and energy

GO:0006091 0.034376 0.029131 0.03437 0.029131

striated muscle thin filament GO:0005865 0.000240 0.000001 0.000168 0.000000 0.000001 0.000000 0.000207 0,000000
myofilament GO:0036379 0.000240 0.000001 0.000168 0.000000 0.000001 0.000000 0.000207 0,000000
sarcomere GO:0030017 0.001119 0.000005 0.000785 0.000004 0.000008 0.000003 0.000969 0.000003
myofibril GO:0030016 0.001488 0.000008 0.001044 0.000006 0.000012 0.000004 0.001289 0.000005
contractile fiber GO:0043292 0.001929 0.000011 0.001353 0.000008 0.000018 0.000006 0.001671 0.000008
supramolecular polymer GO:0099081 0.003933 0.000098 0.002252 0.000067 0.000194 0.000042 0.003089 0.000066
supramolecular fiber GO:0099512 0.003933 0.000098 0.002252 0.000067 0.000194 0.000042 0.003089 0.000066
muscle thin filament tropomyosin GO:0005862 0.010816 0.008413 0.008413 0.007279 0.010816 0.005832 0.009856 0.007278
cytoskeleton GO:0005856 0.017549 0.000801 0.008339 0.000486 0.001941 0.000265 0.012609 0.000485
supramolecular complex GO:0099080 0.021834 0.000806 0.012671 0.000554 0.001572 0.000347 0.017266 0.000553
polymeric cytoskeletal fiber GO:0099513 0.042641 0.027374 0.027374 0.021312 0.042641 0.015254 0.035404 0.021311
actin cytoskeleton GO:0015629 0.003417 0.006938 0.002434 0.003417
actin filament GO:0005884 0.043209
troponin complex GO:0005861 0.003647 0.005422 0.002922 0.003647
Glycolysis / Gluconeogenesis KEGG:00010 0.002318 0.000854 0.000059 0.000024 0.002318 0.000854 0.000058 0.000023
Carbon metabolism KEGG:01200 0.041924 0.016114 0.002453 0.001026 0.041924 0.016114 0.002453 0.001025
Biosynthesis of amino acids KEGG:01230 0.043307 0.004533 0.002223 0.043307 0.004533 0.002223
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and transducin beta-like remained after drug exposure.
Dopamine/norepinephrine transporter (SmDAT) gene
transcript, characterized in S. mansoni, is essential for the
survival of the parasite as it causes muscular relaxation and a
lengthening in the parasite, controlling movement (86).
Galactokinase catalyzes the second step of the Leloir pathway,
a metabolic pathway found in most organisms for the catabolism
of b-D-galactose to glucose 1-phosphate (87). Galactokinase and
hexokinase have a similar enzymatic function on sugar
phosphorylation (88), and characterization of schistosome
hexokinase has been described as pertinent to understanding
the metabolic response of S. mansoni cercariae to an increased
glucose availability (89). Ornithine aminotransferase was already
identified in S. mansoni (90) and it has been characterized as
playing a central role in ornithine biosynthesis (91). It seems
responsible for catalyzing the transfer of the delta-amino group
of L-ornithine to 2-oxoglutarate, producing L-glutamate-
gamma-semialdehyde, which in turn spontaneously cyclizes to
pyrroline-5-carboxylate, and L-glutamate (92). Rab6-interacting
protein 2 is a member of a family of RIM-binding proteins,
which are presynaptic active zone proteins that regulate
neurotransmitter release (93). Ubiquitin-specific peptidase 30
(C19 family) belongs to a metabolic pathway that had previously
been associated with the development of artemisinin and
artesunate-resistance in Plasmodium chabaudi (94), which is a
very interesting result. All those proteins specifically found in the
resistant strain should be further studied to better understand if they
could have a fundamental role in PZQ-resistance development.

Yet, for the resistant strain parasites, there are three proteins,
beta 1,3-galactosyl-transferase, cathepsin L, and receptor for
activated Protein Kinase C (PKC) that are exclusive to resistant
females, even after exposure to PZQ. Beta 1,3-galactosyltransferase
has previously been identified in the Schistosoma genome and
transcriptome (77). Cathepsin L activity is believed to be involved
in hemoglobin digestion by adult schistosomes (95), and these
authors suggested the involvement of cathepsin proteinases in
several key functions render them as potential targets to novel
antiparasitic chemotherapy and immunoprophylaxis. Putative
PKC exists in kinomes of the blood flukes S. mansoni (20, 96,
97), S. japonicum (98), S. haematobium (99), and regulates
movement, attachment, pairing, and egg release in S. mansoni,
being considered a potential target for chemotherapeutic
treatment against schistosomiasis (100). These results need
further investigation thus considering that the PZQ mode of
action is not completely clarified nor is its genetic process of
susceptibility lost, our results might help in the process
of clarification of a possible relationship between those proteins
and PZQ-resistance in S. mansoni females (20, 45). Concerning
the PZQ-susceptible strain, we noted eight proteins that only
appeared in this strain. Phosphopyruvate hydratase (enolase), an
important glycolytic enzyme that has the functions of activating
the plasminogen, involving in the processes of infection and
migration of parasites, reducing the immune function of the
host as well as preventing parasites from the immune attack of
the host (101), is the only protein from those eight proteins that
continued to be present after PZQ exposure.
Frontiers in Tropical Diseases | www.frontiersin.org 14
Our gene enrichment analyses also provided functional
differences when comparing males and females. The results
identified in susceptible females, either exposed or not exposed,
a significantly higher p-value for GO terms that were related to
ATP generation from ADP and other GO terms within the
ancestor chart of this term. On the other hand, susceptible males
presented significantly higher p-values for GO terms associated
with muscle contraction. This give us an indication of a higher
fitness and active metabolic status of susceptible females both in
the presence or absence of Praziquantel when compared to
susceptible males. Also, processes related to monocarboxylic
acid metabolic processes were identified only in susceptible
males and females, both exposed and unexposed. This could
also suggest that loss of susceptibility/resistance to Prazinquantel
come at the compromise of the fitness level, with lower metabolic
levels both in males and females.

These results altogether represent an important finding for
the study of PZQ-resistance/susceptibility in S. mansoni, since
they allow comparing directly the proteome under both
conditions. We believe that the most promising candidates are
proteins that appeared associated only to one of the strains,
especially those with functions possibly related to the phenotypic
alterations observed by Pinto-Almeida et al. (11), or previously
associated with resistance by other parasites to different drugs.
These candidates require special attention in more studies,
assessing for instance the level of protection induced by these
proteins in animal models infected by both S. mansoni strains, as
they may have some involvement in the PZQ-resistance
phenomenon, although further studies are needed to deepen
this knowledge.
CONCLUSIONS

Here, we investigated the proteome of a PZQ-resistant S.
mansoni strain and the respective isogenic susceptible strain,
an important step towards a full clarification on the genetic
process of PZQ-resistance considering that we were able to
compare a PZQ-resistant parasite line with the susceptible one
from with it was obtained allowing a more accurate comparison
between strains that differ solely on PZQ susceptibility
phenotype. This study allowed us to identify proteins that in
our proteome analyses differ between PZQ-susceptible and PZQ-
resistant parasites, however, their relationship or contribution
towards the mechanism of resistance remains unclear and
strongly needs further clarification. Since these proteins may be
involved with the PZQ-resistance phenomenon, their functional
characterization should be pursued in future studies aiming at
the discovery of new drug targets for schistosomiasis control and
also studies that could clarify the PZQ mode of action.

The identification of the proteins putatively associated with
PZQ-resistance in S. mansoni permits also to investigate the
possibility of developing a diagnostic test to distinguish patients
carrying PZQ-resistant strains from those with PZQ-susceptible
S. mansoni. The development of such a test would constitute a
major step towards schistosomiasis control as it would render it
July 2021 | Volume 2 | Article 664642
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possible to adjust drug administration to increase treatment
efficacy, perhaps even by combining PZQ with efflux pump
inhibitors as suggested previously (45). The proteome analysis
made it also possible to identify proteins that were present only
in females, being them good targets to identify the mechanisms
underlying the decreased PZQ-susceptibility of females, when
compared to males. Furthermore, some of these proteins may
constitute targets, for schistosomiasis control. They should,
therefore, be the object of further analysis. In this context, the
development and use of other techniques, such as genetic
manipulation methods, will be crucial to further unravel the
phenomenon/problem of PZQ-resistance/tolerance/loss of
susceptibility. Therefore, this work opens doors to other PZQ-
resistance studies, and could represent a basis to find a solution
to the PZQ-resistance problem in a disease that affects millions of
people worldwide.
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42. Ludolf F, Patrocıı́nio PR, Corrêa-Oliveira R, Gazzinelli A, Falcone FH,
Teixeira-Ferreira A, et al. Serological Screening of the Schistosoma
mansoni Adult Wormproteome. PloS Negl Trop Dis (2014) 8:e2745.
doi: 10.1371/journal.pntd.0002745

43. O’Farrell PH. High Resolution Two-Dimensional Electrophoresis of
Proteins, J. Biol Chem (1975) 250:4007–21. doi: 10.1016/S0021-9258(19)
41496-8

44. Bensimon A, Heck AJR, Aebersold R. Mass Spectrometry – Based
Proteomics and Network Biology. Annu Rev Biochem (2012) 81:379–405.
doi: 10.1146/annurev-biochem-072909-100424

45. Pinto-Almeida A, Mendes T, Armada A, Belo S, Carrilho E, Viveiros M, et al.
The Role of Efflux Pumps in Schistosoma mansoni Praziquantel Resistant
Phenotype. PloS One (2015) 10:1–20. doi: 10.1371/journal.pone.0140147

46. Katz N, Coelho PMZ. Clinical Therapy of Schistosomiasis Mansoni: The
Brazilian Contribution. Acta Trop (2008) 108:72–8. doi: 10.1016/
j.actatropica.2008.05.006

47. Lewis F. Schistosomiasis. JE Coligan, AM Kruisbeek, DH Margulies, EM
Shevach, W. Strober and R Coico, editors. Hoboken, New Jersey: Curr.
Protoc. Immunol., Wiley Inte (1998) p. 19.1.1–19.1.28.

48. Thermo Ficher Scientific. TRIzol Reagent, Experimental Protocol for DNA
Isolation. Thermo Ficher Scientific Invitrogen User Guide (2016). Available at:
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf.

49. Babu GJ, Wheeler D, Alzate O, Periasamy M. Solubilization of Membrane
Proteins for Two-Dimensional Gel Electrophoresis: Identification of
Sarcoplasmic Reticulum Membrane Proteins. Anal Biochem (2004)
325:121–5. doi: 10.1016/j.ab.2003.10.024

50. Marion M. Bradford, A Rapid and Sensitive Method for the Quantitation of
Microgram Quantities of Protein Utilizing the Principle of Protein-Dye
Binding. Anal Biochem (1976) 72:248–54. doi: 10.1016/0003-2697(76)
90527-3

51. Cheng G-F, Lin J-J, Feng X-G, Fu Z-Q, Jin Y-M, Yuan C-X, et al. Proteomic
Analysis of Differentially Expressed Proteins Between the Male and Female
Worm of Schistosoma japonicum After Pairing. Proteomics (2005) 5:511–21.
doi: 10.1002/pmic.200400953

52. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-Gel Digestion for
Mass Spectrometric Characterization of Proteins and Proteomes. Nat Protoc
(2006) 1:2856–60. doi: 10.1038/nprot.2006.468

53. Millipore Corporation. Sample Preparation of Oligonucleotides Prior to
MALDI-TOF MS Using ZipTip C18 and ZipTip µ-C18 Pipette Tips.
Millipore Technical Note (2010).

54. Robertson C, Cortens JP, Beavis RC. Open Source System for Analyzing,
Validating, and Storing Protein Identification Data. J Proteome Res (2004)
3:1234–42. doi: 10.1021/pr049882h

55. Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C,
Martin MJ, et al. The GOA Database: Gene Ontology Annotation
Updates for 2015. Nucleic Acids Res (2015) 43:D1057–63. doi: 10.1093/
nar/gku1113

56. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:
Profiler: AWeb Server for Functional Enrichment Analysis and Conversions
of Gene Lists (2019 Update). Nucleic Acids Res (2019) 47:W191–8.
doi: 10.1093/nar/gkz369

57. Raynal B, Lenormand P, Baron B, Hoos S, England P. Quality Assessment
and Optimization of Purified Protein Samples: Why and How? Microb Cell
Fact (2014) 13:180. doi: 10.1186/s12934-014-0180-6

58. Kabatereine NB, Vennervald JB, Ouma JH, Kemijumbi J, Butterworth AE,
Dunne DW, et al. Adult Resistance to Schistosomiasis Mansoni: Age-
Dependence of Reinfection Remains Constant in Communities With
Diverse Exposure Patterns. Parasitology (2002) 118:101–5. doi: 10.1017/
s0031182098003576
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68. Pérez-Sánchez R, Valero ML, Ramajo-Hernández A, Siles-Lucas M, Ramajo-
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