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It is increasingly appreciated that the expression of immunoregulatory molecules
within tumors have potential to shape a microenvironment that promotes local
immunoevasion and immunoregulation. However, little is known about tissue-
intrinsic immunomodulatory mechanisms following transplantation. We
propose that differences in the phenotype of microvascular endothelial cells
impact the alloantigenicity of the graft and its potential to promote
immunoregulation following transplantation. We focus this review on the
concept that graft-dependent immunoregulation may evolve post-
transplantation, and that it is dependent on the phenotype of select subsets of
intragraft endothelial cells. We also discuss evidence that long-term graft
survival is critically dependent on adaptive interactions among immune cells
and endothelial cells within the transplanted tissue microenvironment.
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Introduction

The development of rejection involves a marked inflammatory reaction characterized by

effector T cell and B cell activation, an intense cellular and humoral response and an

associated trafficking of alloreactive leukocytes into the allograft (1–3). Rejection is

initiated by the recipient’s immunological response to donor antigen, which is coordinated

by CD4+ T cells that actively undergo expansion and differentiation into effectors and/or

memory T cells (1, 4, 5). However, multiple pathways operate concurrently in order to

control and regulate effector alloimmunity, and it is proposed that this process of

immunoregulation can be a more potent component of the overall response (4–9).

Indeed, the regulation of effector alloimmunity is complex, and classically involves several

immune cell types (5, 9–15) including the expansion and function of CD4+Foxp3+

Tregulatory (Treg) cells (15–17). But importantly, it is also dependent on critical adaptive

responses that occur within the graft itself (18–26). In this review, we focus our discussion

on how obligate interactions among alloresponsive immune cells and multiple subsets of

intragraft microvascular endothelial cells (EC) dictate the outcome of the rejection

response. We postulate that the process of rejection is shaped by the immunogenic

phenotype of select subsets of EC within a graft. Also, we suggest that it is possible to

regulate the initiation of rejection through a process we have called graft-dependent

immunoregulation (Figure 1).
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FIGURE 1

Cartoon illustration of how the phenotype of intragraft endothelial cell subsets regulate local alloimmunity to promote graft-dependent
immunoregulation.
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The phenotype of intragraft
endothelial cells (EC) and graft-
dependent immunoregulation

Multiple observations have established a functional role for

graft vascular EC in the development of acute and chronic

rejection (19, 22–24, 27–31). The expression of adhesion

molecules and chemokines promote the recruitment of

leukocytes into the graft, and the expression of MHC class I and

II molecules, costimulatory molecules and cytokines promotes

allogeneicity (25–27, 29, 32). These features enable EC to serve

as semi-professional antigen presenting cells (APCs) and

promote the activation of subsets of T cells (23, 27).

Furthermore, the unique location of EC ensures obligate

interactions with recipient immune cells. Since there are greater

numbers of microvascular EC within a graft vs. professional

APCs, there is a high likelihood that their interactions with

infiltrating effector T cells dictate the nature of the reactivation

response (23, 25, 33–36). Although controversial (37), direct

interactions between CD4+ or CD8+ T cells and intragraft EC is

sufficient to initiate and sustain allogeneic T cell activation as

well as the rejection response (20, 25, 26, 38). Thus, the

immunogenic phenotype of the EC has great relevance for the

outcome of the local intragraft T cell immune response.

Consistent with this interpretation, molecular profiling data and

computational analysis in humans has confirmed that the state of

activation, immunophenotype and allogeneicity of the graft

microvasculature is associated with a microenvironment that is

predictive of sustained rejection (39, 40). To date however

bioinformatic approaches have not yet addressed the process of

graft-dependent immunoregulation (24, 36).

Nevertheless, recent studies indicate that EC may express

immunoregulatory molecules, including PD-L1, PD-L2, Tim-3,

B7-H3, IDO and others, that are well established to modulate cell-

mediated and alloimmune inflammatory reactions (24, 41–45).
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While little is known about EC-dependent immunoregulation

following transplantation, several studies support a working model

whereby the expression of select coinhibitory molecules on

intragraft EC is both necessary and sufficient to support graft-

dependent immunoregulation (18, 46–48).

Chalasani et al. (18) used a model in which fully MHC

mismatched cardiac allografts were transplanted into

splenectomized alymphoplastic (aly/aly) mice which lack

secondary lymphoid tissues and accept allografts indefinitely.

They found that the adoptive transfer of alloactivated T cells on

day 2 post-transplantation resulted in graft failure, whereas

transfer of the identical T cells on day 70 post-transplantation

failed to precipitate rejection, all grafts surviving for >100 days.

They also transferred alloactivated T cells into fully MHC

mismatched C57BL/6 recipients of Balb/c cardiac allografts at

similar time points following multidose treatment of recipients

with CTLA4Ig and anti-CD154. Again, after a period of

conditioning with costimulatory blockade (day 50 post-

transplantation), adoptive transfer of alloreactive T cells failed to

initiate acute rejection and all grafts survived long-term.

Although these findings allowed for the interpretation that the

graft itself has potential to determine the outcome of rejection,

they did not identify the mechanism of graft-dependent

immunoregulation in these studies. It is however most intriguing to

consider that immunosuppressive agents and/or conditioning may

induce select intragraft immunoevasive and/or immunomodulatory

factors that shape these outcomes.

Riella et al (46). used a similar fully MHC mismatched C57BL/

6 into Balb/c cardiac transplantation model and multi-dose

CTLA4Ig treatment to prolong graft survival. These authors

found that PD-L1 knockout grafts are rejected at an accelerated

pace suggesting that local tissue expression is both necessary and

sufficient to elicit graft-dependent immunoregulation. Consistent

with this interpretation and the possibility that PD-L1 is

functional on intragraft EC subsets, they also found accelerated
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rejection of allografts from bone-marrow chimeric mice in which

PD-L1 is deficient in non-hematopoietic cells.

In another study, Koga et al. (48) used the minor MHC

mismatched C57BL6 into B6.C-H2bm12 cardiac transplant model,

which is known to result in a chronic insidious rejection process

for >45 days (49, 50). They found that treatment with anti-PD-

L1 resulted in accelerated rejection, characterized by marked

inflammatory infiltrates, intragraft cytokine production and

accelerated graft vascular arteriosclerosis vs. controls. In the same

minor MHC mismatched B6.C-H2bm12 transplant model, Yang

et al. used PD-L1 and PD-L2 knockout mice as donors and

found that intragraft PD-L1, but not PD-L2, was functional to

prolong graft survival (47). Furthermore, they also demonstrated

that neither PD-L1 nor PD-L2 is functional in the regulation of

the peripheral alloimmune response, conclusively discovering that

intragraft PD-L1 is sufficient to elicit graft-dependent

immunoregulation. Interestingly, it was also found that intragraft

PD-L1 is functional to support early graft survival in a murine

model of kidney transplantation, but these authors did not

evaluate its expression on EC following immunosuppressive

conditioning at later times post transplantation (51).

In vitro studies have demonstrated that select EC phenotypes

suppress local alloimmune Teffector responses and/or augment

the local activity of Tregs (24, 41, 42, 52). Thus, it is possible

that select immunosuppressive therapeutics have potential to

alter the phenotype of distinct subsets of intragraft EC to

promote graft-dependent immunoregulation. Indeed, consistent

with this hypothesis, pilot studies in our laboratory using a

model of graft-dependent immunoregulation have revealed that

EC within these grafts have a unique phenotype that includes

regulation of the mTOR intracellular signaling pathways and the

expression of multiple costimulatory, coinhibitory and

immunoevasive molecules (53). Although mTOR inhibition can

regulate coinhibitory gene expression by EC in vitro (42),

understanding the mechanisms underlying immunoregulatory

and immunoevasive gene expression in vivo will likely have

significant implications for long-term transplant outcomes.

Overall, while little is known about EC- and graft-dependent

immunoregulation following transplantation, the mechanism of

tissue-dependent immunoevasion is an area of intense research

in the tumor immunology field (24, 54–56). This process is

functionally associated with coinhibitory molecule expression on

EC. But it is not yet known if intrinsic heterogeneity within EC

subsets, or differences in organ-specific production of

immunoevasive and immunomodulatory genes impact the

potential for graft-dependent immunoregulation.
Heterogeneity in microvascular
endothelial cell (EC) phenotypes both
within and across different organs

Over the past 5–10 years, high-throughput single-cell RNA

sequencing (scRNAseq) and spatial imaging technologies have

brought new insights into the diversity and broad functions of

microvascular EC subsets within tissues (36, 57). Several studies
Frontiers in Transplantation 03
have determined that there is significant heterogeneity within

microvascular EC subpopulations, and there are notable

differences in EC phenotypes within different organs (36, 58–65).

Although the significance of these differences has not yet been

explored following transplantation, it appears that specialized EC

subsets within different organs (notably, heart, lung and kidney)

express unique gene signatures (36, 57, 60, 61, 65). Also,

transcriptomic and epigenomic studies have demonstrated EC

subset-specific differences in activation responses to pro-

inflammatory stimuli (36, 59, 61, 63, 64, 66–71). This insight has

brought new concepts to the transplantation field, for example

that EC subsets within different organs respond with unique

intracellular signals and gene expression signatures in the course

of rejection and/or that EC subsets from different microvascular

beds have potential to express immunoregulatory/immunoevasive

gene signatures and thus resist Teffector mediated injury (36, 59,

63, 64, 66–74). Although previous studies indicated some

heterogeneity in activation responses in human transplant

biopsies by immunohistochemistry [for example (29, 75–77)],

these new findings are suggestive of a paradigm whereby EC

activation responses are not uniformal across subsets, but are

rather unique to distinct subsets within each microvascular bed

and/or across organs. The Valenzuela group reported that

cultured human EC from heart, lung, liver, kidney and skin

exhibited distinct inflammatory phenotypes at the mRNA level as

well as in response to the pro-inflammatory cytokines TNFα and

IL-1β (59). They speculated that diversity in activation

phenotypes may contribute to differences in the injury response

following transplantation. Moreover, tissue staining, microarray

analysis and several other published scRNAseq studies of murine

tissues indicate that there are at least 7 major EC subtypes within

each organ microenvironment and that capillary EC are a most

heterogeneous cell type with phenotypic differences both within

and across different tissues (57, 61, 64, 65, 78).

To highlight microvascular heterogeneity that evolves in

established in vivo models of transplantation, we evaluated EC

subset phenotypes and gene expression patterns in the initial post

transplantation period by evaluating a recently published murine

heart transplant scRNAseq dataset (79). As illustrated in Figure 2,

we identify 12 distinct capillary EC subsets with marked

phenotypic heterogeneity including distinct patterns of expression

of pro-inflammatory [ICAM-1, VCAM-1 (29)], immunoregulatory

[PD-L1 (46, 47)] and immunoevasive [Sema3F (24)] genes. We

also compared gene expression patterns in C57BL/6 heart isografts

and allografts harvested on day 5 post-transplantation (from

C57BL/6 and Balb/c recipients respectively). As expected, the

phenotype of EC subsets, expression levels and the distribution of

well-established activation and immunoregulatory molecules differ

within isografts and allografts (Figure 2). Furthermore, pseudotime

trajectory analysis of pro-inflammatory chemokines (CXCL9,

CXCL10), activation (VCAM-1), immunoregulatory (PD-L1) and

immunoevasive (Sema3F) genes within this dataset identified

distinct EC subset-specific patterns of expression of each gene

within the microvasculature (Figure 3). Expression levels of each

selected gene varied across the microvascular bed, with notable

increases and decreases in expression in selected EC subsets
frontiersin.org
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FIGURE 2

Intragraft microvascular endothelial cell heterogeneity from murine cardiac allo- and iso grafts. Single cell RNA-sequencing data from post-transplant
day 5 murine cardiac isografts (Balb/c→ Balb/c, n= 2) and allografts (Balb/c→C57BL6, n= 2) were downloaded from the NCBI GEO (accession
number: GSE151048) (79). Seurat objects were generated from each sample, integrated using Harmony, and cluster resolution determined using
the Clustree method (80–83). EC were identified using Pecam1 and Cdh5 expression and were clustered to identify subsets using selected EC
annotation transcripts (57, 62, 80, 81). (A) UMAP scatter plot, color-coded for EC subclusters. EC were clustered based on established arterial,
venous and capillary gene expression; a total of 12 capillary subsets are color coded. (B) Dot plot illustrating the transcripts used for EC subset
annotation. The percent and level of expression of each transcript is illustrated by the size and color (blue) of each dot. (C) Feature and Violin
plots of intragraft EC subsets isolated from isografts (left panels) or allografts (right panels) depicting select transcript expression of pro-
inflammatory (VCAM-1), immunoregulatory (PD-L1) and immunoevasive (Sema3F) molecules. The color (blue dot) illustrates the level of expression
of each gene in each Feature plot. Violin plots illustrate the relative level of expression of each gene in each EC subset.
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FIGURE 3

Pseudospatial expression of proinflammatory, immunoregulatory and immunoevasive transcripts in intragraft endothelial cells. A pseudotime
estimation method was used to generate a pseudospatial resolution of single cell RNA-sequencing data from Figure 2 within the microvascular
bed (84). The spatial trajectory starts in arterial microvasculature (as shown in Figure 2A), passes through capillaries and ends in venous EC
subsets. (A) UMAP scatter plot color coded for the pseudospace. The trajectory is highlighted. (B) Schematic representation of the pseudospace
within the microvasculature. (C) Scatter plots of isografts (left; green) and allografts (right; orange) depicting patterns of select proinflammatory
(CXCL9, CXCL-10 and VCAM-1) or immunoregulatory/immunoevasive (PD-L1, Semaphorin3F) transcript expression over the pseudospace within
each EC subset. Each line (green, isograft vs. orange, allograft) represents the average transcript expression within EC subsets along the pseudospace.

Bose et al. 10.3389/frtra.2025.1518772
(Figures 2, 3). These collective findings are consistent with the

concept that distinct EC subsets within the transplanted tissue

have potential to contribute to either pro-inflammation,

immunoregulation and/or immunoevasion. Indeed,

immunomodulation by select EC subsets can be influenced by the

expression of coinhibitory molecules (23, 24, 36, 47, 55), cytokine-

induced responses (24, 72, 73, 85), intracellular signaling

responsiveness (24, 62, 77, 86) and the capacity to induce

apoptosis in immune cells [for example, via FAS ligand (68)].
Frontiers in Transplantation 05
To add to the complexity of this biology, it has also been

reported that EC within different organs express unique profiles

of inflammatory or regulatory genes. For example, EC within the

lung express gene signatures associated with immune activation,

consistent with barrier organ biology, whereas EC derived from

non-barrier organs such as the kidney and liver express genes

associated with tissue-specific immune regulation (36).

Jambusaria et al. (61) also found that EC within the brain, lung,

and heart adapt to signatures from the surrounding tissue
frontiersin.org
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parenchyma; EC from the brain express genes associated with

neuronal function and EC from the heart express genes

associated with cardiac muscle development. Dumas et al. (60)

identified 24 distinct EC subsets within the kidney, each with a

unique transcriptional profile, for example with selective

metabolic, IFN-responsive or antigen presentation phenotypes,

and heterogeneity in EC phenotypes has been confirmed within

transplanted kidneys (87). Thus, EC subsets within allografts may

adopt profiles/phenotypes based on the cellular composition and/

or immune events within the local intragraft microenvironment

to support either chronic inflammation or immune regulation

(88, 89).
Mechanisms of graft-dependent
immunoregulation

These new insights into the heterogeneity of EC within organs

and tissues suggest that existing pro-inflammatory paradigms

based on studies of single populations of EC are incomplete. For

example, proinflammatory responses are not uniform across

different EC subsets [artery, vein, capillary, see Figure 2 and

(36)] or between EC from different organs (59). Furthermore,

current paradigms suggest that pathological immune events

within the intragraft microenvironment are shaped by local EC

responsiveness to inflammation including local tissue hypoxia

(19, 22, 90), cytokine production by infiltrating effector T cells

(91) or resident immune cells (92), and tissue expression of local

growth factors including VEGF-A (19, 31). Effector cytokines

produced locally are well established to promote the activation of

EC and support ongoing immune cell infiltration (19, 23, 24, 27).

In contrast, during inflammation resolution multiple mediators

produced by EC including pro-resolution lipids (93–95), anti-

inflammatory cytokines (96) and/or neuronal guidance molecules

(24, 97) promote immunoevasion to regulate leukocyte subset

trafficking into tissues.

Physiological post-inflammatory mechanisms that resolve cell-

mediated immune inflammation and sustain immune homeostasis

are associated with the production and secretion of multiple

families of molecules by EC, including neuronal guidance

Netrins, Semaphorins and Slit family molecules that inhibit

leukocyte trafficking into the tissue (24, 73, 93, 98–104). These

immunoevasive proteins were originally described in the

formation of the nervous system (105, 106), but they are

expressed by multiple non-neuronal cell types, including EC, and

their receptors are expressed on leukocyte subsets (97, 101, 103,

105). In this manner, neuronal guidance cues interact with

immune cells and the response(s) elicit either chemoattractive or

chemorepulsive signals (96). Thus, in the context of

transplantation, intragraft expression of Netrins, Semaphorins

and/or Slits have potential to influence the local phenotype of

rejection response.

The Netrins are a family of secreted molecules that are

structurally related to laminins and bind to uncoordinated 5

(UNC5) A-D, deleted in colorectal cancer (DCC), Neogenin, and

the Down Syndrome cell adhesion molecule (DSCAM) receptors
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(98, 107–110). Immunoevasion elicited by Netrin-1 has been

studied in immunity, and is dominantly attributed to interactions

with the UNC5 family of receptors (98, 99, 111). The

chemorepellent receptor UNC5B is expressed by peripheral blood

mononuclear cells including neutrophils, T cells and monocytes,

where it acts as an inhibitor of migration towards chemotactic

stimuli (98, 109, 111) including inflammation that is associated

with ischemia-reperfusion injury (99). In contrast, interactions

between Netrin-1 and its neogenin receptor that is induced on

activated CD4+ T cell subsets result in chemoattraction (98, 110).

Thus, chemorepulsive UNC5 receptors or promigratory

neogenin that are differentially expressed on CD4+ T cells may

determine the immune response to local Netrin-1 expression

within a tissue. Of note, neogenin can also bind to additional

ligands involved in the regulation of T cell activation (112),

indicating that its expression on leukocytes may dictate the

relative immunomodulatory function of local EC-derived Netrin-

1 in the course of cell-mediated immune inflammation and/

or rejection.

The semaphorins (Semas) are immunomodulatory proteins

that were also discovered as neuronal guidance cues (97,

113–117). Semas consist of eight families, most of which are

membrane bound, and vertebrate members (Sema families 3–7)

are reported to function in the immune response (114–116, 118).

The Sema3 family members (Sema3A-G) are soluble secreted

proteins, and some (for example Sema3F and 3G) are expressed

at high levels by EC (65). These proteins bind to neuropilin

(NRP) -1 and NRP-2 that are expressed by T cell subsets (73,

118–121). NRP-1 is a marker of activated CD4+ Foxp3+ Treg

cells (118, 122, 123), but recent studies have also identified its

expression on antigen-activated and exhausted CD8+ T cells

(119, 120). We (73) and others (118, 119) have observed that the

interaction between Sema3 and Sema4 proteins with NRP1/2

results in an inhibition of PI-3K/Akt/mTOR signalling as well as

cytoskeletal collapse and reduced migration in multiple cells

types including lymphocytes. Knockout of NRP-1 on

lymphocytes is associated with enhanced migration and effector

function of CD4+ and CD8+ T cells (119). In contrast, the

stimulation of NRP-1 on Tregs enhances stability and function

(118). Thus, EC expression of Sema3 family proteins (see

Figures 2, 3) is likely to have potent implications for both the

migration and activation of NRP-expressing effector and

regulatory cells within allografts.

The Slit family of proteins are also immunoevasive neuronal

guidance cues that are expressed by EC at lower levels (103, 104),

but little is known about their tissue expression or biology in the

resolution of cell-mediated immunity. Nevertheless, Slit-2 has

been shown to inhibit the migration of leukocytes in response to

chemokines via interactions with the Roundabout (Robo) family

of receptors that are expressed on leukocytes (104, 124).

Expression is also reported to protect and inhibit neutrophil-

induced chemotaxis (96, 104) as well as ischemia-reperfusion

injury (102), but to our knowledge their biology has not yet been

explored following transplantation.

Since little is known about the biology of immunoevasion, in

previous studies, we developed an in vitro platform to evaluate
frontiersin.org
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attraction and inhibition of leukocyte migration simultaneously. In

this manner, it was possible to evaluate the effects of migratory

guidance cues on bidirectional leukocyte trafficking patterns (96).

We discovered that migration and leukocyte trafficking is more

complex than previously described (125–129), as the migratory

response (or lack of) does not simply relate to chemoattraction.

Rather, migratory responses occur in at least four distinct

patterns, called chemoattraction, chemorepulsion,

chemoinhibition, and chemokinesis (96), as illustrated in Figure 4.

Tissue-dependent immunoevasion may be elicited in part

through the process of chemorepulsion that results in migration

in the opposite direction to chemoattraction (96). Furthermore, a

chemoinhibitory stimulus [such as a response to Slit family

molecules (96, 102, 103)] reduces migration in random directions

to a guidance cue. Importantly, some molecules [for example

Netrin-1 (98, 100, 111)] promotes a bidirectional migratory

response with potential to elicit both chemorepulsion and

chemoattraction depending upon the relative expression of its

receptor(s) on each leukocyte subset(s). Also, members of the

semaphorin family, including endothelial Sema3F [(73) and

Figures 2, 3] or SDF-1/CXCL12 (96) elicits chemorepulsive and/

or dispersive signals via receptors expressed on distinct subsets of

immune cells, including CD4+ T cells (122, 130). Collectively,

these studies indicate that combinations of guidance molecules

expressed by EC subsets may serve to inhibit leukocyte migration

and extravasation into allografts but the process of

chemoinhibition and/or chemorepulsion is also dependent on the
FIGURE 4

Cartoon illustration of the four patterns of leukocyte migration (96).
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relative levels of chemotactic receptors expressed on individual

infiltrating immune cells.

Another important consideration is whether the characteristics

of resident immune cells within the graft alter the EC subset

phenotype, or whether the EC subset phenotype regulates the

characteristics of the local intragraft immune infiltrate. The

Lakkis group demonstrated that initial effector cell infiltration

into an allograft requires recognition of alloantigen, likely

expressed on locally activated and MHC-expressing EC subsets

(26). Furthermore, they found that the differentiation of effectors

into pathological T resident memory cells (TRM) requires antigen

presentation as well as cytokine-induced activation (88, 92).

Abou-Daya et al. (88) found that recipient graft infiltrating

effector T cells acquire a TRM phenotype and that these cells

sustain their localization within an allograft where they produce

effector proinflammatory cytokines (88). Although Tieu et al.

later demonstrated that the maintenance of TRM within the graft

was dependent on antigen presentation by intragraft dendritic

cells (92), the role of interacting EC subsets in the persistence of

TRM localization was not evaluated.

In addition, the function of EC subsets in the recruitment of

Tregs into an allograft is poorly understood, but it is also likely

to involve the recognition of antigen as well as local activation

responses (131, 132). In select transplant models and/or

following immunosuppressive conditioning, perivascular

aggregates of Tregs are recruited into the graft where they

localize into Treg-rich Organized Lymphoid Structures (TOLS)
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that are reported to promote immunoregulation and support long-

term graft survival (89, 133–135). TOLS-containing allografts elicit

an immunoregulatory response following retransplantation into

fully MHC mismatched recipients (133) and early depletion of

Foxp3+ Tregs within TOLS results in allograft rejection (134,

136). These findings confirm a role for TOLS in graft-dependent

immunoregulation. Nevertheless, it is not known if the presence

of intragraft TOLS is associated with changes in the phenotype

of local EC within a graft, or whether local EC subsets adapt and

express immunomodulatory genes (e.g., Sema proteins) that

support Treg localization and thus graft-dependent

immunoregulation. Furthermore, as discussed above, EC- and

graft-dependent mechanisms of immunoregulation may occur in

the absence of CD4+ T regulatory cell recruitment or TOLS

development, for example following a period of

immunosuppression after transplantation in recipients treated

with costimulatory blockade (18, 46). Thus, the development of

EC phenotypes that support graft-dependent immunoregulation

likely involves an independent cell-intrinsic mechanism and/or a

modulatory signaling response(s) within the local tissue

microenvironment (24, 36, 42).
Therapeutic implications

Cell-intrinsic mTOR signaling in EC is well established to play

a central role in EC activation responses (86, 137–141), and its

biology in EC is implicated in a large number of human

inflammatory diseases (86, 142, 143). Targeting mTOR in EC

with pharmacological mTOR inhibitors, even at low

concentrations (144), inhibits EC activation (30, 86, 138) and has

marked effects on the augmentation of coinhibitory PD-L1 and

PD-L2 expression (42). This response has been reported to be

associated with graft-dependent immunoregulation (as discussed

above) and to enhance local immunoregulation in part via the

augmentation of Treg function (42, 52, 145). Thus, treatment

with mTOR inhibitors [event at low doses (144)] may target the

graft EC to promote immunomodulation independent of its

effects on the peripheral alloimmune response (86).

DEPTOR is a potent cell-intrinsic regulator of mTOR (146)

that is expressed at variable levels within EC subsets in vitro and

in vivo (77). It was originally identified to modulate mTOR

signaling activity via its dominant ability to bind and inhibit

mTORC1 complex assembly (146–148), but it also regulates the

MAPK and STAT signaling pathways in EC (77, 146).

Interestingly, rapamycin augments DEPTOR expression (147),

suggesting another mechanism whereby it may be therapeutic to

target EC activation. siRNA knockdown of DEPTOR in EC has a

striking effect on the induction of activation gene expression

signatures with up to a 1,000-fold increase in the expression of

select chemokines (77). In addition, a recently published study

indicated that knockout of EC DEPTOR has similar biological

consequences in vivo (149). Since DEPTOR is a potent regulator

of mTOR, its biology in EC is thus directly linked to intragraft
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inflammation and immunoregulation. Overall, these findings

suggest that cell intrinsic modulation of mTOR signaling is both

necessary and sufficient for EC-dependent immunoregulation.

They also suggest that therapeutics that inhibit mTOR activity

and/or sustain the expression of cell-intrinsic DEPTOR will be of

great significance to support the development of graft-

dependent immunoregulation.
Summary and future outlook

The understanding of tissue-dependent immunoregulation is

driven by studies in the tumor literature, and little is known

about underlying mechanisms within allografts. In this review,

we discuss the literature demonstrating that it is possible to

augment graft-dependent immunoregulation following a period

of immune conditioning. We also review literature showing that

the inhibition of mTOR signaling and/or cell intrinsic

modulators of proinflammatory signals in EC have potential to

induce an immunomodulatory phenotype. However, there is a

need to evaluate and study the heterogeneity in phenotypes

within the allograft microvasculature, differences in EC

phenotypes and responses across different organs and changes

that occur following transplantation. In this manner, it may be

possible to uncover unique signals that drive EC phenotypes that

are associated within immunomodulation and long-term graft

survival. Future research studies may also identify mechanisms

whereby EC adopt microenvironmental cues to promote either

pro-inflammation or immunoregulation. Deciphering fundamental

mechanisms underlying how different EC subsets within different

organs adapt in order to regulate and modulate the local immune

response will have significant clinical implications in the field. We

predict a future whereby different graft-targeted therapeutics will

be used following organ transplantation to sustain the induction of

local genes that promote immunomodulation. Another potential

future outlook relates to the monitoring of grafts for

immunoregulatory gene expression as a determinant of long-

term outcome.
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