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Frontiers in Transplantation
Status of islet transplantation and
innovations to sustainable
outcomes: novel sites, cell
sources, and drug
delivery strategies
Jordan M. Wong and Andrew R. Pepper*

Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
Islet transplantation (ITx) is an effective means to restore physiologic glycemic
regulation in those living with type 1 diabetes; however, there are a handful of
barriers that prevent the broad application of this functionally curative
procedure. The restricted cell supply, requisite for life-long toxic
immunosuppression, and significant immediate and gradual graft attrition
limits the procedure to only those living with brittle diabetes. While intraportal
ITx is the primary clinical site, portal vein-specific factors including low oxygen
tension and the instant blood-mediated inflammatory reaction are detrimental
to initial engraftment and long-term function. These factors among others
prevent the procedure from granting recipients long-term insulin
independence. Herein, we provide an overview of the status and limitations of
ITx, and novel innovations that address the shortcomings presented. Despite
the marked progress highlighted in the review from as early as the initial islet
tissue transplantation in 1893, ongoing efforts to improve the procedure
efficacy and success are also explored. Progress in identifying unlimited cell
sources, more favourable transplant sites, and novel drug delivery strategies all
work to broaden ITx application and reduce adverse outcomes. Exploring
combination of these approaches may uncover synergies that can further
advance the field of ITx in providing sustainable functional cures. Finally, the
potential of biomaterial strategies to facilitate immune evasion and local
immune modulation are featured and may underpin successful application in
alternative transplant sites.
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1 Introduction

The upward trend in diabetes mellitus has been a major

worldwide health concern. With a 129.7% increase in the global

prevalence of diabetes from 1990 to 2017, healthcare costs and

disease morbidity are also on the rise (1). As of 2017,

approximately ∼30% of Canadians are living with diabetes or

prediabetes, and between 2011 and 2022 these cases are

estimated to result in >$17 billion per year in associated

healthcare costs (2). These striking statistics reflect the significant

societal burden of diabetes, necessitating the development of

treatments and solutions that reduce disease morbidity.

Further, it has warranted thorough investigations into the

pathophysiology behind this metabolic disease.

Diabetes mellitus is characterized as a metabolic disease with

the central symptom of chronic hyperglycemia. Hyperglycemia is

often a result of either decreased insulin secretion from the

pancreas, defects in the body’s response to insulin, or a

combination of the two (3). As a result, chronic uncontrolled

hyperglycemia can lead to long-term irreversible damage

including both microvascular (retinopathy, nephropathy, and

neuropathy, etc.) and macrovascular complications (coronary

artery disease, cerebrovascular disease, peripheral vascular

disease, etc.) (4). These late-stage diabetes complications, in

addition to the strenuous diabetes therapies, have a significant

negative impact on patients’ perceived quality-of-life (5). People

suffering from chronic hyperglycemia can be categorized into

two broad categories: type 1 diabetes mellitus (T1DM) which is

manifested by the autoimmune destruction of insulin-secreting

cells (pancreatic beta-cells), and type 2 diabetes mellitus (T2DM)

which is a consequence of beta-cell dysfunction and the

development of insulin resistance, with the latter accounting for

the majority (∼85%) of diabetes prevalence (6). These two

categories of diabetes have also been correlated with a decreased

life expectancy as those living with T1DM and T2DM in the

United Kingdom (UK) were estimated to have an average loss in

life years of 7.6 and 1.7 years, respectively, compared to the

general UK population (7). Classic signs of diabetes include high

fasting plasma glucose (above 7 mmol/L), decreased

responsiveness to glucose (persistent hyperglycemia after

controlled sugar consumption), elevated glycosylated hemoglobin

A1c (HbA1c), and the presence of autoimmune markers (beta-

cell autoantibodies), with the latter specifically pertaining to

T1DM (8). Diagnosing between T1DM and T2DM can be

difficult, particularly among adults, as around 5%–15% of

patients are diagnosed with T2DM despite having autoantibodies

present (9). These findings may suggest that a significant portion

of T1DM cases are misdiagnosed as T2DM.

Although the etiology behind T1DM is not fully elucidated, it

has been established as a multifactorial disease resulting from the

immune-mediated destruction of insulin-secreting pancreatic

beta-cells within the Islets of Langerhans. As such, those with

T1DM often require frequent exogenous insulin administration

to maintain euglycemia. This mainstay treatment of multiple

daily insulin injections has the inherent risk of potentially

life-threatening hypoglycemia, for those with impaired awareness.
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On average, individuals with T1DM experience 1 episode of

severe, disabling hypoglycemia per year, which can be

accompanied by a seizure, coma, or death (10, 11). Preventative

measures, such as the continuous glucose monitoring systems,

allow those who inject insulin to monitor blood glucose levels

more tightly throughout the day. In combination with insulin

pumps, the use of a hybrid closed-looped system that continuously

monitors blood glucose levels and automatically adjusts the

delivery of rapid-acting insulin has been explored and was recently

approved by the U.S. Food and Drug Administration (FDA).

Although this technology enables those living with T1DM to

achieve improved glucose management, continuous accurate

insulin infusion may fail from blockages or leakages (12).

Furthermore, the glucose monitoring sensors can become less

accurate from anomalies including slow sensor signal attenuation,

miscalibration, or dislodgment of the sensor from underneath

the skin (12). Hence, there remains a struggle to restore

normoglycemia and improve glucose management in those living

with T1DM without the typical and sometimes life-threatening

complications associated with exogenous insulin therapy.
2 History of islet cell transplantation

Pancreatic islet transplantation (ITx) has become an

established approach that frees recipients from severe

hypoglycemic events, and insulin injections while improving

glycosylated HbA1c. The modality of ITx has been explored as

early as 1893, twenty-nine years before the discovery of insulin

by Banting and Best. In December of 1893, Watson-Williams

and Harsant attempted to treat a 13-year-old boy dying from

ketoacidosis by performing the first documented islet tissue

transplantation with pieces of sheep pancreas (13). While minor

improvement in glycosuria was observed, the boy rejected the

xenograft and died comatose 3 days following transplantation

with similar outcomes in attempts made in the 50 years

thereafter (13, 14). In the 1950s, the hypothesis that the removal

of exocrine acinar tissue was paramount in the viability and

function of pancreatic grafts was well established (15). With the

islets of Langerhans making up a mere ∼2% of the pancreas, islet

isolation from adjacent exocrine tissue within the pancreas

became a vital step for improving engraftment. This led

researchers to perform laborious pancreatic microdissection to

remove exocrine tissue under the microscope, resulting in poor

yields and quality of islets; consequently, research efforts in the

field of pancreatic fragment transplantation declined (16).

However, in 1965, Moskalewski introduced the method of

collagenase-mediated isolation of guinea pig islets, revamping the

field of ITx research (17). In 1972, Ballinger and Lacy

demonstrated the first-ever experimental reversal of diabetes in

rats through the transplantation of isolated islets within the

peritoneal cavity and thigh muscles (18). The following year,

Kempt et al. demonstrated that isolated islets infused within the

portal vein leading to the liver were the most effective and

long-lasting site for the reversal of diabetes in rats, thus

establishing a promising clinical site for ITx, one that is still used
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today (19) (Figure 1). Clinical intraportal ITx first saw success in

1980 where they preserved the endocrine function of 10 patients

undergoing pancreatectomies for the treatment of chronic

pancreatitis; following collagenase-mediated isolation of patients’

own islets and successful infusion of these islets autografts into

the portal vein, they found that four patients achieved insulin

independence for at least 1, 9, 15, and 38 months, respectfully

(20). Although ITx with autografts would be ideal for decreasing

the chances of alloimmune rejection, allograft transplantation

(islets received from genetically non-identical donors) has been

more frequently explored due to the scarcity of healthy islets in

individuals living with T1DM. Despite these thrilling outcomes

in ITx, the field failed to see large-scale success as the

reproducibility of islet isolation was poor leading to low islet

purity and yield. In this period, an automated and standardized

islet isolation approach, the Ricordi Automated Method, was not

widely employed (21). Consequently, a mere ∼8.2% of the 267

allograft transplant patients treated between 1980 and 1996

achieved insulin independence for greater than one year (22). It

was not until 2000 that Shapiro et al. pioneered a breakthrough, the

Edmonton protocol, reigniting the flame of clinical ITx research

(23). The Edmonton protocol was the first ITx clinical trial to utilize

newer and more potent immunosuppressive agents: sirolimus,

tacrolimus and anti-CD25 antibody (daclizumab) (23). The

protocol also infused a larger number of healthy islets, isolated with
FIGURE 1

Broad methodology of clinical islet transplantation, involving collagenase-m
portal vein, and engraftment.
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the Ricordi Automated Method, into the portal vein compared to

previous clinical studies [11,547 ± 1,604 islet equivalents (IEq) per

kg of recipient’s body weight] (23). Shapiro et al. performed ITx

on seven patients with T1DM, and their glucocorticoid-free

(i.e., prednisone-free) immunosuppressive regimen demonstrated

effective immunosuppression, circumventing the diabetogenic effects

associated with glucocorticoid usage (23). In fact, all seven T1DM

patients achieved insulin independence for >1 year with functional

insulin secretory function, indicated by sustained circulating

C-peptide levels (a peptide co-secreted with insulin) (23). The

ground-breaking success of the Edmonton protocol sparked

worldwide interest, inspiring >1,000 ITx procedures in over 30

International transplant centers in the next two decades (24).

However, long-term follow-up of seven T1DM recipients enrolled

in the multicenter international Edmonton Protocol failed to show

sustained islet allograft function over a decade from their first

infusion, with only one subject remaining insulin independent (25).

The functional mass of islet allografts appears to decrease over time

as 20% of recipients remained insulin-independent at 10 years

compared to 61% at 1 post-transplant in 255 single-center ITx (26).

Where insulin independence may not always be achieved, ITx may

still effectively reduce instances of severe hypoglycemic events while

promoting euglycemia. A Phase 3 clinical trial by Hering et al.

found that infusing islets into the portal vein of forty-eight patients

with brittle T1DM led to 87.5% achieving an HbA1c <7.0 with no
ediated islet isolation, percutaneous infusion of islets into the recipient’s
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severe hypoglycemic events at 1-year post-transplant and 71% of

patients sustaining these criteria by 2 years (27). More recent

studies corroborate these findings as they saw a marked reduction

of severe hypoglycemic events up to 10 years post-transplant

(28, 29). Despite the marked progress in the field of clinical ITx,

the inability of this procedure to sustain long-term insulin

independence warrants further developments. Advancements may

include further optimizing islet isolation and preparation, exploring

alternative transplant sites that offer longevity in islet graft function,

testing more effective and less toxic drug regimens, identifying

alternative insulin-secreting cell sources (stem cell-derived and

xenogeneic), and utilizing novel biomaterials and devices. Through

these innovations, cellular replacement therapies may become a

more practical, accessible, and promising “functional-cure” for a

broader range of people living with diabetes.
3 Current status and limitations of islet
cell transplantation

3.1 Donor selection criteria and islet
availability

The limited number of viable islet donors has been a

determining factor for the number of people afflicted with

T1DM who can undergo ITx. With the human pancreas

estimated to hold between 2.3–14.8 million islets (30), isolation

outcomes aim to have high purity and yield (>300,000 IEq). Over

the past two decades, multiple publications have attempted to

correlate donor characteristics to the viability and outcome of

islet isolation. Retrospective studies that examined donor body

mass index (BMI), age, body weight, tissue cold ischemia time,

hospitalization length, and HbA1c found that all these factors

correlated with islet isolation outcomes (31–33). Although these

investigators strive to identify ideal donor characteristics with

these studies, interpretation of results must be done with caution.

A large portion of retrospective analysis identifies ideal donor

characteristics based on high isolation yields (31–33), but a large

number of islets is not always a good indicator of islet function.

Herein lies room for error in translating findings to optimal islet

physiology and graft performance. This is well illustrated by a

study reviewing 153 human islet isolations, in which older

donors (age 51–65) produced a significantly higher islet yield

(>100,000 IEq) and purity compared to younger donors (age

2.5–18) (34). However, they also measured the insulin

stimulation index, an indicator of islet function, and found that

younger donor islets demonstrated significantly superior insulin

secretory capabilities compared to the group of older donors

(34). Therefore, the current method of defining ideal donors in

the literature may be misrepresentative of the true definition of

an “ideal” donor in terms of optimal islet physiology.

Nevertheless, standardizing donor selection for ITx may help to

improve long-term success.

The first scoring system based on donor characteristics was

developed by O’Gorman et al. and has been used to determine

whether a pancreas would be viable for clinical islet isolation
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(35). The system was developed at a single isolation centre based

on 326 donors between 1999 and 2004 (35). More recently,

Wang et al. developed the North American Islet Donor Score

(NAIDS) to assess pancreas selection for appropriate clinical

transplantation with increased accuracy (36). Similar to

O’Gorman’s system, the NAIDS acts as a diagnostic tool for

clinical decision-making based on donor characteristics, however,

this system was developed through retrospective multicentre

analysis of a larger data set: 1,056 donors across 11 islet isolation

centres in North America (36). Moreover, the NAIDS has been

validated and remains to be the most useful and available tool

for donor pancreas selection to date (37). Certainly, examining

outcomes worldwide such as efforts of the Clinical Islet

Transplant Registry may refine these scoring systems to assess

relationships between primary graft function and donor

characteristics (38). More specifically, building criteria based

additionally on the relationships between graft performance,

length of insulin independence, and islet insulin secretory ability

to donor characteristics may be advantageous. Efforts to elucidate

this relationship with ITx outcomes may improve the

discriminative abilities of the scoring system, allowing clinicians

to identify donors that would likely have favourable outcomes in

both islet isolation and transplantation.

Akin to other organ transplantation, there is a growing disparity

between the availability of donors and the climbing numbers of

eligible patients that can benefit from ITx. In 2019, it was

estimated that 463 million people worldwide were living with

diabetes and its associated complications (39). That same year, the

Global Observatory on Donations and Transplantation registered

40, 608 deceased organ donors (40). Assuming that ∼10% of the

estimated global diabetes population suffers from T1DM, and

that all organ donors were eligible for islet isolation and

transplantation, only 0.088% of the global T1DM population could

receive a single donor transplant in 2019; patients routinely

require multiple islet donors to achieve insulin independence.

Furthermore, not all organ donors would fit the eligibility criteria

for islet isolation and transplantation. These considerations may

suggest that an even lower percentage of those living with T1DM

can undergo ITx, widening the disparity between islet supply and

treatment demand. Therefore, clinical ITx has been limited to

those living with brittle diabetes and life-threatening hypoglycemic

unawareness (23). As such, there is a drive to identify a less

limited, alternative insulin-producing cell source.
3.2 Assessing islet graft function

The significant improvements in experimental ITx research

along with clinical advancements demonstrate the ability of

researchers to assess allograft or autograft function and adjust

protocols accordingly. Having an accurate monitoring system

provides investigators with more information on the impacts of

treatment. Similar to standardizing ITx protocols and donor

selection, creating a scoring system to monitor islets objectively

has been a major area of interest. To achieve this, monitoring

graft function is a key measure of ITx outcomes, which can help
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direct new alterations and improvements to current treatment

protocols. Furthermore, using multiple indicators to assess graft

function can help create standardized and validated scoring

systems that eliminate some biases with clinical observation.

Currently, the main factors used as objective measures of graft

function are clinical indicators. Measures in controlled glucose

tolerance tests, fasted circulating C-peptide, HbA1c, daily

exogenous insulin requirements, and renal function have been

evaluated individually or in combinations to create standardized

scoring systems. To name a few, these systems include the

homeostatic model assessment (HOMA) -beta score (41), a

secretory unit of islet transplant objects (42), transplant

estimated function (43), and most recently the BETA-2 score

(44). Visualizing islet grafts may serve as complementary

information to the clinical parameters described. Imaging

systems evaluated experimentally like positron emission

tomography (PET), single-photon emission computed

tomography (SPECT), magnetic resonance imaging (MRI), and

ultrasound imaging paint a larger picture by visualizing

biological processes at a cellular level (45). At present, there is a

lack of a standard, clinically relevant, and non-invasive imaging

method to monitor islet grafts especially in the intrahepatic site

despite the ongoing efforts to validate such an imaging technique.
3.3 Limitations of clinical portal vein
infusion

As of today, virtually all clinical ITx worldwide are mediated

through intrahepatic islet infusion. Although pancreas

transplantation can yield similar glycemic outcomes and have

comparable costs, ITx is a less invasive procedure that carries

lower rates of severe complications (46). While this method of

percutaneous intraportal pancreatic islet infusion is a minimally

invasive procedure and an effective means to achieve insulin

independence, it is not without expected risks including portal

vein thrombosis and hypertension, hepatic steatosis, and

intraperitoneal bleeding from hepatic punctures (47).

Furthermore, despite the refinements made in islet isolation and

transplantation protocols over the last two decades, intrahepatic

islet transplantation is still associated with an immediate loss of

50%–70% post-transplantation (48, 49). This acute islet cell death

in the peri-transplant period compromises long-term treatment

success and severely limits engraftment. Furthermore, a larger

number of islets is required per recipient, further restricting the

number of T1DM patients that can be treated with the already

limited donor supply. Factors that may contribute to early graft

loss specific to the portal vein microenvironment include the

instant blood-mediated inflammatory reaction (IBMIR), activated

endogenous liver immune cells, and islet hypoxia. These

limitations hold true for both allogeneic and autologous (in cases

of chronic pancreatitis) ITx. Addressing these barriers may help

identify clinically relevant solutions that could improve early

graft survival such as alternative transplant sites.

The instant blood-mediated inflammatory reaction (IBMIR) is

a well-studied and early consequence of intrahepatic islet infusion.
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This complex and nonspecific innate immune response is a major

cause of the acute destruction of islets post-transplantation (50).

The IBMIR results in a coagulation cascade that is triggered by

two islet-specific factors that promote platelet binding: the

negatively charged islet surface (51) and the external expression

of tissue factor on the islets (52). Since the graft is infused

directly into the bloodstream via the portal vein, there is ample

opportunity for circulating platelets to interact with these

coagulation triggers on the islet surface. Following the formation

of macroscopic clots, a panel of cytokines are released, and

inflammatory cell recruitment and activated ensue (53). There

have been multiple attempts to protect islets against hypoxic and

inflammatory stress associated with IBMIR. In experimental

models, the coating of islets with endothelial cells (54) and the

infusion of anti-coagulates including heparin (55), low-

molecular-weight dextran sulfate (56), and thrombin inhibitors

(57) have all shown to be effective means of disrupting the

IBMIR response. However, to date, only heparin has been

validated in clinical settings (58).

Native islets within the pancreas are well-oxygenated, as they

make up only 1%–2% of the pancreas’ total volume but receive

10%–15% of its blood flow (59). However, through the isolation

process and in culture conditions, they suffer from a drop in

oxygen delivery and consequently undergo cell death (60). Unlike

full organ transplantation, islet grafts are simply infused into the

portal vein and are not anastomosed to blood vessels, thus

experience reduced oxygen availability and hypoxia exposure

until angiogenesis forms a functional circulatory system within a

10–14-day period following transplantation (61, 62). Hence, islets

are mainly oxygenated through diffusion in the early stages of

engraftment, which is further impaired by the low oxygen

tension of the portal vein system. Moreover, these islets have

been shown to experience a persistent and chronic drop in

endogenous oxygen tension, going from an initial 40 mmHG

within the pancreas to a meager 5 mmHG in the portal vein for

up to 3 months post-transplant (59, 63). Consequently, the

hypoxic environment is a trigger for cell death, thus resulting in

a major loss in islet graft mass. The evident hypoxia among

other hepatic factors contributes to poor engraftment, and

therefore a larger number of islets is required at this site. In

addition, the intrahepatic site still poses a challenge for graft

imaging and retrieval, which can be more detrimental in

removing malignancies if alternative cell sources are employed.

As such, these factors may suggest the liver is not an optimal site

for islet transplantation.
3.4 Transplant site independent factors
contributing to loss in functional islet mass

Though there has been major progress in clinical islet isolation,

this extensive 5–7-h multi-step process remains detrimental to

functional islet mass. As explored earlier, islet isolation consists

of cold enzymatic digestion, which is later followed by

mechanical shearing, density gradient purification, and cell

culturing. The early development of the Automatic Method
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utilizing the Ricordi Chamber and continuous digestion-filtration

pancreas processing eliminates some human error and has been

shown to substantially improve the qualitative and quantitative

clinical isolation outcomes (21, 64). Over the next three decades,

the Automated Method has evolved to further improve islet

isolation outcomes and remains the central technology in clinical

islet processing facilities worldwide (15). Despite these

advancements, this process can be extremely stressful to sensitive

beta-cells, therefore leading to loss in functional islet mass. The

current isolation and purification procedures destroy the islet

capillary network, thereby preventing the delivery of adequate

oxygenation to the level of a normally functioning pancreas. As

such, islets experience a period of acute hypoxia throughout

isolation, which has been shown to induce apoptosis in beta-cells

through upregulating the pro-apoptotic transcription factor

C/EBP homologous protein (CHOP) in vitro (65). Moreover,

evaluation of human islets immediately following isolation

revealed that ∼30% of all islets stained positive for apoptosis

[terminal dUTP nick end labelling (TUNEL) staining], with

beta-cells representing the largest proportion of stained cells (66).

Human islets transplanted into immunodeficient nude mice also

demonstrated a large loss in functional islet mass as they

measured up to a 70% decrease in beta-cell mass by 1-month

post-transplant (67). Other murine studies demonstrate a similar

trend, with this profound reduction in islet mass being

independent of the transplantation site (50, 59).

Another major contributor to graft attrition is the immune

response. Recruitment of macrophages following the

inflammatory reaction, which is propagated by the IBMIR,

results in migration and activation of cytotoxic T cells (CD8+)

that directly contribute to islet cell death. These mechanisms will

be explored further in the next section; however, it is vital that

the recipient’s immune reaction is identified as a contributor to

the loss of functional graft mass. For this reason, transplant

recipients are required to undergo long-term immunosuppression

treatment for the length of the graft function in order to prevent

rejection. Despite these efforts to prolong graft function, chronic

immunosuppression has potentially serious side effects including

the risks of developing debilitating infections or malignancies.

Furthermore, immunosuppressants used in the past have also

been shown to have diabetogenic properties as a result of direct

harmful effects on beta-cell function (68–70). Subverting the

immune response while minimizing immunosuppressant

toxicities remains a major challenge in ITx, though the

development of more selective and potent drugs over the years

has been majorly beneficial.
4 Immunomodulation: a fine line

4.1 Overview of the auto- and alloimmune
response

The majority of patients undergoing ITx are afflicted with

T1DM, and as such, are susceptible to two distinct types of

immune-mediated graft destruction: the alloimmune response to
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the foreign islets, and the recurrent autoimmune response that is

the main driver of the initial onset of this metabolic disease.

Multiple studies have worked on identifying pathways and

immune cells involved, along with determining the roles each

contributes to ITx outcomes. Despite the ongoing investigation,

there is still an unclear understanding of which process is the

main instigator of immune rejection. Nevertheless, distinguishing

the mechanisms of these two types of immunity can help

generate novel targeted treatments and transplant approaches

that could decrease the occurrence of graft rejection.

As many transplant recipients are within the later stages of

T1DM, indicated by a large portion of immune cell-mediated

beta-cell loss, there is a high probability of recurrent

autoimmunity. Before diving into the mechanism of recurrent

autoimmunity, it may be useful to further explore T1DM

pathogenesis. In 1974, the immune system was first suggested to

play a role in T1DM when Nerup et al. discovered an association

between the type of human leukocyte antigens (HLA) complex

and insulin-dependent diabetes (71). The HLA system, also

known as the major histocompatibility complex (MHC), is

primarily involved in antigen presentation to elicit a targeted

immune response. Specifically, HLA class I (MHC class I)

molecules are ubiquitously expressed on the plasma membrane

of almost all nucleated cells and present cytosolic peptides to

CD8+ T cells through interaction with T cell receptors (TCRs),

while HLA class II (MHC class II) is exclusively expressed on B

lymphocytes, antigen-presenting cells (APCs), and activated T

lymphocytes to detect circulating antigens and present them to

CD4+ T cells also via TCRs (72). A heightened sensitivity in

MHC results in immune reactions to a larger panel of antigens.

As such, the HLA system is responsible for foreign antigen

detection, and in cases of autoimmune diseases, endogenous

antigens. Since the initial association between HLAs and T1DM,

genome-wide association studies corroborate the significance of

antigen presentation, as they found that up to 50% of HLA genes

(notably HLA class II genes) accounted for the genetic risk of

T1DM (73, 74). Furthermore, a study controlling for HLA class

II alleles found that HLA class I genes are also associated with

T1DM (75). Nonetheless, there remains a lack of consensus on

an identified primary autoantigen involved in T1D, possibly due

to the heterogeneity of this metabolic disease. Islet-specific

autoantigens that have been considered include proinsulin

(precursor of insulin), zin transporter 8 protein (essential for

biosynthesis and secretion of insulin), insulin promoter factor 1

(IPF-1), islet amyloid polypeptides (peptide hormone co-secreted

with insulin), etc (76). There is a general hypothesis that

beta-cell autoantigens are processed through the APCs HLA class

II molecule complex, resulting in activation of naïve T cells to

autoreactive CD4+ T cells. Following activation, these

autoreactive T cells migrate to the pancreas and locally release a

panel of cytokines to stimulate macrophage and T cell-mediated

beta-cell destruction (77). These views are supported by the

following findings: (i) the presence of infiltrated T cells in T1DM

patient inflamed islets (insulitis) at the onset of T1DM (78); (ii)

T cells obtained from within islets of T1DM donors were highly

reactive to an autoantigen (preproinsulin) (79); and (iii) systemic
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immunomodulators targeting T cells delayed disease progression in

clinical studies (80). Although the cytotoxic mechanisms driving

T1DM remain elusive, there is strong evidence that HLA

complex-mediated antigen presentation and T cells are involved

in autoimmunity.

Clinical and preclinical experimental outcomes of ITx have

been associated with a recurrent autoimmune response. Similar

immune events responsible for the onset of T1DM have also

been seen in the period following ITx. In non-obese diabetic

(NOD) mice, an autoimmune model of T1DM, MHC class II

mismatching between donors and recipients demonstrated longer

graft survival compared to when the donor and recipient shared

similar MHC class II antigens (81). Moreover, studies utilizing a

rat model of autoimmune T1DM also found that performing ITx

with MHC-mismatched grafts demonstrated prolonged survival

and were not susceptible to recurrent autoimmunity compared to

MHC-matched grafts (82, 83). Altogether, these preclinical

findings provide further evidence of the significant role of MHC

antigen presentation in T1DM autoimmunity. In the clinical

setting, characterizing recipients’ immune cell reactivity against

islet autoantigens pre- and post-transplant can help elucidate the

relationship between recurrent autoimmunity and transplant

outcomes. A study exploring this relationship performed

multivariate analyses of 21 people living with T1DM and

demonstrated that the presence of cellular autoimmunity

immediately prior to and one year following ITx was associated

with significant delays in achieving insulin-independence and

inferior graft function, indicated by lower circulating C-peptide

levels (84). Furthermore, a study linking clinical ITx to increased

rates of post-transplant autoreactive memory T cell proliferation

provides greater evidence for recurrent autoimmunity in patients

with T1DM (85). Although the mechanisms underlying the

recurrent autoimmune response seen in T1DM patients remain

unclear, clinical and preclinical findings provide evidence for its

occurrence and possible contributions to long-term graft failure.

The alloimmune response is another major concern that

contributes to unfavourable ITx outcomes. This process is driven

by alloreactive T cells that respond to the genetic dissimilarities

between the recipients and the islet graft tissue. Similar to

autoimmunity, the MHC complex plays a vital role in eliciting an

immune response. Specifically, host immune cells are directed

against unfamiliar MHC class I molecules that also ubiquitously

present foreign peptides found within the allograft cells, the

foreign nature of donor MHC I molecules themselves, and MHC

class II on recipient’s APCs that uptake circulating foreign

antigens originating from the graft (72, 86). CD8+ T cell

activation through foreign antigens presentation on allografts,

mediated by foreign MHC class I recognition, leads to CD8+

cytotoxic T cell-mediated islet destruction and the triggered release

of cytokine that precipitates inflammation and coagulation (86).

Consequently, blood flow to the islets becomes disrupted and graft

ischemic injury occurs. As mentioned, hypoxic conditions have

been linked to cell death and upregulated genes in the cell death

pathway which contribute to graft failure and metabolic

dysfunction (65, 66). Additional activators of the alloimmune

response involve the MHC class II molecules on APCs that
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present foreign antigens to activate CD4+ helper T cells (72).

Subsequently, these CD4+ helper T cells activate macrophage

through cytokine release along with promoting the production of

antibodies via B lymphocyte activation (86). A study in which

investigators reconstituted immunodeficient mice with a mix of

lymphocytes that excluded alloreactive T cells demonstrated long-

term islet allograft survival using mismatched MHC complex

between donor and recipients (87). The alloimmune reaction

generated through the mismatch between donor and recipient

MHC molecules is a major contributor to allograft rejection.
4.2 Overview of immunomodulatory agents
used in clinical islet transplantation

The struggle to suppress immune rejection has been an

ongoing battle since the first initial islet mass transplant in 1893.

Utilizing immunosuppressive agents has allowed the field to

achieve and prolong insulin independence; however, there has yet

to be any long-term success in curing T1DM. Nevertheless,

immunosuppressants have been a major contributor to allogeneic

ITx success and have evolved throughout the years. The goal of

immunotherapy is for recipients to develop a tolerance

phenotype to transplanted donor tissue, thus preserving graft

function and survival. In the clinical setting, there are two phases

of immunosuppressant treatment to achieve this tolerance:

induction and maintenance immunosuppression.

Induction agents target immunity that would be heightened

during transplantation to reduce the incidence of acute rejection.

Sustained induction therapy would most likely result in

iatrogenic events, therefore prolonged use is not ideal. Practically

all transplantation employs induction therapy, including ITx, but

there is no global standard ITx immune modulation regimen.

Typically, induction therapy is employed ∼1–2 days prior to

transplantation and is administered up to 7 to 14 days post-ITx.

Induction therapy that has T cell-depleting actions has been

shown to have a positive effect on long-term insulin

independence, regardless of the type of maintenance

immunotherapy later employed (88). Thus induction therapy has

been and remains a crucial step in clinical ITx (88). The

following induction agents are typically used in clinical ITx and

the corresponding mechanism of action (Table 1).

Following transplantation, higher concentrations of

immunosuppressants are initially used to prevent acute rejection

and over time, a lower dose is prescribed to decrease the risk of

toxicities associated with chronic treatment. This maintenance

immunomodulatory regimen aims to protect islet grafts from the

allo- and recurrent auto-immune responses that were previously

explored. Since this lifelong immunosuppressive therapy is a

crucial treatment for transplant recipients, immunosuppressants

over the years have constantly evolved to prolong islet function,

while still having minimal toxicity. This can be achieved with

potent and selective agents with minimal off-target effects. The

following agents have been commonly used as maintenance

immunosuppressive therapy in ITx, and the associated

mechanisms (Table 2).
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TABLE 1 Mechanism and uses of immunosuppressives used in the induction phase of ITx.

Glucocorticoids Prednisone is a synthetic, anti-inflammatory glucocorticoid that supresses the immune system through altering gene expression.
Through binding nuclear receptors, prednisone inhibits the production of proinflammatory cytokines resulting in decreased
circulating lymphocytes. Prolonged use of high-dose glucocorticoids has been seen to cause serious adverse effects to systems
including musculoskeletal, cardiovascular, gastrointestinal tract, and the endocrine system. Glucocorticoids have also been seen be
diabetogenic which further serves as an additional barrier in ITx. Therefore, acute use of these agents in the induction phase of ITx
have been explore and are currently still used in the clinical setting (184–186).

Daclizumab (Dac) Used in the Edmonton Protocol (23), Dac is a humanized and monoclonal antibody that inhibits interleukin-2 receptor (IL-2R) via
reversible CD25 blockage, the high-affinity subunit on the IL-2R. IL-2 is the main ligand that activates the IL-2R and is released by
activated T cells. IL-2 receptors are expressed on a number of immune cells, notably activated T cell, memory CD8+ T cells, naïve T
cells, and natural killer T cells (187). Additionally, regulatory T cells (Treg) express IL-2R, and signaling within all these cells
promote proliferation, and for some lymphocytes (CD8+ T cells, effector T cells, etc.) are essential for differentiation and activation
(187). Dac blockage of IL-2R signaling thus inhibits induction of the immune response, preventing acute immune rejection.

Basiliximab Targets identical pathways as Dac, but is a chimeric monoclonal antibody produced through recombinant technology (188).
Basiliximab blocks the same IL-2R subunit as Dac, and thus supresses immune cell proliferation and maturation. Both Dac and
basiliximab are commonly used in renal transplantation to prevent occurrences of acute rejection, and a meta-analysis of 6
randomized controlled trials (total of 509 patients) demonstrated that basiliximab and Dac had similar efficacy and safety profiles
(189). Therefore, clinicians have used basiliximab and Dac interchangeably as induction therapy in ITx.

Anti-thymocyte globulin (ATG,
Thymoglobulin)

A polyclonal, rabbit anti-thymocyte globulin that rapidly depletes T cells and other lymphocytes. The main mechanism of
lymphocyte depletion is complement-dependent cell lysis (190). Consequently, there are less active T cells that can precipitate an
allo- and auto-immune reaction in the peri-transplant period. Thymoglobulin has been utilized in a clinical setting for over 30
years (191), and is currently still used as an immunosuppressant in solid-organ transplantation (192).

Tumor necrosis factor (TNF) inhibitor
(Etanercept)

Etanercept works through biologically inhibiting pathways involved in the development and progression of inflammation, TNF
receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). TNFR1 agonism via the endogenous ligand (TNF-α) binding triggers a
proinflammatory response, while activation of TNF2R on immune cells, also by TNF-α, promotes immune cell survival and
proliferation (193). Thus, inhibition with etanercept supresses the inflammatory response and immune cell proliferation following
transplantation (193). These effects also extend to Treg cells, suppressors of activated immune cells, therefore Etanercept is used
with caution in ITx. Moreover, high concentrations of this TNF inhibitor has been revealed to reduce islet function and integrity
(194). Etanercept is often used in combination with ATG or alemtuzumab as an ITx induction therapy.

Alemtuzumab Alemtuzumab is a monoclonal and humanized antibody against CD52 found on the membrane glycoprotein of T and B
lymphocytes, NK cells, macrophages, and other immune cells. The function of CD52 is still unclear, however some have suggested
that this pathway may be involved in T cell co-stimulation and migration (195) along with Treg induction (196). Therefore,
alemtuzumab administration has been seen to cause significant T and B lymphocyte depletion.

Anakinra Another anti-inflammatory agent typically used with etanercept in the induction phase. Anakinra competitively binds IL-1R,
thereby inhibiting the proinflammatory actions of IL-1 (197). Agonism of IL-1R, stimulated via damage recognition (during
transplantation), triggers the production of a cascade of inflammatory cytokines including TNF-α (197). Therefore, inhibiting this
signaling pathway would be ideal for decreasing the inflammatory and immune recruitment response immediately following ITx.
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4.3 Toxicities of immunosuppression

The marked progress made in the field of transplantation is not

without the development of more potent and selective

immunosuppressives. Despite ITx consisting of a smaller mass

transplanted compared to whole organ transplants, these recipients

have one of the most rigorous immunosuppressive regimens (89).

As such, multiple toxicities have been associated with the lifelong

use of these agents. The chronic immune paralysis in ITx that

prevents alloreactivity has been shown to have minor but common

risks including mouth ulcers, diarrhea, and acne (90). More

life-threatening risks associated are the development of malignancy

and serious infection, although these are rare (90). Frequently used

immunosuppressives (tacrolimus and sirolimus) have also been

shown to have direct toxic effects on beta-cell function and

survival, thus being inadvertently diabetogenic (91, 92). These

multiple toxicities associated with chronic immune suppression

remain a major barrier to improving the quality of life of ITx

recipients. In fact, the recipients’ ability to tolerate these toxicities

is a factor in the patient inclusion criteria. The need to reduce or

even completely abolish the requirement for chronic

immunosuppression is one of many major hurdles (Figure 2).

Therefore, investigators strive to develop systemic

immunosuppressive-free transplant approaches that can be applied
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to novel and promising extrahepatic transplant sites to effectively

subvert the immune response.
5 Novel advancements in islet
transplantation

5.1 Devices and alternative transplant sites

While transplanting islets within the liver currently accounts

for virtually all clinical ITx and is an effective means that frees

recipients from insulin injections, the procedure often results in

acute islet cell death and/or gradual graft attrition due to

multiple factors in the intraportal hepatic site (93). Consequently,

an estimated ∼70% loss in initial islet mass occurs, meaning that

recipients routinely require multiple organ donors to achieve and

sustain insulin independence (93). Though effective, ITx into the

liver is not the ideal transplant site after considering the hostile

nature of the hepatic microenvironment. These considerations

previously explored indicate that the liver is not the optimal site

for ITx.

To promote engraftment, an ideal ITx site should provide

adequate vascularization, substantial space to accommodate for

the significant volume of transplanted islets, and sufficient
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TABLE 2 Mechanism and uses of immunosuppressives used in the maintenance phase of ITx.

Cyclosporin (Cyclosporine A,
CsA)

Early biological studies demonstrated potent immunosuppressive abilities of CsA through blocking the transcription of cytokine genes (IL-2
and IL-4) that are necessary for T cell activation (198, 199). It was later discovered that these effects were mediated through inhibition of the
calcium and calmodulin dependent serine/threonine phosphatase, calcineurin. Calcineurin is stimulated via calcium and calmodulin during T
cell activation, where it dephosphorylates nuclear factors of activated T cells (NFAT), which activates these proteins and allows them to
translocate to the nucleus (200). Once NFAT are in the nucleus, they bind DNA and associate with other transcription factors to promote
transcription of cytokines: IL-2, IL-4, IL-10, and IL-17 (201). CsA mediated calcineurin inhibition prevents NFAT dephosphorylation,
decreasing the transcription of cytokines that are vital propagators of the allo- and auto-genic immune response. Specifically, this blockage is
achieved through CsA binding to the immunophilin, cyclophilin A (predominantly found in T cells) and this complex has enhanced selective
affinity for calcineurin, thus inhibiting its phosphatase ability (201). The effect on IL-2 has been thought to be the main contributor of
immunosuppression. As explored earlier, IL-2 is necessary for the action, survival, and differentiation of CD4+ and CD8+ T cells (187).

Tacrolimus (FK506, tac) A macrolide antibiotic that supresses the immune system in a similar way to CsA. However, tac binds to a different immunophilin, the FK506
binding protein (FKBP), which also leads to the inhibition of calcineurin (202). As such, tac and FKBP complex-mediated calcineurin
inhibition results in decrease cytokine gene transcription, therefore decreasing T cell proliferation. One main difference between CsA and tac
is that the latter is around 100 times more potent, which may be a reason for tac gaining popularity over the years for easier dosage (202).
Moreover, tac has the capacity to reverse phases of allograft rejection when the use of steroids becomes ineffective (203). Thus, tac is an ideal
agent for maintenance immunosuppression, and was used in combination with sirolimus in the Edmonton protocol (23).

Sirolimus (rapamycin) Veniza and colleagues discovered rapamycin (sirolimus) on Easter Island in the early 1970s and identified it as a product of Streptomyces
hygroscopicus (204). Although rapamycin was initially isolated as an antifungal agent, later studies revealed potent immunosuppressive
activities through inhibiting the mammalian target of rapamycin (mTOR), a vital component in immune cell maturation, function, and
proliferation. mTOR is a serine-threonine kinase that functions through two distinct complexes: mammalian target of rapamycin complex 1
(mTORC1) and mammalian target of rapamycin complex 2 (mTORC2) (205). Rapamycin is proposed to interact with a binding protein
[immunophilin FK506-binding protein 1A, 12kDA (FKBP12)] to form a complex that specifically blocks mTORC1 (206). The FKBP12-
rapamycin complex binds the amino-terminal of mTORC1, disrupting cell growth by reducing translation, ribosome biogenesis, and
autophagy. Moreover, mTORC1 plays a major role in regulating cell growth and downstream processes in immune cell development, thus
FKBP12-rapamycin mTORC1 blockade impairs dendritic cell maturation and function, and inhibits T cell and B-cell proliferation (206). In
rodents, rapamycin mediated mTOR blockage caused significant thymus atrophy, associated with lower T cell output (207). Moreover, in
vitro exposure of rodent and human CD4+ CD25+ Treg cells to rapamycin did not impair Treg-dependent immune suppression, and
conversely promoted expansion of functional Tregs cells in T1DM patients (208). These potent immunosuppressive effects contribute to the
crucial tolerance phenotype necessary in islet engraftment, and is the reason that rapamycin remains one of the most frequently used
maintenance immunosuppressive drug in ITx including in the Edmonton protocol (23).

Mycophenolate mofetil (MMF) MMF is a prodrug of mycophenolic acid (MPA) which inhibits de novo synthesis of guanosine nucleotides through potent type II inosine
monophosphate dehydrogenase (expressed in activated lymphocytes) inhibition (209). This enzyme is a rate-limiting step of the nucleotide
synthesis pathway that T and B cells are more dependent on compared to other cell types. Hence, MPA has potent and selective cytostatic
effects on lymphocytes (209). MPA has been shown to induce apoptosis in activated T cells, and the guanosine nucleotide depleting effects
decrease the expression of selective adhesion molecules required for lymphocyte recruitment and infiltration (209).

FIGURE 2

Current hurdles in islet transplantation and solutions that overcome these limitations to provide a “functional-cure” for T1DM. Figure adapted with
permission from Desai, 2018 (183).
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nutrients to aid in islet survival and revascularization. Additionally,

avoidance of acute graft loss due to host inflammatory reactions in

the peri-transplant period is paramount for decreasing the number

of islets required to ameliorate hyperglycemia and can increase the

number of T1DM recipients that may be treated. As mentioned, an

accessible site would also allow for safety monitoring, non-invasive

transplantation, and routine biopsies. Identifying such a site would

enable easy retrieval which is ideal for removing abnormal growths

associated with alternative cell sources such as insulin-producing

stem cells. Considering this all, there are concerted efforts to

identify an alternative transplant site.

A multitude of investigators have explored more favourable

extrahepatic ITx sites in experimental models and for some in a

clinical setting. Experimental sites explored include the liver,

spleen, kidney subcapsular space, bone marrow, omentum,

peritoneum, intestinal wall, muscle, subcutaneous space, and

immune-privileged sites (anterior chamber of the eye) (94).

While many of these sites effectively cured hyperglycemia in

experimental animal models, translating these successes into a

clinical setting remains challenging. For instance, islets allografts

infused into the bone marrow of non-diabetic rats effectively

produced insulin and had limited rejection (95). Further, ITx in

an allogeneic diabetic mouse model demonstrated that bone

marrow infusion was superior to the hepatic site in achieving

normoglycemia (96). On the contrary, a pilot randomized

controlled clinical trial found that all but 1 patients who received

an intra-bone marrow islet infusion (n = 7) saw a loss in islet

graft function within the first 4 months post-transplantation (97).

These findings are one of many instances where experimental

successes fail to translate to clinical outcomes. Distinct

differences in human and animal anatomy, immune system, and

physiology may be largely responsible in the divergence of

extrahepatic ITx outcomes seen. Coughlan et al. outlines each

site for their ability to satisfy the essential characteristics for ITx,

and the current status of preclinical and clinical findings (94).

Certainly, each site has their respective advantages and

limitations in satisfying explored factors (transplant efficacy,

ease of monitoring, capacity, oxygen tension, etc.) leading to

varying levels of success in preclinical and human trials.

Employing biomaterials, novel immune evasion technologies, and

angiogenic approaches within these alternative sites may

surmount site-specific shortcomings and improve feasibility.

The subcutaneous space is a promising extrahepatic site for ITx

due to its minimal invasiveness, ability to support a large transplant

volume or device, and potential for monitoring transplant function

(98–100). Despite these benefits, the subcutaneous site is a poorly

vascularized location, contributing to a hypoxic environment and

thus islet cell apoptosis. The majority of vascularized connective

and supportive tissue surrounding islets are lost during islet

isolation (15); therefore delivering islets in devices have been

explored to recapitulate the endogenous pancreas, promoting

engraftment and survival in the subcutaneous space (101). To

achieve such a feat, Barkai’s group designed a bioartificial

pancreas (Beta-Air from Beta-O2 Technologies Ltd.) that

suspends islets in an alginate hydrogel with sufficient oxygen (via

a refillable gas chamber and gas permeable membrane), an
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external barrier providing immune protection, and a

mechanically protective frame (101). Their subcutaneous

implanted device was able to reverse diabetes for up to 6 months

in streptozotocin-induced diabetic rats using allogeneic islets

(101). These exciting results led to a clinical trial where 4

diabetic patients underwent subcutaneous implantation with 1–2

of their bioartificial pancreas, however, outcomes were not as

triumphant (102). All four patients saw no changes in metabolic

control and low levels of circulating C-peptide, but transplanted

islets within the device survived up to 3–6 months post-

implantation (102). However, the recovered bioartificial

pancreases demonstrated insufficient ex vivo function, as there

were low glucose-stimulated insulin responses (102). Another

undesirable outcome seen in these patients was the signs of a

substantial foreign-body reaction, indicated by immune cell

accumulation in the surrounding areas of implantation (102).

This lifelong complex and dynamic process involves continuous

protein adsorption, immune and proinflammatory cell

recruitment, and extracellular remodeling which can all

contribute to the failures associated with subcutaneously

transplanted biomaterials (103). Hence, alternative strategies that

do not utilize permanently implanted devices (a trigger of the

foreign-body response) whilst still promoting early

vascularization have been heavily explored. This necessary step

can involve preconditioning the subcutaneous site with

implanting biomaterials such as angiogenic growth factor-loaded

polylactide capsules (104), methacrylic acid copolymer coated

biomaterial (105), or vascular access catheter (106) that are

subsequently removed prior to islet transplantation. Pepper et al.

developed a “device-less” approach that harvests the foreign-body

response, demonstrating that pre-implanting and then later

removing catheters (at 4-weeks post-implant) sufficiently

vascularizes the subcutaneous ITx site (106). Subsequent

syngeneic ITx into this preconditioned site effectively reverses

diabetes in mice (>100 days) with a marginal number of islets,

while diabetic mice that underwent subcutaneous transplantation

without any preconditioning failed to achieve normoglycemia

(106). This promising and novel “device-less” transplant modality

is currently being explored as of 2021, in a phase I clinical trial

consisting of 5 patients with T1DM (ClinicalTrial.gov Identifier

NCT05073302). Another method that also promotes early

angiogenic growth, but does not require preconditioning the

subcutaneous site, was designed by Nalbach et al. where they

fused islets to microvascular fragments (107). This combination

was seen to highly enhance in vitro angiogenic activity and

effectively restore normoglycemia with a subtherapeutic number

of microvascular-fused islets transplanted within the dorsal skin

fold of diabetic mice (107). A similar subcutaneous approach

that delivered a bioabsorbable methacrylic acid bounded polymer

with islets supported graft revascularization and survival (108).

Though, the application of bioabsorbable materials may also

support prevascularization as Kuppan et al. effectively

vascularized a subcutaneous site with a nanofibrous polymer

scaffold functionalized with angiogenic factors, promoting the

survival and function of porcine islets that were later

transplanted in mice (109). Although these strategies show
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promise, there has yet to be an established alternative islet

transplant site used in the clinical setting. Moreover, patients

would still be subject to chronic immunosuppressive toxicities

regardless of transplant location. Further experimental and

clinical progress in novel subcutaneous transplant modalities may

one day lead to such an extrahepatic ITx site that can overcome

the barriers explored.
5.2 Alternative cell sources

5.2.1 Xenogeneic islets
The use of islets that originate from different species has been

widely explored in order to circumvent the demand for human

donors. Multiple sources of xenogeneic islets have been

investigated including tissue derived from bovine (110), fish (111),

sheep (112) and porcine (pig) (113). Although each source has

associated advantages and disadvantages, at present, pig islets

prove to be the most promising source due to their similar

physiological and morphological features to human islets.

Additionally, pigs are an attractive source because of their (i) high

fecundity, (ii) efficiency of genetic modification through

well-established techniques, (iii) practicality of housing them under

pathogen-free conditions, and (iv) cost-efficient feasibility (114).

Furthermore, porcine insulin has been used as an established and

effective diabetes therapy for over 2 decades, demonstrating that

pig islets may serve as a promising alternative cell source for ITx

(115). Multiple preclinical studies support this notion;

xenotransplantation of neonatal porcine islets has been

demonstrated to be an effective means of achieving long-term

reversal of diabetes in diabetic rodents (116) and nonhuman

primate (NHP) models (117, 118) in adjunct to

immunosuppressant treatment. However, translating these

experimental successes to a clinical setting remains a major

challenge. The first ever human islet xenotransplantation of 10

patients with fetal porcine islets was performed by Growth et al.

in 1994 (119). They demonstrated that xenografts can survive for

up to serval months, but patients failed to show any

improvements in their glycemic control (119). Since then,

investigators have made procedural adjustments including genetic

modifications, islet encapsulation, and isolation modifications in

an attempt to improve the clinical success of xenotransplantation.

In 2014, Matsumoto et al. transplanted 14 patients with unstable

T1DM with encapsulated neonatal porcine islets without

immunosuppression and saw a reduction in unaware

hypoglycemic events, but only a minimal reduction in HbA1c and

daily insulin dosages at 1-year post-transplant (120). A similar

2016 clinical study in Argentina, where 8 patients underwent

intraperitoneal transplantation with encapsulated neonatal porcine

islets, also saw patients experiencing fewer episodes of unaware

hypoglycemia and an improvement in HbA1c, but no change in

daily insulin injections (121). Beyond ITx, recent thrilling

advancements in clinical xenotransplantation highlighted the

genetic modification approach. Two separate patients were

transplanted with a genetically modified pig heart or kidney with

10 and 69 gene edits, respectively (122, 123). Triumphantly, no
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acute rejection was seen with both procedures with the pig heart

failing at 48 days and the pig kidney at just under two months

after transplantation. These thrilling cases shed light on the

possibility of a functional alternative organ source that may help

fill the demand for organ transplantation. Exploring the clinical

transplantation of islets from these genetically modified pigs may

address the immunological barriers of xenotransplantation. As islet

isolation disturbs the intricate vasculature perfusing islets,

significantly lower exposure to xenogeneic antigens on donor

endothelial cells would be expected in comparison to whole-organ

transplants, where the whole-organ vasculature is derived from

porcine. Despite the acute hypoxic conditions preceding

angiogenesis as described, this process may ensure reduced

exposure to additional donor tissue and reduce the risk of

rejection. While the two pig-to-human heart and kidney

transplant mechanism of rejection is still under investigation, we

propose reducing exposure to xenogeneic endothelial cells may

lead to more sustainable outcomes in xenogeneic ITx of these

modified porcine strains. Moreover, the overall lower transplant

mass in tandem with these genetic modifications may support

more sustained long-term islet graft function. Examining their

utility in clinical studies would serve as a confirmation. Certainly,

more work is necessary in the field to provide long-term function,

and if successful, could represent an unlimited source of organs.

5.2.2 Stem cells
Another alternative cell source that has been heavily

investigated for ITx is stem cells. The attractive benefits of stem

cell therapy include the unlimited cell source and their suitability

for immune tolerance. There has been increasing interest in

functionalizing and generating insulin-secreting cells from

human embryonic stem cells (hESCs) and induced pluripotent

stem cells (iPSCs). To achieve such a feat, extensive steps are

required to differentiate these stem cells into glucose-responsive

and insulin-producing cells. In 2001, Assady et al. demonstrated

that hESCs could spontaneously differentiate into an array of cell

types, including those that produce insulin (124). Following this

discovery, Segev et al. modified a differentiation protocol initially

used to generate insulin-producing cells from mouse ESCs and

were able to successfully differentiate hESCs to secrete a

substantial amount of insulin (125). Further exploration of hESC

differentiation protocols led to the successful production of more

mature, glucose-responsive, and insulin-expressing endocrine

cells (126). In 2008, this protocol was used to generate hESC-

derived pancreatic endoderm that was transplanted into diabetic-

induced mice, effectively reversing hyperglycemia and indicating

the potential for clinical usage (127). The alternative stem cell

source, iPSC, is a promising approach due to the possibility of an

autologous transplantation. The protocol to dedifferentiate

human skin fibroblast to human pluripotential stem cells was

first discovered by Yamanaka’s group in 2006 (128). Following

dedifferentiation mediated through the Yamanaka genetic factors

(Oct3/4, Sox2, c-Myc, and Kl4) (128), many demonstrate the

ability of iPSCs to differentiate into insulin-producing beta-cells

(129, 130). Even so, their ability to form mature pancreatic

endocrine cells remains inferior to products from hESC protocols
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(131), proving an area for further developments in iPSC

differentiation protocols. Potential for iPSC is apparent as

autologous stem-cell derived islet infusion into the portal vein of

a T2DM patient effectively reduced their exogenous insulin

requirement, all without immunosuppression (132). Furthermore,

ITx of allogeneic stem cell-derived islets restored insulin

independence in two T1DM patients and ongoing transplants are

being conducted (133). Although intense lifelong suppression

may not be required with autologous iPSC-based transplantation

as there is an absence of allorecognition, the possibility of

recurrent autoimmunity is an area of concern. Furthermore,

hESC and iPSC differentiation strategies require major monetary

and time investments, which may bring into question their

feasibility. Nevertheless, recent advancements in stem cell-derived

islet approaches (134) have led to promising clinical trials.

ViaCyte developed a pancreatic endoderm cell (S4) product

derived from hESC, known as PEC-01, which matured into

glucose response insulin-producing cells after several months

in vivo (127–136). These encouraging findings led to the first in

human clinical trials in 2014 (NCT02239354), which

encapsulated PEC-01 within a cell-impermeable membrane to

circumvent immunosuppression (137). While endocrine cells

were observed post-explantation, device fibrotic overgrowth

resulted in graft loss and no evidence of insulin secretion,

ultimately leading to the trial being terminated (138). In 2017,

subsequent follow-up trials (NCT03163511) utilized a porous

membrane to allow for direct graft vascularization, but this

necessitated systemic immunosuppression. Results published one-

year post-transplant, demonstrated glucose-responsive c-peptide

secretion, confirming the in vivo differentiation of the pancreatic

progenitors. Histological analysis of explanted grafts,

demonstrated that while most of the cells stained positive for the

neuroendocrine marker chromogranin A, these endocrine cells

co-stained mostly for glucagon and few for insulin. In addition,

host fibroblasts were abundant indicative of a robust foreign

body reaction (138–140). Critically, these studies demonstrated

no serious safety concerns, such as teratoma formation, but

emphasized the importance of mitigating foreign body reactions.

The field began to further optimize methodologies and

protocols to terminally differentiate stem cell-derived islets (>S6)

to become insulin-secreting in a glucose-responsive manner

in vitro, prior to transplantation (141, 142). These refinements

led to cell products that demonstrated improved glucose control

in vivo when transplanted into diabetic rodents. Subsequently, in

2021, Vertex Pharmaceuticals initiated a series of clinical trials

(NCT04786262) with a more mature cell product (VX-880),

infused into the portal vein under immunosuppression to avoid

fibrosis. Interim-published abstracts have demonstrated improved

patient glycemic control and insulin independence (133), albeit

delayed in comparison to rodent students for reasons that have

yet to be fully elucidated. These pioneering clinical trials

highlight the auspicious potential stem cell-derived islets possess

for the management of T1D. However, they also underscore the

unmet challenges that persist, preventing this beta cell

replacement therapy from becoming a standard of care. These

include but are not limited to, (1) optimizing differentiation
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protocols to increase maturity, at a functional and transcript

level, (2) eliminating off-target cell types, (3) developing

strategies (e.g., genetic engineered, biomaterials) to circumvent

the necessity of anti-rejection drugs, (4) identify the ideal

transplant environment which is highly vascularized while

possessing muted stress responses and (5) refine large-scale

manufacturing processes. Regardless, PSCs may one day soon

serve as an alternative cell source for ITx.
5.3 Biomaterial strategies - localized
immune modulation

Localized immune modulation is an attractive alternative and a

potential replacement for systemic immunosuppression. Targeting

immune and inflammatory cells exclusively at the transplant site

could help overcome off-target debilitating toxicities associated

with chronic systemic immunosuppression. In this framework,

researchers utilize two main approaches (i) islet encapsulation to

prevent contact with immune cells, and (ii) localized and

sustained release of immunomodulatory agents (143). If these

methods prove effective, there is a high possibility that the

requirement for extensive systemic immunosuppression will be

abolished (Tables 1, 2). Adapting natural and/or synthetic

biomaterials has been rigorously investigated.

5.3.1 Islet encapsulation
The current strategies that utilize biomaterial-based islet

encapsulation include macroencapsulation, microencapsulation,

and nanoencapsulation, which are characterized based on islet-

to-host distance (144). These approaches all work as a physical

barrier that protects transplanted islets from immune cell attack,

while still enabling them to identify changes in blood glucose

levels and subsequently secrete insulin into the circulation.

Moreover, these biomaterials must allow for sufficient diffusion

of nutrients, oxygen, and metabolic waste, promoting islet

survival. The macroencapsulation approach houses the largest

number of islets within devices and has the largest islet-to-host

distance. Thus, a main disadvantage of this approach is the

limited diffusion of oxygen and nutrients which can be

detrimental to graft viability and function (145). To overcome

these drawbacks, devices such as the bioartificial pancreas (Beta-

Air) employ a gas chamber that provides exogenous oxygen to

the islets (101). Apart from the experimental success that was

previously discussed, where diabetic rats achieved long-term

normoglycemia with allogeneic islets implanted with Beta-Air

devices (101), immunosuppressive-free xenotransplantation in

diabetic NHP utilizing this marcoencapsulation technology also

demonstrated sustained graft function for up to 6 months (146).

The requirement for tedious oxygen refills within the gas

chamber represents a major drawback to such an approach. An

innovative self-sustaining approach by Wang et al. may address

this limitation as they recycle a cellular waste product, carbon

dioxide, to generate oxygen via a chemical reaction (147). Their

device, termed inverse breathing encapsulation device (iBED),

showed promise in a proof-of-concept mice and minipig studies
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whereby islet graft function was sustained up to 3 months.

Alternative oxygen-generating approaches employing chemical

reactions and electrophoresis have been explored (148–150).

Another macroencapsulation approach that overcomes some

challenges with diffusion is intravascular devices. These are hollow

semi-permeable fiber devices that house islets within the lumen

and directly connects them to host arteries (145). The

semipermeable membrane effectively protects islets from immune-

mediated damage, but the blood-device interaction can bring rise

to blood coagulation (145). To avoid excess thrombosis, Song

et al. designed an intravascular device using silicon nanopore

membranes and demonstrated superior in vivo hemocompatibility,

pore size selectivity, and hydraulic permeability to typical devices

that employ polymer membranes (151).

The microencapsulation approach involves encapsulation of a

single or small cluster of islets within microcapsules. These

strategies minimize the islet-host distance and their often spherical

configuration allows for greater diffusion (larger surface area to

total volume ratio) relative to macroencapsulation devices (145).

Conformal coating has been an ideal approach, but the risk of

incomplete shielding and islet antigens breaching the capsule

barrier leaves grafts susceptible to immune attack. The most used

microencapsulation materials that are capable of forming spherical

capsules around islets are hydrogels, a crosslinked three-

dimensional network that can be derived from a wide array of

natural and synthetic polymers (144, 145). Extensive polymer

modifications promote crosslinking that improves viscoelasticity,

hydrophilicity, and shape retention within an aqueous

environment of the body, thereby making hydrogels a

biocompatible material that can mirror endogenous tissue (152).

Furthermore, their semi-permeable membrane permits oxygen,

nutrients, and waste exchange from encapsulated islets, while still

protecting against immune infiltration and activation. In terms of

islet microencapsulation, researchers have investigated a variety of

natural and synthetic derived hydrogels: alginate (153), agarose

(154), collagen (155), polyvinyl alcohol (PVA) (156), poly(lactic-

co-glycolic acid) (PLGA) (157), etc. These hydrogel varieties show

promise in animal models of diabetes, effectively conferring

immune protection and prolonging the viability and functionality

of transplanted allogeneic islets (153, 154, 156, 157). The

experimental success of microencapsulation-mediated immune

cloaking of islets has given rise to clinical trials exploring

immunosuppressive-free alternative cell approaches. Although no

clinical trials transplanting microencapsulated xenogeneic or

allogeneic islets have demonstrated excellent long-term metabolic

control (158), a modest reduction in exogenous insulin usage and

hypoglycemic episodes was seen in patients transplanted with

microencapsulated porcine islets without immunosuppression (121).

The thinnest barrier, and thus the closest distance between the

islets-to-host, is the nanoencapsulation approach. This strategy

encapsulates each individual islet with a nano thin coating. By

significantly minimizing the coating thickness, diffusional distance

also decreases and hence improves islet responsiveness to glucose

fluctuations and increases oxygen, nutrients, and insulin diffusion

(145). Furthermore, permeability can be simply modified by

controlling coating thickness and composition, in comparison to
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the other encapsulation approaches that require larger alterations,

i.e., altering membrane size, number of islets encapsulated, or

encapsulation material (159). There are two main methods for

islet nanoencapsulation: “PEGylation” and layer-by-layer (LBL)

assembly. The former method involves a cell surface modification

with poly(ethylene glycol) (PEG), a synthetic polymer that can be

modified with chemical groups (acrylates), enabling the formation

of crosslinked bioinert networks around islets (160). This

technique, termed “PEGylation”, covalently attaches PEG to islet

surfaces with aims to improve biocompatibility via enhancing

hydrophilicity, decreasing direct protein adhesions (preventing

complement and coagulation cascade), and cloaking islets from

immune attack. However, complete immune-blocking effects were

not seen in the diabetic NHP model as transplantation of

PEGylated allogeneic islets failed to restore euglycemia, even in

conjunction with immunosuppressives (161). The alternative

nanoencapsulation approach, LBL assembly, has shown more

promise. As the name implies, LBL assembly involves the

deposition of alternating nano thin films on an islet surface. The

ease of altering the biomaterials and the number of deposited

layers used provides researchers the ability to tune and optimize

the nanoencapsulated structures. For example, Zhi et al.

demonstrated that 8 chitosan/alginate bilayers provided superior in

vivo immune protection of allogeneic islets compared to 4 bilayers

in mice, revealing a relationship between structure thickness and

immune isolation abilities (162). In terms of biomaterials used,

researchers have explored the incorporation of immunomodulatory

materials in these bilayers to locally subvert the immune response.

Dr. Hubbert M. Tse’s group in Alabama generated an LBL

assembly multilayer coating with tannic acid, a natural

immunomodulatory polyphenol, and poly(N-vinylpyrrolidone)

(PVPON), a biocompatible non-toxic polymer (163). The

formation of hydrogen bonds between these two distinct layers

increases structural stability and coating retention around islets.

Further, in NOD mice, the tannic acid/PVPON nanoencapsulation

approach exhibited reduced in vivo immune cell infiltration, pro-

inflammatory chemokine synthesis, and significantly delayed allo-

and auto-immune rejection compared to nonencapsulated islets

(163). These thrilling findings may spearhead further

developments, possibly inspiring the use of more potent and

specific immunomodulatory agents that target negative regulators

pathways of T cell immune function [etc., cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4), programmed death 1

(PD-1)]. Further, the adaptability of the LDL assembly approach

can underpin a multilayer nanocoating with more than 2 distinct

layers, further enhancing localized immunosuppression.

5.3.2 Alternative methods for localized immune
modulation

These strategies enable clinicians to fine-tune local drug release,

which they can adapt based on the period of engraftment. ITx

recipients typically require a larger dose of anti-inflammatory or

immunosuppressives in the peri-transplant period, later tapering

off to lower doses for long-term usage. To accommodate

these fluctuating dose requirements, exploring the use of a

temperature-dependent elastin-like peptide, developed by Kojima
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and Irie, to locally deliver drugs at the site of ITx may serve as a

promising solution (164). This technology could allow for greater

control in local drug administration through locally changing

temperatures at the transplant site (given its feasibility) which

would trigger drug release. Devices that house islets and contain

a refillable drug reservoir can also provide the opportunity for a

controlled localized drug release. The Neovascular Implantable

Cell Homing and Encapsulation (NICHE) device, developed by

Paez-Mayorga et al., precisely fulfills such a role and effectively

restored euglycemia in a T1DM rat model (165). Another

alternative method that can support the transplant site

microenvironment is co-transplanting islets with cells that secrete

immunomodulatory cytokines (166). Cells explored for this

approach include mesenchymal stem cells (167), Tregs (168),

Sertoli cells (169) and dendritic cells (167). However, there are

limiting factors to this approach including the source of these

immunomodulatory cells and their requirement for long-term

survival and function.

5.3.3 Drug-eluting biomaterials
The local and sustained release of immunosuppressives and

anti-inflammatories is a strategy that can enhance engraftment,

promote tolerance, and improve ITx success by creating less

hostile microenvironments. Rather than functionalizing a barrier

that confers protection from immune cell contact, this approach

typically permits cell infiltration which aids engraftment and islet

vascularization. Thus, locally targeting immune infiltrating cells is

desirable and can be achieved with synthetic scaffolds,

nanoparticles, and microparticles along with cell-based strategies

(170, 171). Furthermore, in comparison to systemic

immunosuppression, this approach that confines drug release at

the site of transplant most likely can achieve a higher local

concentration with less off-target toxicities. If this notion holds

true, local drug-releasing technology may have a larger

therapeutic window that can enable clinicians to amplify

desirable immunosuppressive and anti-inflammatory effects.

To achieve localized immunomodulation, synthetic materials

have been heavily explored due to material homogeneity and ease

of structure fabrication and modification, contributing to a

reliable and controlled system (172). The following are

commonly used FDA-approved synthetic materials utilized

experimentally for drug delivery in ITx: poly(lactic-co-glycolic

acid) (PLGA), polylactide co-glycolide (PLG), poly(ethylene

glycol) (PEG), and poly(vinyl alcohol) (PVA) (170, 171, 173).

These biodegradable materials gradually deteriorate within the

host system, releasing a sustained mass of agents that were

incorporated within these structures. The most explored forms of

this emerging ITx approach include layered scaffolds that entrap

drugs, or spherical micro- and nan-particles that encapsulate

chemical agents within. Liu and colleagues explored the scaffold

delivery approach via implanting streptozotocin-induced diabetic

mice with an allogeneic islet-containing multilayered

microporous PLG scaffold impregnated with transforming

growth factor-beta 1 (TGF-ß1), an immunomodulatory cytokine

(174). in vitro drug kinetics of TGF-ß1, found within layers of

the scaffold, demonstrated a burst initial release in the first 3
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days (>90% total mass) (174). Implantation of this scaffold

within the epididymal fat pad decreased inflammatory cytokine

(TNF-α, IL-2, monocyte chemotactic protein-1) production by at

least 40%, corresponding to a 60% drop in leukocyte infiltration

and significant delay in allograft rejection compared to empty

scaffolds (174). Another group, utilizing a polydimethylsiloxane

scaffold to deliver fingolimod (FTY720, Gilenya), an

immunosuppressive that inhibits effector T cell recruitment and

migration (175), demonstrated a similar in vitro burst release

with the bulk of the drug being released in the first 7 days (176).

However, no significant improvements were seen when this

scaffold was implanted in the epididymal fat pad of diabetic mice

(176). The length of drug release could be an explanation for

varying levels of experimental success with scaffold drug delivery.

As discussed, in clinical ITx, recipients are required to endure

lifelong immune suppression to prevent allo- and auto-immune

graft rejection. Within this framework, a burst initial drug release

may not be effective at subverting the immune response long-

term, thereby failing to achieve prolonged graft function. Hence,

researchers have explored alternative methods for achieving a

longer sustained local drug release.

Synthetic drug-eluting particles are a promising technology to

achieve sustained local immunomodulation. As mentioned, PLGA

is a biodegradable and FDA-approved synthetic material that has

typically been employed for controlled drug delivery (173). Drug-

eluting micelles fabricated from PLGA or other polymers have

also been utilized in other therapeutic applications including

chemotherapy, ocular and neurological drug delivery, and vaccines

(177). As such, the popularity of applying this promising

technology to ITx has increased over the years. In terms of

maintenance immunosuppression in ITx, a longer sustained

release is ideal; researchers have explored polymer-based

microparticles (MP) as they typically elute drugs slower and for a

longer duration than their smaller counterpart, nanoparticles

(178). Recently, Kuppan et al. developed such a system where they

encapsulated dexamethasone (dex), a systemically diabetogenic and

anti-inflammatory glucocorticoid, in PLGA MP (179). Their

formulation eluted dex in vitro for at least 30 days and co-

localizing these MPs with allogeneic islets transplanted under the

kidney capsule of diabetic mice resulted in a two-fold increase of

recipients that achieved euglycemia for 60 days post-

transplantation compared to empty MP controls (both groups

received a short course of CTLA-4-Ig injections to block of T-cell

costimulation) (179). Furthermore, they also saw significantly

reduced proinflammatory cytokine expression and increased Treg

localization within the grafts of the dex-MP treated recipients

(179). Other groups have explored the use of sustained

immunosuppressive drug-eluting MPs in the context of

experimental ITx. Pathak’s group fabricated PLGA encapsulated

tacrolimus (FK506), a commonly used maintenance

immunosuppressive in clinical ITx (Table 2), and co-delivered this

biotechnology with xenogeneic islets within the subcutaneous

space of streptozotocin-induced diabetic mice (180). By 30 days

post-transplant, the mice that received these FK506-eluting MP

were euglycemic (60% survival), while mice transplanted with

islets alone all became hyperglycemic by day 15 (180). An
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alternative MP system, formulated by Fan et al. in Singapore, draws

on polycaprolactone (PCL) and PLGA polymers to fabricate two

distinct types of rapa-eluting MPs that release drugs at different

rates (181). Combining these two particles allowed them to have

an initial burst release, via porous PCL MPs, followed by a

sustained PLGA MP-mediated rapa release for up to 30 days

in vitro (181). Rapa is another maintenance immunosuppressive

that is widely used in clinical ITx (Tables 1, 2), and co-

transplanting this drug-eluting MPs system with allogeneic islets

within the anterior chamber of the eye demonstrated a modest (10

day) delay in graft rejection compared to MP containing no drugs

(181). Conversely, nanoparticles’ tendency to burst release may be

ideal for certain tolerance induction strategies (178). Bryant and

colleagues demonstrate this clinically attractive approach by

utilizing PLG nanoparticles to deliver donor antigens

intravenously, inducing long-term donor-specific tolerance for

allogeneic islets transplanted in diabetic mice (182). Despite these

limited results highlighting the potential of nano- and micro-

particles in subverting the immune response, further investigation

into these approaches in the context of ITx is necessary.

Optimizing this technology may one day lead to a replacement of

chronic systemic immunosuppression where ITx recipients would

only require occasional MP administrations.
6 Discussion

To date, T1DM still afflicts many individuals worldwide and has

been established as an autoimmune-driven disease. Although the

mainstay treatment of exogenous insulin injections can help

T1DM patients achieve normoglycemia, the daunting risk of life-

threatening hypoglycemia unawareness remains interconnected.

Islet transplantation has been established as an effective means of

reducing these events and granting recipients a period freed from

insulin injections; limitations in the field include poor cell survival

in the hepatic site, limited donor supply, toxicities of chronic

systemic immunosuppression, and long-term deterioration of graft

function. Thus, the procedure is typically restricted to those who

suffer from brittle diabetes. Nevertheless, the status of clinical ITx

today is not without the ground-breaking progress made in the

field ever since the first islet tissue transplant in 1893. Further

advancements in validating more favourable extrahepatic

transplant sites, alternative cell sources, and biomaterial-based

localized immunomodulation can help surmount the barriers

explored. Innovations within these domains may underpin an ITx

approach that requires a lower dose of islets with a sustained long-

term function, all while reducing the requirement for lifelong

immunosuppression and associated toxicities. If successful, ITx

may become a treatment option for a wider range of individuals
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living with diabetes. Concerted efforts are ongoing to make this a

reality with the hopes of translating these preclinical successes into

favourable patient outcomes.
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