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Introduction: Circulating cell-free DNA (cfDNA) is emerging as a non-invasive
biomarker in solid organ transplantation (SOT) monitoring and data on its
diagnostic potential have been increasing in recent years. This review aims to
summarize the main advances in technologies, clinical applications and future
perspectives of cfDNA for transplantation, and to approach the contribution of
epigenetics to improve the specific detection of rejection.
Methods: Published literature investigating cfDNA as a biomarker for the
diagnosis of transplant rejection was systematically reviewed, specifically
clinical trials evaluating the test performance of algorithms predicting rejection
based on cfDNA fraction. Literature highlighting epigenetic features in
transplant rejection was also reviewed to outline the potential contribution of
the epigenomic analysis to the needs of rejection-specific diagnosis.
Results: 40 articles were reviewed, and results were extracted and summarized.
16 met the inclusion criteria by evaluating the diagnostic performance of a
predictive test for the discrimination of rejection vs. non-rejection patients
(2 heart, 3 liver, 4 kidney, and 7 lung transplantations). The recurring
conclusion is the kinetics of dd-cfDNA levels, strongly increasing immediately
after transplantation and reaching basal levels after days to weeks and
remaining stable in non-rejection patients. On the other hand, rejection is
characterized by an increase in dd-cfDNA levels, depending on the
transplanted organs. In addition, the epigenetic signature can help improve the
specificity of the diagnosis of rejection by searching for specific epigenetic
features that are by the clinical status of patients.
Conclusion: Cell-free DNA is a promising non-invasive biomarker but still needs
standardization of technologies and protocols to be used for diagnostic
purposes. Moreover, the lack of specificity of this marker can be compensated
by the contribution of epigenetic analysis for which data are growing,
although progress is still needed for its use in a clinical context.
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1 Introduction

Circulating cell-free DNA (cfDNA) is emerging as a non-invasive

biomarker in the monitoring of solid organ transplantation (SOT).

Unlike traditional follow up methods, cfDNA offers a safer and

cheaper option to detect acute or chronic rejection. However,

analytical and technical challenges remain, particularly for the

sensitivity and specificity of cfDNA detection. Epigenetic

approaches based on the analysis of the regulation of gene

expression is a significative contribution. Epigenetic signature

specific to the transplant allows to differentiate precisely the

different cfDNA sources increasing specificity and early detection of

rejection. Combining epigenetic analysis to cfDNA detection in the

plasma of patients could improve patients’ post-transplantation

monitoring and help to avoid complications and late diagnosis.
1.1 Cell-free DNA

The discovery of cell-free DNA (cfDNA) in the serum of cancer

patients in 1948 (1) represented a major advance in biology and

opened possibilities of applications in medicine. For many years,

however, the lack of sensitive analytical techniques delayed

further study of cfDNA. In 1965, cfDNA was proposed as a

potentially relevant biomarker in oncogenesis (2) and, over time,

thanks to the development of liquid biopsies, other areas of

medicine became interested in cfDNA, such as autoimmune

diseases, organ transplantation or fetal medicine.

In recent years, the biology of cfDNA has been studied from

two perspectives: quantification, whether absolute or relative, and

qualification such as cellular origin (nuclear or mitochondrial

DNA), tissue origin, production mechanism, fragment size,

epigenetic markers, and so on. In healthy individuals, cfDNA

originates from apoptosis during cell renewal (1–3), and from

active cellular secretion (4, 5).

Apoptosis was thought to be the main cause of cfDNA release

considering its capital role in cell homeostasis and renewal (6, 7)

justified by the non-random fragmentation pattern of cfDNA (1),

mirroring apoptotic patterns. Indeed, in 1984, the ladder-like

electrophoretic pattern of apoptotic DNA is found in cfDNA (8)

suggesting an intervention of apoptotic enzymes in the cfDNA

release processes (1, 6). cfDNA fragments range from 80 to 200 bp

(5), with most fragments around 166 bp (2, 9, 10) corresponding

to the length of the DNA wrapped around histones. Other release

mechanisms have been identified thus far but several remain

misunderstood especially for the fragment size of DNA produced

or the contribution to the cfDNA pool of each of them. Necrosis

would contribute to large cfDNA fragments (1,000 to 10,000 bp)

because of random DNA fragmentation (11), but also smaller

fragments resulting from nuclease cleavage of these long

fragments. Other suggested release processes include erythroblast

enucleation and NETosis, but these remain poorly understood (6).

At present, the best-known characteristic of cfDNA is its

quantification in plasma. Most studies agree that changes in

cfDNA levels would be representative of a biological change in

individuals, which can be significant enough to diagnose an
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abnormal state. Physiological cfDNA levels vary between 0 and

100 ng/ml inter and intra individually, over time, and are

influenced by physical exercise, inflammation, or tissue injury in

healthy individuals (12, 13). It is cleared from blood in 16 min to

2.5 h through three mechanisms: DNases cleavage in the blood,

renal filtration, and mainly liver elimination (1, 3, 11). The

dynamic nature and shortness of its lifespan in blood raises the

first challenge, as the increased levels of cfDNA following an

event may already have returned to baseline when sampling. On

the other hand, this characteristic can be taken as a positive

point, if considering that the occurrence of an event leads to a

rapid change in cfDNA levels and allows, for example, to adapt a

treatment as quickly as possible.
1.2 Clinical applications of cfDNA

When studies started to show differences in plasma cfDNA in

pathological contexts, new potential diagnosis approaches began to

appear. In 1966, quantifications of cfDNA in lupus erythematosus

and rheumatoid arthritis patients compared to healthy individuals

showed variations in cfDNA quantity (14, 15). Later in 1977 in the

field of oncology, Leon et al. quantified cfDNA through

radioimmunoassay in several types of cancer, highlighting a cfDNA

increase in cancer patients. Higher cfDNA levels are observed in

metastatic cases, decreasing after radiation therapy except in

treatment non-responding patients (16). Genetic alterations from

tumor were identified in plasma cfDNA, suggesting that DNA

released by cancerous cells can be relevant in cancer diagnosis and

monitoring (17, 18). No diagnostic test received approval by health

instances, but recently the European Society for Medical Oncology

(ESMO) published guidelines for the use of ctDNA for genotyping

advanced cancers and help therapy decision-making for patients as

an alternative strategy to tumor-based approaches (19). The United

States Food and Drug Administration also published in 2022

guidelines intended to industries for the use of ctDNA as a

biomarker of cancer in clinical trials for the development of drugs

in early-stage solid tumor malignancies (20).

Another key application of cfDNA concerns non-invasive

prenatal diagnostic (NIPD), using cell-free fetal DNA (cffDNA)

in the plasma and urine of pregnant women. Lo et al. showed in

1998 that maternal plasma contains high concentrations of

cffDNA detectable as early as at the 7th week of gestation (21).

Since then, cffDNA is used to directly analyze the genomic

information of the fetus and determine fetal sex, assess the RhD,

aneuploidies, microdeletions or detect paternally inherited genetic

disorders (22, 23). The use of cfDNA improved the safety of

prenatal testing by avoiding invasive obstetric procedures with

risks of miscarriage (22).

Finally, the clinical application of cfDNA that will be discussed

in this review, relates to organ transplantation. Currently, the

monitoring of solid organ transplantation (SOT) is performed by

biopsy, clinically indicated in suspicion of rejection or part of the

follow-up of the transplant in the absence of symptoms (24).

However, biopsies present limitations, and from this perspective,

non-invasive diagnosis tools such as cfDNA would be highly
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relevant. To explore the opportunities and limitations of cfDNA

diagnosis in SOT, 40 articles were reviewed on the topic of organ

transplantation, 16 of which met the inclusion criteria by

evaluating the diagnostic performance of a predictive test for the

discrimination of rejection vs. non-rejection patients.
1.3 cfDNA exploration techniques

The workflow for handling cfDNA samples has greatly evolved

resulting in the increase of the quantity and quality of the cfDNA

collected. Yet, pre-analytical treatment from blood sample to

purified cfDNA is still not standardized (25). Nonetheless, steps

remain similar between studies, and it is possible to summarize

protocols as follows.

First, the blood must be collected in specific tubes to preserve

nucleated cells and prevent cell lysis and blood coagulation. Plasma

separation has to be performed as soon as possible by a double

centrifugation at 1,600 × g then 16,000 × g during 10 min each and

will be conserved at −80 °C until cfDNA extraction (25). cfDNA

yields are shown to vary from 4 weeks of storage and it is thus

advised to perform analysis on cfDNA prior (26, 27). Different

protocols exist for cfDNA extraction from plasma, based on

magnetic beads or columns and is the most impactful parameter in

pre-analytical process of cfDNA. A comparative study between four

(semi) automated extraction showed significative differences in

cfDNA yields depending on the extraction used (28).

For quantification, the low amount of cfDNA in plasma requires

sensitive techniques for its analysis. PCR-based methods have been

developed such as quantitative real-time PCR (qPCR), and more

recently digital-PCR (dPCR). The contribution of dPCR is the

partition of the PCR reaction to thousands of droplets (droplet-

digital PCR) or chambers to increase the probability of detection

of rare events. Digital PCR allows great sensitivity and can then be

used with low DNA input, suitable for cfDNA.
2 cfDNA quantification in
transplantation

Biopsy is considered as the “gold standard” for follow-up in all

types of solid organ transplantation (SOT). However, it is an

invasive and risky procedure for patients, in addition to being

costly and unreliable due to the inter-observer variability. It

exposes patients to potential infections and complications

(complication rate of about 1% in kidney, heart, and liver

transplantations), not to mention the fact that this procedure

often fails to detect rejection early enough. Approximately 25%

of biopsies result in an insufficient sample to diagnose the onset

of rejection (24, 29–31). These limitations encouraged the

development of alternative methods like the assessment of gene

expression profiling in heart transplantation, the liver enzymes

dosage in liver transplant recipients or the serum creatinine

dosage in kidney recipients. However, none of these alternative

methods can specifically detect rejection and are only a mirror of

the organ functional state (24, 29, 30, 32).
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2.1 Quantification of dd-cfDNA

In 1998, it was suggested that DNA from the transplanted

organ was present in the plasma of recipients and it was shown

that donor-specific sequences can be found in the plasma of liver

and kidney transplant recipients (21). This was the first

description of donor-derived cell-free DNA (dd-cfDNA) whose

increase in the plasma and urine of SOT recipients is proven to

be a result of cell damage in the transplant and can therefore be

used as a biomarker of graft health and integrity (33) through

quantification and qualification of dd-cfDNA.

Several methods are used for relative and absolute

quantification of dd-cfDNA, most of which are PCR-based,

including qPCR and dPCR. Historically, the first relevant method

to identify dd-cfDNA in recipient’s plasma was the detection of

Y-specific genetic sequences in the plasma of female recipients of

male organ donor. However, this required a gender-mismatch

and is therefore only applicable to a specific group of the

transplanted population (33). Human Leukocyte Antigens (HLA)

mismatches have also been exploited but this requires genotyping

of both donor and recipient, which is sometimes difficult to

obtain. A more universal approach is the analysis of single

nucleotide polymorphisms (SNPs) using high throughput

sequencing to detect informative SNPs and assess the minor type

of DNA using computational approaches, which allows to

dispense from genotyping (24, 34). PCR techniques are

commonly used to detect and quantify cfDNA and dd-cfDNA

considering its sensitivity. Today, dPCR is increasingly used to

study cfDNA as it is designed to detect rare events with a great

sensitivity. Moreover, the determination of dd-cfDNA by qPCR

or dPCR techniques is specific because selected markers from the

donor and recipient are previously tested on a pre-transplant

sample. The speed with which the results can be obtained is an

advantage, making it possible to deal with emergencies in

transplant medicine. On the other hand, NGS is more accurate

than dPCR, but unsuitable for emergency and require enough

cfDNA. The absolute quantification of dd-cfDNA can be

expressed as copy number or genome equivalent per milliliter

(cp/ml or GE/ml respectively), while relative quantification,

calculated as the percentage of dd-cfDNA in the total cfDNA

pool is the most used.
2.2 Ischemia-reperfusion injury

The first important event in transplantation is organ

reperfusion after hours of ischemia, which inevitably induces

ischemia-reperfusion injury (IRI) and damages the transplanted

cells (35), resulting in the release of cfDNA. This dd-cfDNA

peak is reported in all types of SOT, and does not persist for

long before decreasing to basal levels, which depends on the

organ type (9, 32, 36, 37) (Table 1).

Liver is the most vulnerable organ to IRI. The extension of

selection criteria because of shortage and the growing waiting list

results in higher risk of graft-associated complications (44, 45).

cfDNA levels reach 90% after reperfusion, with basal levels
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TABLE 1 Recapitulative table of dd-cfDNA levels in the diverse types of solid organ transplantations.

Organ Relative dd-cfDNA peak
levels after surgery

Relative basal dd-cfDNA levels Time to reach basal levels Sources

Kidney 10–20% <1% 5–10 days Shen et al. (38)
Beck et al. (39)
Gielis et al. (40)

Liver Up to 90% <10% 10 days Schütz et al. (36)
Zhao et al. (32)

Heart 2.8% <0.5% 5 days Beck et al. (39)
Agbor-Enoh et al. (41)

Lung 26% <2% 1–4 months De Vlaminck et al. (42)
Jang et al. (43)
Sorbini et al. (37)

Sebastian et al. 10.3389/frtra.2024.1474920
<10%–15% reached after 10 days (32, 36). Kidney IRI induces an

increase to 10%–20% of dd-cfDNA the day following

transplantation, decreasing to <1% after 5–10 days (31, 38, 39). Of

note, non-stable patients seem to maintain elevated dd-cfDNA as

a hallmark of allograft injury, as patients that are not stable 10

days after transplantation already showed persistent high dd-

cfDNA from the first day following transplantation (40). Early

high levels of dd-cfDNA could be a clue of future complication in

kidney transplantation. The heart is the organ that releases the

least amount of cfDNA with concentration peaks reaching less

than 3% (41) decreasing in a logarithmic way, with basal levels

<0.5% in 5 days (39), down to 0.01% after 2 months (41). Lung is

the organ where dd-cfDNA decreases the slowest over time, with

basal levels reached after 1.5–4 months after a high increase of dd-

cfDNA levels up to 26% the days following transplantation (37, 42, 43).

Interestingly, some studies reported a slight increase of dd-

cfDNA months to years after transplantation, in heart (41) and

lung (42, 43) transplantations. In the latter, the slight increase of

dd-cfDNA after a few months have been linked to the settling of

chronic injury caused by the loss of pulmonary function (43).
2.3 Acute rejection diagnosis

After IRI, the second event that can damage the transplant is

acute rejection (AR). AR, including acute cellular (ACR) and

antibody-mediated rejection (AMR), has been proven to be

correlated with a significant elevation of dd-cfDNA levels in

heart, liver, kidney, and lung transplantation. As a purposely

harmful reaction initiated by the immune system towards the

transplant, AR causes cell death and therefore cfDNA release

into the bloodstream. Levels of dd-cfDNA are therefore a

reflection of the organ state of acceptance by the immune

system. Studies were conducted to statistically determine a cutoff

value of dd-cfDNA, allowing an early discrimination of stable

patients from patients developing acute rejection. These

predictive models are evaluated with parameters like sensitivity,

specificity, and sometimes positive and negative predictive value

(PPV, NPV) to assess their ability to correctly classify patients

based on observations. The key parameters of the studies are

reported in Table 2.

Thus, the dd-cfDNA percentages are around 4-fold higher in

AR liver recipients compared to stable patients. Median dd-
Frontiers in Transplantation 04
cfDNA reaches around 30%–40% in AR patients, vs. 11% in

non-rejection patients. A cutoff value of 10% dd-cfDNA is

suggested to identify liver transplant rejection against stability,

yielding good specificity and sensitivity values (>90% and >86%,

respectively) (32, 36, 47).

In 2017, dd-cfDNA in kidney recipients has been shown to

discriminate between AMR, ACR, and non-rejection patients

(29). The donor cfDNA fraction is around 0.6%–0.8% for both

rejection groups, 2-fold higher compared to non-rejection

patients for which authors measured 0.3% (31, 49). Moreover,

non-stable patients 10 days following transplantation showed

higher dd-cfDNA levels initially and during the first three

months (40). Bunnapradist et al. suggested the use of two cutoff

values to discriminate rejection, relying on relative and absolute

values of dd-cfDNA. Authors compared the predictive test

performances when using a unique threshold vs. the combination

of two. Using cutoff values of 1% and 78 cp/ml, sensitivity is

increased compared to the use of only the relative value (100%

vs. 77.8% respectively), while specificity decreases (90.6% vs.

87.5% respectively) (48). Of note, it is important to be careful

with sensitivity and specificity, the aim being to have a good

balance between both, while keeping good test performances.

Sensitivity is crucial to diagnose rejection using dd-cfDNA and

should not necessarily be set aside for the benefit of specificity.

In heart transplantation, median dd-cfDNA levels are reported

13- to 15-fold higher in AR diagnosed patients compared to stable

patients (41, 46). With 0.15% of dd-cfDNA used as a threshold

value to stratify rejection vs. non-rejection patients, the test

performed with a Positive Predictive Value (PPV) of 25%, 97%

for Negative Predictive Value (NPV), 78% sensitivity and 77%

specificity (46). Moreover, cardiac allograft vasculopathy (CAV)

has been reported to correlate with elevated dd-cfDNA levels.

Among two groups of patients considered low (<0.12%) and high

(≥0.12%) dd-cfDNA, 63% of high dd-cfDNA patients developed

CAV, vs. 35% in the low dd-cfDNA group. Another interesting

point is 25% of high dd-cfDNA group patients had de novo

donor-specific antibodies (DSA) vs. 3.8% in the low dd-cfDNA

group (52). This study suggests that dd-cfDNA may also be

linked to DSA, and other transplant survival-threatening

conditions in addition to AR.

In lung transplantation, De Vlaminck et al. Reported a

significant increase in dd-cfDNA in AR and chronic lung allograft

dysfunction (CLAD). Moreover, CMV (cytomegalovirus) infection,
frontiersin.org
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TABLE 2 Summary table of %dd-cfDNA cutoff values suggested in studied publications.

Organ Source ddcfDNA AR
patients

ddcfDNA stable
patients

ddcfDNA
cutoff value

Specificity Sensitivity PPV NPV

Heart Agbor-Enoh et al. (41) 0.38% 0.03% – – – – –

Kim et al. (46) 0.58% 0.04% 0.15% 76.9% 78.5% 25.1% 97.3%

Liver Schütz et al. (36) 29.6% – 10% 92.9% 90.3% – –

Baumann et al. (47) 25%(1) 3.40% 10% 90.0% 86.0% – –

Liver (pediatric) Zhao et al. (32) 41.7% 11.20% – – – – –

Kidney Bloom et al. (29) AMR 2.9% ACR 1.2% 0.30% 1% – – – –

Oellerich et al. (31) 0.57% 0.29% – – – – –

Bunnapradist et al. (48) – – 1% + 78cp/ml (2) 87.5% 100% – –

Kidney-pancreas Vantura-Aguiar et al. (49) 0.83% 0.30% – 93.0% 85.0% 85.7% 93.7%

De Vlaminck et al. (42) 15% – 1% 73.0% 100% – –

Jang et al. (43) 0.4–0.7% 0.21% 0.5% 65.0% 95.0% 51.0% 96.0%

1% 84.0% 77.0% 64.0% 90.0%

Keller et al. (3) – – 0.54%
(single-lung) 1.1%
(double-lung)

– – – –

Sorbini et al. (37) 7.8% 2.2% 1.25% 73.3% 80.7% – –

Ju et al. (50) 2.17% 0.7% 1.17% 86.0% 89.0% 64.0% 96.0%

Sayah et al. (51) 1.52% (3) 0.49% 0.87% 52.0% 73.0% 34.0% 85.0%

Pedini et al. (9) – – 1.72% (4) – – 75.0% 91.4%

(1) T-cell mediated rejection patients; (2) Authors combined two cutoff values of ddcfDNA to improve test performance; (3) Acute cellular-rejection patients; (4) Cutoff value established to

discriminate between injured vs. non-injured patients, injury being either infection, rejection, or both.
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which is the greatest infectious threat after lung transplantation,

causes a significant increase in dd-cfDNA, which is not found in

other infections (42, 43). AMR is associated with a more

important allograft injury, assessed with spirometry and dd-

cfDNA increase (5.4%), able to detect the onset of rejection about

3 months before the clinical diagnosis (43, 53), and correlated to

the concomitant rise of DSA levels (53). Even though the

detection of DSA in AMR showed higher dd-cfDNA, DSA

detection alone is not shown to be associated with an increase in

dd-cfDNA (43). Most studies in lung transplant recipients report a

great sensitivity to detect AR, reaching 80%–100% with thresholds

of dd-cfDNA around 0.87%–1.25% (37, 42, 50, 54). In addition to

detect AR vs. non-AR patients, dd-cfDNA levels correlate with the

lung allograft dysfunction, assessed with FEV1 (forced expiration

volume in 1s) (42, 43) and spirometry (53).

Interestingly, several studies reported the ability to detect the

onset of rejection weeks before the first clinical manifestations in

liver (36, 55) and lung (43, 53) transplantations, further

supporting the relevance of dd-cfDNA for diagnosis.
2.4 Experimental limits

Some limitations must be considered in the development of dd-

cfDNA as a biomarker for the diagnosis of organ rejection.

Physiological factors can impact dd-cfDNA levels and bias the

diagnosis. As an example, in renal transplantation, dd-cfDNA

levels are significantly different depending on vital status of the

donor, linked to the differences in ischemia-reperfusion of

kidneys. Thus, early dd-cfDNA percentages in recipients

of deceased donors are up to 4-fold higher than in recipients of

living donor after the organ’s perfusion, and up to 2-fold higher

in the long term (31, 32, 38).
Frontiers in Transplantation 05
Moreover, the biopsy procedure can cause iatrogenic injuries

leading to the release of dd-cfDNA, as shown in a study of 113

paired before/after biopsy plasma samples in heart transplant

recipients. Authors noted a 1.3-fold increase in dd-cfDNA when

plasma was collected after biopsy (56).

In lung transplantation, another important parameter to

consider is whether the transplantation is single or bilateral.

Since dd-cfDNA levels were shown to differ significantly between

both (9, 54). This difference could be linked to the organ’s mass

(24). Additionally, De Vlaminck et al. reported a cell turn-over

rate of 107 cells/s in bilateral lung transplant, vs. 58 cells/s in

single lung transplantation (42). It is therefore important to be

careful, in clinical trials particularly, not to compare patients who

have received a single or double transplant with each other, and

not to use the same ddcfDNA cutoff values.

Experimental bias can also interfere with the ability to use dd-

cfDNA as a biomarker of rejection. dd-cfDNA levels vary with the

extraction yields of each method (28), generating experimental

differences according to the methods used. Results from different

studies can therefore be difficult to compare. Moreover, a crucial

point of these studies is that they rely on the biopsy confirmation

of the rejection state of the organ. However, the poor reliability

of biopsies can lead to false negative and distort the reported test

performances. Finally, dd-cfDNA levels being a ratio, they can be

impacted by the recipient’s cfDNA levels, that may increase in

various circumstances of everyday life, and therefore minimize or

maximize the reality of potential allograft injuries.

Some suggest analyzing the change value of dd-cfDNA would be

more representative of the organ’s dynamics over a certain time

course. Agbor-Enoh suggested in 2019 a stratification of patients

according to the decay kinetics of dd-cfDNA during the first 3

months following transplantation. The classification was consistent

with the probability of rejection episodes, organ failure,
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development of donor-specific antigens (DSA), chronic lung

allograft dysfunction (CLAD), or death during the first three

months (54). This stratification may help to identify high-risks

patients while considering the dynamics of the allograft

injury. The reference change value (RCV) of dd-cfDNA is

suggested to be a better biological indicator of abnormalities

(57). To test this hypothesis, patients were stratified in

two groups according to their dd-cfDNA RCV (>73%) or to

their dd-cfDNA levels at the time of ALAD (acute lung

allograft dysfunction) (>1%). The test performances are

better with the RCV, with a sensitivity of 87% vs. 50% and

the same specificity at 78%. The RCV seems to be a

more reliable indicator of ALAD than dd-cfDNA threshold

(57). Nonetheless, specificity still lacks to differentiate

inflammation from infection and the need for a specific

marker remains.
3 dd-cfDNA fragmentomic

Circulating DNA quantification can inform about allograft

injury, but is not specific enough to discriminate rejection from

other injuries (9, 57, 58). This is one of the obstacles still

hampering the routine use of cfDNA, and specific criterions

are required.

The size profile of the circulating cell-free DNA may be a

precious source of information. The fragmentomic profile of

cfDNA in blood can discriminate rejection from other injuries,

but also different types of rejection. Agbor-Enoh et al.

reported smaller dd-cfDNA fragments (<120 bp) in AMR

background compared to ACR and controls (41). Moreover,

one month after transplantation, the percentage of small

fragments (%80–120 bp) is correlated to infection and can

discriminate infected vs. non-infected patients. With a

threshold of small dd-cfDNA fragments of 3.7%, 12/14

infection patients are correctly identified (85%), with PPV and

NPV of 61.1% and 94.6% respectively. Moreover, the

combination of dd-cfDNA levels (>1.72%) and the percentage

of 80–120 bp fragments (>3.7%) for infection detection yields

PPV and NPV of 100% and 82% respectively. As reported

earlier, %dd-cfDNA alone cannot discriminate infection from

rejection but adding the percentage of small fragments allows

to differentiate infection or rejection lung injury. With a PPV

of 100%, this suggests that patients with >3.7% of small

fragments dd-cfDNA are infected, while AR is more frequent

when <3.7% of small fragments (9).

Quantification of donor-derived cell-free DNA represents a

great step towards the non-invasive monitoring of allograft

rejection, but may not be sufficient in terms of specificity,

especially in the context of concomitant infection. Further studies

are required to determine the dd-cfDNA features relevant in

SOT, to establish the correct diagnosis. Over the past few

years, the rise of interest in epigenetics also showed a potential

use in organ transplantation by increasing the specificity of

predictive models.
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4 Epigenetic contribution in SOT

Epigenetics refers to changes in gene expression without any

modification of the genome sequence. Through different levels of

regulation, epigenetics plays a key role in various physiological

and non-physiological states and are dynamically adapted

depending on environmental signals. Growing evidence shows

that epigenetic regulation of several immunity-related genes

occurs after solid organ transplantation, some of them being

correlated to the fate of the transplant overall. Transplantation is

very conducive to epigenetic regulation, and the analysis of

cfDNA obtained from liquid biopsies can reflect these epigenetic

modifications and thus be informative of the dynamic evolution

of the transplant acceptance, allowing a real time and dynamic

estimation of the patient’s status.
4.1 Mechanisms of epigenetic regulation

Epigenetic marks regulate the level of chromatin compaction

and thus condition gene expression. The most studied are DNA

methylation and histone post-translational modifications. These

modifications are reversible and dynamic and are summarized

under the concept of the epigenome. Most epigenetic regulations

result in the opening or closing of the chromatin fiber.
4.1.1 Epigenetic regulation at the DNA level
Among epigenetic modifications, the most stable is DNA

methylation. This is currently the most extensively studied

epigenetic feature. It consists in the transfer of a methyl group

from S-adenosylmethionine (SAM) to the fifth carbon of a

cytosine ring engaged in a CG dinucleotide to obtain a

5′-methylcytosine (5-mC). This chemical reaction is catalyzed by

three DNA-methyltransferases (DNMT): DNMT3a and

DNMT3b involved in de novo methylation of the DNA strand,

and DNMT1 responsible for the conservation of existing

methylation, mainly during the replication process (59). Of note,

although DNA methylation is very stable, it can be reversed

actively by the action of specific enzymes, or passively through a

“dilution” across DNA replication cycles (59, 60).

DNA methylation mainly occurs in CpG dinucleotide (61)

dispersed throughout the genome while CpG-dense regions of

0.2–2 kb called CpG islands, composed of 60%–90% 5-mC

usually remain free of methylation (62). CpG islands are located

less than 1 kb afar from transcription start sites or encompass

these sites and contribute to the transcriptional state of genes

(2, 59). The abundance of methylated cytosines in gene

promoters is correlated to gene repression (63).

Classical PCR methods fail to detect methylation since base

pairing is identical regardless of the methylation status of

cytosine. Thus, DNA requires pre-treatment using sodium

bisulfite, considered a gold standard for the detection of

methylation. Basically, unmethylated cytosines are converted to

uraciles through oxidative deamination, leaving methylated

cytosine intact (64, 65). Therefore, it is possible to infer the
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initial methylation status from sequencing products after PCR

amplification of bisulfite-treated DNA (Figure 1). The downside

of using bisulfite pre-treatment is the DNA degradation, which

prevents it from being reused for further applications. An

alternative is to use methylation-sensitive restriction enzymes

(66), and analyzing the digestion products to infer the

methylation status where cleavage occurred.

Bisulfite-treated DNA can then be amplified through methylation-

specific PCR (MSP), able to detect rarely methylated sites against a

strong background of unmethylated cytosines, sometimes referred as

MethyLight PCR. Based on fluorescence, MSP allows detection and

quantification of methylation by using, after a bisulfite conversion of

DNA, methylation-specific primers and probes designed to

specifically amplify methylated or unmethylated-DNA (67, 68). To

further increase the method’s sensitivity, MethyLight ddPCR was

adapted on digital PCR technique to be used with biological fluids

containing low DNA concentrations. The quantification limit was

reported to be 25-fold inferior to classical MethyLight PCR, and 20-

fold inferior quantification limit (69), making this technique suitable

to study cfDNA in liquid biopsies.

4.1.2 Epigenetic regulation at histone level
Histones are globular basic proteins of around 200 amino-

acids, rich in Arginine (R) and Lysine (K) (70), associated in

octamers to form the nucleosome core (dimers of H2a, H2b, H3

and H4), around which DNA wraps. Free NH2 tails are

vulnerable to chemical modifications (70–73) that will disrupt

DNA-histone bonds, thus modifying chromatin conformation.

Several major histone modifications are identified with a clear

consequence on the chromatin structure and gene expression.

Transcriptionally active chromatin is mostly characterized by high

NH2-term acetylation, tri-methylation of lysine 4 on H3 (H3K4me3)

(71), and acetylation of H3K27 (H3K27ac) (74). Gene bodies of

transcriptionally active genes are associated with trimethylated
FIGURE 1

Schematic representation of the principle of bisulfite DNA conversion for th
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H3K36 (H3K36me3) (74). On the other hand, transcriptionally

inactive chromatin is marked with global histone hypoacetylation,

and methylation of H3K9, H3K27, and H4K20 (71, 73, 74)

(Figure 2). Another way histones can affect epigenetic regulation is

through nucleosome shifting. Nucleosomes can slide along DNA

(cis) or transfer the histone core to another DNA strand (trans)

[Doyen, 2006 (75)], modifying gene accessibility and thus gene

transcription and expression (2).

The study of histone modification relies on classical protein

analysis techniques. In 2007, Shechter et al. presented several

techniques and standard protocols for the analysis of histone and

chromatin modifications (76), including very detailed protocols for

acid extraction of histones, reversed-phase HPLC (RP-HPLC), and

western blotting.

The enrichment analysis of specific loci requires ChIP

(chromatin immunoprecipitation) with a site-specific antibody,

targeting the chemical modification of interest (74, 77). Co-

immunoprecipitated DNA can be submitted to qPCR, microarray

analysis, or deep sequencing.
4.2 Involvement of epigenetics of cfDNA in
solid organ transplantation

In the context of solid organ transplantation (SOT), epigenetics

has two interesting features: the identification of the tissue of origin

of cfDNA based on the epigenetic signature of DNA, and the

assessment of the clinical status of the recipient. Epigenetic

dynamics regulate the involvement of the immune system and

play a key role in the success of transplantation (Table 3).

4.2.1 Tissue of origin footprint
Several studies focused on the identification of the source tissue

of cfDNA relying on tissue-specific methylation patterns (85).
e methylation study.
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FIGURE 2

Global representation of characteristics of transcriptionally active (a) or inactive (b) chromatin.
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Using genome-wide bisulfite sequencing of plasma DNA, several

researchers provided “tissue maps” of plasma DNA and built

methylome atlas with specific methylation profiles for each cell

type or tissue (86, 87) allowing to deduce the contribution of

each of them in the plasma pool of cfDNA.

In the transplantation field, this can be useful to assess the

proportion of cfDNA derived from the donor organ. In a study

on liver transplant recipients, the authors found a strong

correlation between the dd-cfDNA fraction deduced by

methylation tissue mapping determined on the basis of SNP (87).

As actively transcribed genes are depleted of nucleosome about

50 bp upstream from their transcription start site (2, 59),

nucleosome positioning varies between cell types (2), leading to a

precise pattern of expressed genes (2, 88) (Figure 3). This has been

used to demonstrate the main hematopoietic origin of cfDNA (88).

Since DNA is protected from cleavage when associated with

proteins, some hypothesized that cfDNA carries the nucleosome

footprint of the tissue it originates from, of which the
TABLE 3 Summary of the main reported epigenetic marks in different injury

Context Hypo/demethylated
genes

Hypermethylated
genes

Inflammation IL-6, AIM2, USP2, TMEM49,
SMAD3

SOCS-1, EEF2, MGMT

IRI C3 promoter YBX2, Foxp3

Acute rejection IL-17, RORC IL-2, mTOR pathway genes

Immune
tolerance

HLA-G, Foxp3,
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fragmentomic profile is representative. To test this hypothesis,

Snyder et al. performed a series of tests based on deep cfDNA

sequencing and fragment endpoint alignment. They confirmed

that the endpoints of cfDNA correlated to the nucleosome

positioning, with cleavage adjacent to the nucleosome, but not

directly on the nucleosome core (88). In most genomic regions,

nucleosome positioning is tissue-specific mirroring gene

expression profile (2), and DNase cleavage sites can inform on

nucleosome position distribution (1).

Recently in 2022, Zhou et al. also relied on the fragmentomic

profile of cfDNA to infer the methylation status of each CG

dinucleotide and thus the epigenetic regulation at a single base

level. After bisulfite DNA treatment, they found that densely

methylated CpG tend to be enriched in 5′CGN ends (N being

any nucleotide) while unmethylated CpG sites are enriched with

5′NCG end motifs. Thus, a ratio of CGN/NCG fragment

end-motifs is representative of methylation-specific cleavage.

Finally, they assessed the relevance of using the CGN/NCG ratio
contexts in transplantation.

Histone marks Source

Gonzalez-Jaramillo et al.
(78)

Singer et al. (79)

H3K4me3, H3K27me3 Vasco et al. (72)
Zhang et al. (80)
Zhu et al. (81)
Suárez-Álvarez et al. (82)

Hyperacetylation of Treg specific methylated region,
H3K9ac,

Singer et al. (79)
Moreau et al. (83)
Bestard et al. (84)
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FIGURE 3

Representation of nucleosome occupancy regarding the expression or repression of genes. TSS, transcription starting site.
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to deduce the tissue of origin of cfDNA on a murine hepatic

transplantation model and were able to discriminate the

dd-cfDNA proportion according to the CGN/NCG ratio. Thus,

the fragmentomic profile of cfDNA can be informative of the

tissue of origin depending on specific hyper or hypo-methylated

sites of the tissue of interest (89).
4.2.2 Ischemia-reperfusion injury (IR)
As epigenetic regulation is dynamic and vulnerable to changes

in the environment, cfDNA carries epigenetic hallmarks reflecting

the immune system activity in recipient after a transplantation and

may allow to anticipate the recipient’s response to the allograft.

Studies identified relevant epigenomic patterns involved in the

immune system activation or regulation in patients at different

key events following transplantation. The aim is to identify

recurrent patterns, specific to rejection or acceptance, based on

epigenetic behavior of specific genes.

Ischemia-reperfusion injury (IRI) is caused by the allograft’s cells

hypoxia before the transplantation, which accumulate metabolic

wastes causing inflammation and fibrosis (90) and is a risk factor

for multiple conditions that may arise later (60, 90, 91). Epigenetic

regulation is thought to be a key actor of inflammation-related

pathways (78). DNA methylation plays a key role in IRI, and

several differentially methylated sites are identified related to pro-

inflammatory genes and molecular pathways. More generally in

inflammation, Gonzales-Jaramillo et al. reviewed twenty-four

studies identifying differentially regulated markers. Briefly,

inflammation is associated with a global hypomethylation of DNA,

and hypomethylation of several pro-inflammatory cytokines genes

(IL-6, AIM2, USP2, TMEM49, SMAD3, etc.), while other are

hypermethylated (SOCS-1, EEF2, MGMT etc.) (78).

Back to SOT, IRI-induced aberrant demethylation on theC3 gene

promoter led to tissue injury in mice kidney transplant model (92,

93). On the other hand, during ischemia reperfusion induced acute

kidney injury, hypermethylation of YBX2 promotes transition to

chronic-kidney disease (CKD). Demethylation of YBX2 induced

with the methyltransferase inhibitor 5-azacitidine, prevented the

transition to CKD while also attenuating fibrogenesis (91).

In lung transplantation, few data are available. Very recently in

2023, Liu et al. demonstrated that DNA methyltransferases

(DNMT) inhibitors attenuated lung injury and inflammation,

while DNA demethylation enzyme inhibition worsened lung

injury, confirming the implication of DNA methylation in IRI
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(94). DNMT inhibitors also seems to accelerate lung

inflammation resolution through demethylation of the Foxp3

locus in regulatory T cells (Tregs) (79).

The keymechanismof IRI is the inflammation induced by cytokine

production and leucocytes recruiting leading to the activation of

apoptosis of injured cells (95). Several differentially methylated

regions (DMR) have been identified. Few data are available about

other epigenetic mechanisms like histone modification. Globally, the

analysis of DNA methylation at specific locus of inflammatory genes

may be relevant to detect the setting of inflammation.
4.2.3 Acute rejection
The next critical step after SOT is the potential development of

acute rejection (AR), whether being humoral (AMR) or cellular

(ACR). Epigenetic programming can regulate the differentiation

and activation of immune cells like dendritic, T and B cells (72)

and lead to the initiation of acute rejection. Several pathways are

identified to be under epigenetic regulation with DMR specific to

the clinical status of the recipient.

DNA methylation regulates IL2-mediated T cells activation,

identified as a leukocyte growth factor. IL-2 promoter is

hypermethylated and thus inactive in naïve T cells, while

hypomethylated and strongly acetylated in active T cells (72). In rats,

H3K4 trimethylation (H3K4me3) is shown to increase in peripheral

blood mononuclear cells in the context of AR (80), and the use of

histone methyltransferase inhibitors suppresses the alloimmune

reactivity of T-cells, improving AR in kidney-transplanted rats (96).

The mammalian target of rapamycin (mTOR) pathway is a

central signaling pathway controlling the epigenetic rewiring of

myeloid cells (97), as well as proliferation, growth, and cell

survival (72, 81). Several genes related to the mTOR pathway are

hypermethylated in AR-induced allograft dysfunction in renal

transplant recipients (81). Moreover, pharmacological inhibition

of mTOR specifically blunt pro-inflammatory cytokine expression

(IL-6 and TNF-α) in vitro (97), and demethylation of down

regulators of mTOR with DNA methyltransferases also improved

the inflammatory injury on a murine model of AR (60).

Helper T-cells 17 (Th17) specifically express IL-17 and

potentially contribute to allograft rejection. Th17 isolated in vivo

are characterized by DNA demethylation of IL17 and RORC,

with bivalent H3K4me3/H3K27me3 domains on the TBX1

promoter (transcription factor), suggesting the gene is ready to

be rapidly expressed under certain conditions (82).
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4.2.4 Immune tolerance
The goal after a SOT is to reach a state of immune tolerance,

defined as a state of control or inhibition of the immune

response to a foreign stimulus, leading to acceptance of the

allograft without the need of immunosuppressive treatment.

Epigenetics can either upregulate or downregulate the immune

response to the graft and thus induce rejection or tolerance.

HLA-G is among the most studied immune tolerance actor in

heart (98, 99), lung (100) and kidney (101) transplantations. This

non-classical major histocompatibility complex class 1b antigen is

involved in the protection of transplanted tissues through the

inhibition of immune effectors (102), especially NK and T cells

(103). HLA-G shows low allelic polymorphism, and can be found

in soluble form (sHLA-G) (100). It can be detected in the plasma

and biopsies of transplant recipients, correlated to allograft

acceptance with less AR episodes and no chronic rejection (100).

HLA-G transcription is enhanced by demethylating agents (83),

suggesting that HLA-G promoter could be demethylated in

tolerant patients. Histone methylation in a regulative region of

HLA-G 450 bp upstream from start codon correlates to DNA

hypermethylation in the same region, silencing HLA-G expression

(103). Moreover, immunosuppressive drugs would influence HLA-

G expression, with sHLA-G increasing in patients treated with

Everolimus and Tacrolimus in cardiac and renal transplantations

respectively (104, 105). Finally, patients treated with belatacept, a

recombinant molecule used to prevent AR after kidney

transplantation, show an increase in sHLA-G levels compared to

patients treated by calcineurin inhibitors or healthy donors.

Different cell types are engaged in the regulation of the

immune response in SOT, and thus in immune tolerance of the

allograft. Regulator T cells (Treg) are essential in immune

homeostasis due to their role in peripheral tolerance (106). These

cells are characterized by the expression of the Foxp3 (Forkhead

Box Protein 3) transcription factor. Several studies showed that

Foxp3 demethylation is associated with a higher expression of

Tregs intra-graft, and a favorable long-term outcome for the

allograft (79, 84), as well as histone hyperacetylation (82) in the

Treg-specific demethylated region (TSDR).

An interesting mechanism in allograft acceptance is the

exhaustion of T cells, a functional silencing leading to exhausted T

cells (Texh). This occurs in response to a prolonged exposition to an

antigen, limiting T cells ability to release cytokines and resulting

ultimately to impaired ability (107). Higher levels of Texh are

associated to a better renal function (107). Texh epigenetic program

is robust and stable, distinct from effector and memory T-cells

(108). When exposed to persistent levels of antigens, T cells

upregulate PD1 and a repressing methylation prevent exhausted T

cells to respond to immune checkpoint blockage (109).

Dendritic cells (DCs) are essential for innate and adaptive immune

response butDCs can induce immune tolerance in the absence of signal

(82). During monocyte derived tolerogenic DCs differentiation,

epigenetic mechanisms are involved, and guide the becoming of DCs

as activated or tolerogenic. Monocyte differentiation in DCs is

regulated by acetylation of H3K9 and the loss of repressive marks

H3K9me3 and H4K20me3, along with DNA methylation (110).
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5 Conclusion

The clinical use of cfDNA is still subject to various obstacles,

which must be overcome before a reliable and robust diagnostic

test can be developed. First, methods standardization for both

sampling and analyzing cfDNA are mandatory to allow

reproducibility of tests, and thus improve the quantity and

quality of data relative to the diagnostic relevance of cfDNA.

Moreover, the various methods used yield different sensitivity

and specificity, implying the need to improve the algorithms of

classification, especially by increasing cohort sizes, partly made

possible by method standardization to share results. Finally, the

correlation between circulating DNA and the veracity of clinical

rejection is not always easy to establish, as evidenced by the

threshold values of %ddcfDNA which, even if close, are never

identical from one study to another, and can be impacted by

confounding factors such as infection.

Epigenetics holds promises and can bring solutions to

greatly increase sensitivity, specificity and reliability of

diagnosis with cfDNA. It may allow discrimination between

rejection and infection or other confounding factors and

avoids non-standardized extraction and quantification

methods. Efforts remain to be made towards identifying

specific epigenome patterns characteristic of acute rejection

being cellular or humoral, infection, and other conditions,

allowing early and reliable identification of rejection

mechanisms activation.
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