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With recent advancements in deep learning (DL) techniques, the use of artificial
intelligence (AI) has become increasingly prevalent in all fields. Currently valued
at 9.01 billion USD, it is a rapidly growing market, projected to increase by 40%
per annum. There has been great interest in how AI could transform the practice
of medicine, with the potential to improve all healthcare spheres from workflow
management, accessibility, and cost efficiency to enhanced diagnostics with
improved prognostic accuracy, allowing the practice of precision medicine. The
applicability of AI is particularly promising for transplant medicine, in which it can
help navigate the complex interplay of a myriad of variables and improve patient
care. However, caution must be exercised when developing DL models, ensuring
they are trained with large, reliable, and diverse datasets to minimize bias and
increase generalizability. There must be transparency in the methodology and
extensive validation of the model, including randomized controlled trials to
demonstrate performance and cultivate trust among physicians and patients.
Furthermore, there is a need to regulate this rapidly evolving field, with updated
policies for the governance of AI-based technologies. Taking this in
consideration, we summarize the latest transplant AI developments from the
Ajmera Transplant Center’s inaugural symposium.
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1 Introduction

Since its first description in the 1950s by Alan Turing, there has been huge interest in the

applicability of artificial intelligence (AI) in clinical practice, particularly given its potential to

analyze large datasets (1). However, progress in the medical field had remained limited until the

early 2000s, when the development of deep learning (DL) methods, which involved the creation

of artificial neural networks, extended the capability of AI for data analysis beyond a fixed model

of pattern recognition inputted by a human operator, to developing its own representations in a

learning algorithm, recognizing new patterns among vast quantities of unstructured data (1–3).

This sparked a wave of studies exploring the utility of DL in the identification of novel patterns,

which could assist in improving diagnostic techniques and the prediction of therapeutic

responses. In 2017, Arterys was the first healthcare cloud-based DL application to be approved

by the US Food and Drug Administration (FDA). Arterys uses cardiac magnetic resonance

imaging (MRI) exams to estimate ventricular function (4). To date, there have been 694

approved AI-based medical applications (5). It is a rapidly growing market, reaching a value of

9.01 billion USD in 2023, with a forecasted compound annual growth rate of 40% (6).
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In linewith these developments, there has been an array of research

exploring the versatility of AI in different areas of healthcare.Within the

clinical setting, DL models have demonstrated utility in aiding clinical

decision-making, processing and combining multi-omics profiles

with clinical, demographic, and epidemiologic data and diagnostic

results, thereby enabling the practice of precision medicine, in which

treatment is tailored to the specific needs of the individual, rather

than being confined to standardized “one-size fits all” protocols

(7–9). In addition, AI-based tools have been used to improve

diagnostic testing, assisting with medical imaging and histopathology

review, which has improved patient monitoring methods,

engagement, and compliance (10, 11). The prospective benefits have

been shown to extend to all aspects of healthcare, including medical

education, research, development, and even healthcare organization,

in which it has been shown to improve workflow and resource

utilization, reducing costs and medical errors (7, 12, 13).

However, despite the potential for revolutionizing healthcare, the

successful deployment and implementation of DL models in day-to-

day practice is not without its challenges. Essentially, the models

must be derived using robust datasets obtained from the target

population, be well calibrated, and undergo extensive validation.

This is critical as erroneous assumptions can adversely impact

management and lead to harm. One notable example was observed

with the external validation of the Epic Sepsis Prediction Model in

the US (14). Furthermore, there are few randomized clinical trials

and prospective studies in DL, and peer-reviewed publications are

not a prerequisite for FDA approval (15). Assessing the

reproducibility of DL research is also challenging due to limitations

in the availability and accessibility of the datasets and codes from

which the models are generated (15). In addition, AI-based models

are generated within the confines of existing published data, which

have significant age, gender, and racial biases (16–18). This inability

to extrapolate beyond the inputted data comes with a significant

risk of amplifying existing biases and disparities in healthcare (15–18).

Transplant medicine is a nuanced specialist area, with many

variables at play. At present, there is room for significant

improvements in our delivery of care, including prioritization

fairness in the organ allocation process, optimizing donor-

recipient matching, improving graft survival, and practicing

precision medicine by tailoring immunosuppression levels to

reduce the risk of rejection while addressing metabolic risk

factors to improve long-term outcomes.

In this position paper, we detail the proceedings from the

Ajmera Transplant Center’s inaugural Transplant AI Symposium,

summarizing the latest advancements in the use of AI-based

tools, current challenges, barriers to implementation, ethical

considerations, and future directions aimed at modernizing and

improving care for transplant recipients.
2 Symposium highlights

2.1 The future of AI in transplant

The inaugural symposium was opened by the keynote speaker,

Dr. Alexandre Loupy, from the Necker Hospital in Paris.
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Introducing a multimodal approach to the use of AI in

transplantation, he detailed his stepwise approach from the

research and development of DL models to extensively validated

decision support systems that can be successfully incorporated in

day-to-day clinical practice.

Dr. Loupy highlighted the three main pillars of his AI journey.

The first was centered around the development of the multimodal

prognostication system for allograft loss in renal transplant

recipients (iBox) in 2012, using a prospectively derived

comprehensively phenotyped cohort of renal transplant recipients

(19–21). The prognostication system incorporates data that are

easily accessible in all transplant centers, such as donor and

patient characteristics, medical history, histopathology, treatment

regimens, and longitudinal clinical parameters. Designing the

model exclusively for the renal transplant recipient helped increase

the specificity of the algorithm, and evaluating it in a diverse

patient population improved the generalizability of the model.

During development, there was extensive internal validation,

including a methodological validation of the statistical model

required to generate the prognostic scoring system, guaranteeing a

causal DL model, with parameters used for scoring being directly

related to independent predictors of long-term allograft failure in

renal transplant recipients. This was followed by an external

independent validation in multiple transplant centers worldwide,

with subsequent involvement in numerous randomized controlled

trials (RCTs) demonstrating the translatability and relevance in

geographically distinct populations. The model was subsequently

involved in numerous RCTs (see Table 1) and has received

endorsement from transplant societies and the European

Medicines Agency (EMA), and is currently under review with the

FDA. The iBox system currently involves data from 27,000

patients across 44 centers, in 14 different countries spanning 5

continents. The iBox score is now validated as a surrogate of long-

term allograft survival and is used as a clinical endpoint in clinical

trials. Work is under way to develop an equivalent pediatric model.

The second pillar builds on the first, incorporating data on

HLA antibodies with novel biomarkers of graft pathology,

including immunological markers (21, 24–28) and donor-derived

cell free (DD-CF) DNA (24, 26, 27, 29–32), in addition to novel

molecular technologies (27, 33–38), which enable more detailed

allograft phenotyping in a multimodal algorithm-based decision

support system (32, 39–43). There is currently an ongoing

multicenter prospective RCT (the EU-TRACER IMPACT study)

involving eight European transplant referral centers assessing

whether the integration of these additional models, including

DD-CF DNA, can further increase the model’s accuracy in

predicting allograft failure and patient mortality.

Finally, the last pillar focuses on using AI to improve diagnostics

and disease classification through precision diagnostic platforms that

incorporate digital histological analysis, including digital spatial

profiling and single-cell pathology with diagnostic techniques

involving the “molecular microscope” system and non-invasive

biomarkers, such as DD-CF DNA. This multidimensional approach

to diagnostics has already helped amend the Banff diagnostic

classification of antibody-mediated rejection (ABMR) in renal

transplant recipients (35, 44), and pursuing a multidimensional
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TABLE 1 Summary of validation studies and randomized controlled trials involving the iBox prognostication system.

Study Description Population Outcome Results
Prediction system for the risk of
allograft loss in patients receiving
kidney transplants: International
derivation and validation study
(20) 2019

Development of an integrative
system for predicting long-term
kidney allograft failure: iBox,
consisting of clinical, histological,
functional, and immunological
variables with multicenter,
international validation. *Further
validation in RCTs (BENEFITa,
BENEFIT-EXTb, CERTITEMc and
(Bortejectd)

• Derivation cohort (n = 4,000)
prospectively enrolled renal
transplant recipients across
France (both living and deceased
donors) from Jan 2005 to 2014

• Validation cohort (n = 3,557),
prospectively enrolled recipients
across Europe and the US
between 2002 and 2014

• Median follow-up of 7.65 years
following transplantation

Allograft loss • A total of n = 1,067 (14.1%)
allograft failures over a median
follow-up of 7.12 years between
the derivation and the validation
cohorts

• Good discriminative
performance following internal
and external validation

C index: 0.81 (95% CI 0.78–0.84)
in Europe, 0.80 (95% CI 0.76–0.84)
in US

Application of the iBox
prognostication system as a
surrogate endpoint in the
transforme randomized controlled
trial (22) 2021

Proof-of-concept study utilizing the
iBox prognostication system as a
surrogate marker of long-term
outcomes in renal transplant
recipients, projecting up to 11 years
post randomization, in a large RCT

• n = 940 renal transplant
recipients treated with
everolimus combined with
reduced exposure calcineurin
inhibitor matched with n = 932
recipients treated with
mycophenolate mofetil combined
with standard exposure
calcineurin inhibitor

• iBox prognostication scores
calculated at 1-year visit

Long-term allograft
survival projections
for 4, 6, and
11 years

• First application of a validated
risk scoring system for
predicting long-term allograft
survival in an RCT

• First application of the validated
iBox prognostication system as a
surrogate endpoint in renal
transplant recipients

• Results support the use of the
model as a clinical trial
simulation tool

• Everolimus combined with
reduced exposure calcineurin
inhibitor was found to be non-
inferior to mycophenolate
mofetil with standard
calcineurin inhibitor therapy

Validation of a prediction system
for risk of kidney allograft failure
in pediatric kidney transplant
recipients: an international
observational study (23) 2023

Validation of the iBox kidney
allograft risk prediction system in
pediatric renal transplant recipients

• n = 1,359 pediatric renal transplant
recipients across 20 centers in
Europe and the United States

Allograft loss • A total of 706 kidney allograft
evaluations performed over a
median follow-up time of
9.1 months post-transplant

• iBox demonstrated accurate
calibration and good
discrimination for predicting
outcomes

C index: 0.81 (95% CI 0.75–0.87)

aBENEFIT, Belatacept evaluation of nephroprotection and efficacy as first-line immunosuppression, ClinicalTrials.gov ID NCT00256750.
bBENEFIT-EXT, Belatacept evaluation of nephroprotection and efficacy as first-line immunosuppression trial-extended criteria donors.
cCERTITEM, Progression of renal interstitial fibrosis/tubular atrophy (IF/TA) according to epithelial-mesenchymal transition (EMT) and immunosuppressive regimen (everolimus based versus

CNI based) in de novo renal transplant recipients, ClinicalTrials.gov ID NCT01079143.
dBORTEJECT, Bortezomib in late antibody-mediated kidney transplant rejection, ClinicalTrials.gov ID NCT01873157.
eTRANSFORM, Advancing renal transplant efficacy and safety outcomes with an everolimus-based regimen, ClinicalTrials.gov ID NCT03474003.
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approach to diagnostics holds further promise, including in

improving precision diagnostics for xenotransplant recipients.

Dr. Andrew T. Sage, from the Latner Thoracic Research

Laboratories, then discussed the development of the InsightX AI

model (Transplant Hepatology and Machine Learning

Departments, University of Toronto, Toronto, ON, Canada) for

assessing organ injury and predicting patient outcomes during lung

transplantation. Organ availability remains a significant issue in

transplantation, not excepting individuals awaiting a lung

transplant, with over 110,000 people in the US on the waiting list,

which has a person added to it every 9 min (45). Considerable

demand in the face of a supply shortage has a significant impact on

waitlist mortality, with 17 people on the lung transplant waiting list

dying daily (45). Lung allografts tend to be particularly susceptible

to ischemia-reperfusion injury, highlighting the importance of

optimizing organ preservation (46). This has led to the use of ex

vivo lung perfusion (EVLP) to help restore lung physiology,

reducing the rates of ischemia-reperfusion injury, and facilitate the
Frontiers in Transplantation 03
assessment of impaired donor lungs (47). Interestingly, the machine

also provides a unique platform for obtaining serial physiological,

biochemical, and imaging data. Dr. Sage and his team compiled

longitudinal measurements recording over 100 variables from donor

lungs, including cytokine production, lactate, electrolytes, airway

pressures, vascular resistance, and dynamic and static compliance.

These high-resolution data profiles were then used to create the first

AI model for ex vivo organs, InsightX, which aimed to improve the

assessment of organ suitability, donor-recipient matching, and post-

transplant outcomes (48). The long short-term memory (LSTM)

model was trained using 725 clinical cases and consisted of an

ensemble of decision trees in a gradient boosting framework,

making it more adaptable to handling missing values while

ensuring high interpretability and performance efficiency. Three

outcome classifications were used: time to extubation post-

transplant <72 h, ≥72 h, and unsuitable for transplant. The model

performed well in the prediction of post-transplant outcomes,

achieving an area under the receiver operator curve (AUROC) of
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79% ± 3% in the training dataset, with AUROCs of 75% ± 4% and

85 ± 3% in the independent test sets, with an AUROC of 90% ± 4%

for the correct identification of unsuitable donor lungs (48). The

team further developed the model with the addition of recipient

data and used data intensive in silico models otherwise known as

digital twins to run accurate simulations and allow for precise

treatment selection. The additional data further improved the

predictive accuracy of the model, resulting in no significant

differences between the predicted and observed outcomes

(p = 0.88). The results have been extremely promising, enabling

more accurate identification of unsuitable organs and optimal

donor-recipient matching, and improving clinical outcomes, and

the team are currently working on further validation following the

incorporation of radiographic data.

Although the 1-year survival of liver transplant recipients has

improved over the last 30 years, long-term survival has remained

largely unchanged (49, 50). Mortality beyond 1 year is

predominantly due to issues with graft failure, cardiovascular events,

and de novo and recurrent cancers (49, 50). This clinical conundrum

motivated MB and her team to design DynaComp (Transplant

Hepatology and Machine Learning Departments, University of

Toronto, Toronto, ON, Canada), a personalized risk calculator for

the long-term management of transplant recipients. Longitudinal

data incorporating 267 clinical variables and 5 outcome measures

were obtained from the SRT and used in the development of the

training model, including overall survival, death by graft failure,

death by infection, cardiac events, and cancer (51). Of the

preliminary models, the Transformer model (Transplant Hepatology

and Machine Learning Departments, University of Toronto,

Toronto, ON, Canada) demonstrated the greatest predictive

accuracy, with overall AUROCs for 1- and 5-year survival of 0.77

and 0.711, respectively. The AUROCs for survival compromised by

cardiovascular disease, cancer, infection, and graft failure were

between 0.80–0.81. Shapley additive explanations (SHAP) analysis

was performed to determine the relative impact of each variable on

the model output, revealing the highest weighted variables to be:

time since transplantation, donor and recipient age, etiology of liver

disease, and body parametric data including weight and BMI, in

addition to standard laboratory results. Following analysis, the

results are displayed in the form of a personalized dashboard,

projecting estimations of 1- and 5-year survival, including a

breakdown risk of death from graft failure, cardiovascular events,

infections, and cancer. The model can serve as an invaluable prompt

for physicians in clinic, guiding them to react to risks, adjust

immunosuppression, and initiate primary prevention measures, with

the added advantage of allowing them to assess the impact of the

therapeutic modifications on subsequent visits, ultimately improving

the preservation of graft health and overall survival.
2.2 Clinical deployment of machine learning
tools: practical and ethical considerations
in transplant

The afternoon session was opened by Professor Doug

Simonetto from the Mayo Clinic, who spoke about the
Frontiers in Transplantation 04
development of an electrocardiogram (EKG)-enabled machine

learning model designed to improve prognostication in chronic

liver disease. Advanced liver disease is associated with the

evolution of cardiomyopathy and cirrhotic cardiomyopathy,

which lead to specific EKG changes (52). Professor Simonetto

and his group worked on a binary classification model with a

convoluted neural network (CNN) for the identification of

cirrhosis using 12-lead EKGs. The generated output was

identified as an AI cirrhosis EKG (ACE) score, a continuous

value ranging from 0 and 1, reflecting the estimated strength of

the “cirrhosis” signal from each EKG (53). Data from 5,212 liver

transplant recipients who had cirrhosis listed as an indication for

transplantation and had a digitized EKG prior to transplant,

combined with 20,728 age- and sex-matched controls, were used

for the training, testing, and validation cohorts. Following

analysis, an AUROC of 0.98 was achieved for the prediction of

cirrhosis in the testing cohort, with a sensitivity of 84.9% and a

specificity of 83.2%. When adjustments were made for one-to-

one matching, including comorbidities, the performance of the

model did not significantly change, with an AUROC of 0.893.

Following on from this, the team looked to see whether there

were any longitudinal changes in the score and determined that

the ACE score continued to increase from 5 years before

transplant, reaching a peak immediately prior to transplantation,

after which it significantly declined. On this basis, the team

proceeded to explore whether the score could have utility in

prognostication and predict the future risk of decompensation

and death. They obtained data from 500 patients with

compensated cirrhosis predominantly due to metabolic liver

disease (alcohol misuse and metabolic-dysfunction associated

steatohepatitis), who had longitudinal follow-up that included

EKGs. The model demonstrated an AUROC of 0.932 for the

prediction of decompensation, with a sensitivity of 88.4% and

specificity of 83.9 % (54). Following logistic regression, the team

found that for every 0.1 increase in the ACE score, there was a

4.8× increase in the odds of clinical decompensation after

adjusting for the MELD-Na score. The team then split the ACE

scores into quartiles and assessed 1- and 5-year survival. Patients

in the top quartile with ACE scores ranging from 0.75–1 had a

>50% 1-year mortality, reaching almost 100% at 5 years, whereas

those in the lowest quartile with ACE scores ranging from 0–0.25

had a <10% 5-year mortality. In the fully adjusted model, each

0.1 increase in the ACE score was associated with a 42% higher

risk of liver-related death. The model performed well in

predicting the risk of decompensation and death in individuals

with compensated chronic liver disease.

Dr. Mike Brudno, chief data scientist at the University of

Toronto, then provided an entertaining illustration of the

challenges when training DL models, in particular the dangers of

a “black box” classification model, using the team’s latest

experience developing a model for the identification of

pneumothoraxes from chest radiographs as an example. From

initial iteration, the model had been devised using 7,000 images

obtained from University Health Network (UHN) cases, of which

1,000 cases were positive for pneumothoraxes and 6,000 were

negative. The model had initially been trained using a
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segmentation approach; however, this did not perform well, with a

low Dice similarity coefficient score (coefficient of similarity

between the “predicted” DL image and the “true” image ranging

from 0 to 1) of 0.49, indicating a less than 50% chance of the

model correctly identifying a pneumothorax, with a high

standard deviation of 0.28 (55). Reviewing the initial images, the

team noted that there was huge variability in the pneumothorax

“negative” radiographs, with not enough data to apply the

segmentation method; as a result, they used new data to update

the model and switched to a classification-based method of

analysis. In addition, the team modified the aim of the model to

identify high-risk radiographs for the attention of radiologists,

assisting with workflow prioritization. Testing the new iteration

from 2,200 UHN scans, the AUROC of the model was 87.12%,

with a sensitivity of 61.9% and specificity of 91.44%. Although

the performance appeared acceptable, the team used gradient-

weighted class activation mapping (Grad-CAM) to identify the x-

ray regions the model focused on and deemed essential for the

prediction of a pneumothorax in an image-based CNN model.

They noted that the model was drawing incorrect inferences

when using chest drains (the treatment for pneumothoraxes)

or the presence of chest leads (usually associated with

more acutely unwell patients) for its predictions. In essence, the

model was erroneously determining causation from association.

The team then adopted a multistep model; the first step

involving the identification and removal of patients with chest

drains and the second step involving the identification of

pneumothoraxes. This really highlighted the importance of

assessing explainability with clinically applied DL models.

The final talk of the day was given by Dr. Joseph Cafazzo, the

executive director of biomedical engineering at the UHN, on the

importance of human factors in the successful deployment of

AI-based tools. Although there has been a plethora of products

devised specifically for the healthcare industry, many have not

passed the test of usability by failing to incorporate the

consideration of human factors during the design phase. Human

factors relate to the application of what is known about human

capabilities and limitations from cognitive, behavioral, and

environmental perspectives, in the design of the world we live

in, to enable safe and productive lives. In particular, there tends

to be a lack of empathy in the design of many healthcare tools.

The challenge when it comes to the conception of these models

is being mindful that it is not just a product but an experience

that is being designed. One successful example includes the

design of Medly (Centre for Digital Therapeutics, Toronto, ON,

Canada), an application developed with Dr. Heather Ross that

facilitates self-monitoring for patients with heart failure. Since

its launch in 2016, the application has empowered patients and

their families to take on a more active role in their health,

improved quality of life, clinical outcomes, and healthcare-

associated costs with a 50% reduction in the number of

hospitalizations due to heart failure, and has demonstrated

continued good uptake and adherence from the older patient

population (56, 57). This demonstrates the potential impact of

deploying practically useful AI tools on saving lives and

reducing healthcare system costs.
Frontiers in Transplantation 05
3 Discussion

AI is a rapidly evolving area in healthcare. With the capacity to

form complex non-linear analyses from large datasets and identify

novel relationships, DL offers the potential to dramatically advance

our diagnostic, patient monitoring, and prognostication

techniques, thereby improving patient care. However, significant

care is required in the development of these models, ensuring

large and diverse derivation cohorts to reduce bias and guarantee

generalizability, with appropriate explainability to confirm that

the conclusions drawn by the model are coherent from a logical

pathophysiologic perspective. In addition, regulatory bodies,

including the FDA and Health Canada, need to devise specific

policies for the appropriate governance of AI-based applications.

Finally, the doctor-patient relationship has the potential to be

enhanced when physicians can delegate clerical tasks to AI,

leaving them free to focus on patient interactions.
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