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Liver transplantation is the only treatment for patients with liver failure. As demand
for liver transplantation grows, it remains a challenge to predict the short- and
long-term survival of the liver graft. Recently, artificial intelligence models have
been used to evaluate the short- and long-term survival of the liver transplant.
To make the models more accurate, suitable liver transplantation characteristics
must be used as input to train them. In this narrative review, we reviewed studies
concerning liver transplantations published in the PubMed, Web of Science, and
Cochrane databases between 2017 and 2022. We picked out 17 studies using
our selection criteria and analyzed them, evaluating which medical
characteristics were used as input for creation of artificial intelligence models. In
eight studies, models estimating only short-term liver graft survival were created,
while in five of the studies, models for the prediction of only long-term liver
graft survival were built. In four of the studies, artificial intelligence algorithms
evaluating both the short- and long-term liver graft survival were created.
Medical characteristics that were used as input in reviewed studies and had the
biggest impact on the accuracy of the model were the recipient’s age, recipient’s
body mass index, creatinine levels in the recipient’s serum, recipient’s
international normalized ratio, diabetes mellitus, and recipient’s model of end-
stage liver disease score. To conclude, in order to define important liver
transplantation characteristics that could be used as an input for artificial
intelligence algorithms when predicting liver graft survival, more models need to
be created and analyzed, in order to fully support the results of this review.

KEYWORDS

liver transplantation, short-term liver graft survival, long-term liver graft survival, artificial
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1 Introduction

Liver transplantation is one of the most complex fields of medicine, demanding

precision not only during the transplant surgery itself or caring for the patient in the

perioperative period, but also in selecting suitable donors and recipients, as well as

estimating the survival of a liver graft (1). Many patients die while waiting for liver
Abbreviations

MELD, model of end-stage liver disease; MELD-Na, model of end-stage liver disease (including serum sodium
concentration); DM, diabetes mellitus; ML, machine learning; LR, logistic regression; RF, random forest; DNN,
deep neural network; CTA, classification tree analysis; ANN, artificial neural networks; SVM, support vector
machine; BN, Bayesian network; MLP, multilayer perceptron neural network; KNN, K-nearest neighbors; NN,
neural network; RSF, random survival forest; DT, decision tree; AUC, area under the curve; SOFT, survival
outcome following liver transplantation; BAR, balance of risk; BMI, body mass index; SRTR, Scientific
Registry of Transplant Patients; ICU, intensive care unit; HCV, hepatitis C virus; PSSP, patient specific
survival prediction; UNOS, united network of organ sharing.
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transplants since the demand for donated livers far exceeds the

supply. Despite this reality, the number of transplants does not

significantly increase over time, although more extended criteria

organs (such as organs after circulatory death of the patient) are

used for liver transplantation (2–4). Because donor organs are a

scarce resource, it is becoming increasingly important to increase

liver graft utilization and, at the same time, to ensure that the

best possible outcomes can be achieved (1). Until now, various

scores [balance of risk (BAR), model of end-stage liver disease

(MELD), model of end-stage liver disease (including serum

sodium concentration) (MELD-Na), Child–Pugh, survival

outcome following liver transplantation (SOFT), and others] have

been used worldwide to address this issue (2, 5–7). The number

of points scored in these scales determines whether a patient

needs a liver transplant and how quickly it should be performed,

and assesses the patient’s mortality rate after the transplant (8).

However, the assessments made using these scales do not always

accurately reflect the urgency and necessity of transplantation or

the patient’s post-transplant outcome. For example, the MELD

score system is now widely used to prioritize the patients who

are waiting for liver transplantation. However, some of its results

might not be completely reliable (9), as the association between

the pre-transplantation MELD score and post-transplant survival

represents a low level of evidence (6). Other scores, such as BAR

and SOFT, are also used to facilitate surgical decision making

(8). However, survival prognosis for the recipient is believed to

be an extremely complex relationship that is non-linear in nature

(10). It is observed that optimal graft allocation as well as short-

and long-term graft survival are dependent on many different

characteristics, such as the recipient’s or donor’s demographic

data, laboratory findings, chronic diseases, and other variables.

Therefore, more reliable methods are being sought to evaluate

the survival of liver graft recipients (11).

Artificial intelligence algorithms, used to calculate the survival

of the patient after liver transplantation, would be more efficient

than existing scores (2). Machine learning (ML) algorithms can

be used to predict the outcome of a new observation, based on a

training set containing previous observations where the outcome

is known (12). Using pre-transplant characteristics of donors and

recipients, machine learning models can predict short- and long-

term patient survival after transplant with higher accuracy than

advanced biostatistical models, predominantly due to the ability

to integrate a larger number of variables and data types (11).

However, it should be noted that machine learning techniques

need a precise set of operating conditions to perform well. The

input data must be adequately processed and input variables

should be chosen carefully in order not to downgrade the

algorithm’s performance (13). As the outcome after liver

transplantation depends upon a complex interaction between

donor, recipient, and process factors, choosing the input

variables for the machine learning algorithms tends to be one of

the main issues while applying neural networks (NN) in liver

transplantation (12). The estimations made in clinical practice

using a neural network algorithm might also not be accurate

when some of the variables are missing, for example, when the

donor information cannot be used as input as it is not always
Frontiers in Transplantation 02
available in advance (14). Another challenge is choosing which

particular algorithm should be used in order to estimate the

survival of the graft. Currently, random forest (RF), support

vector machine (SVM), and artificial neural networks (ANNs)

are mostly used in medical decision making (1). Artificial neural

networks imitate human thinking as they gather their knowledge

by detecting the patterns and relationships in data and learn (or

are trained) through experience, not from programming (15).

The random forest, on the other hand, uses randomization to

create a large number of decision trees (DTs). Then, the

algorithm chooses which combination of the variables differs the

most from the control group (16). The support vector machine

classifies objects as points in an interdimensional space and

draws multiple planes, which could separate objects of two

separate groups in a most effective way (17). Deciding which

method of machine learning works best on the data depends on

many factors; therefore, most of the time more than one

algorithm is applied to find the model with best accuracy.

In this work, we analyzed the current literature of neural

network applications in evaluating short- and long-term survival

after liver transplantations. We have picked out the most

important and precise characteristics used in the neural networks

as inputs, as well as evaluated the drawbacks their usage may have

when predicting the short- and long-term survival of the liver graft.
2 Methods

We defined short-term liver graft survival as less than 6 months

after transplantation and long-term liver survival as more than

6 months after transplantation. We then searched the PubMed,

Cochrane, and Web of Science databases to find articles

concerning artificial intelligence models used to evaluate the

survival of liver grafts. The keywords we used were: “Liver

Transplantation”, “Artificial Intelligence”, “Neural Network”,

“Machine Learning”, “Deep Learning”, and “Statistical Model”.

After our initial search, we had 976 results. We then applied

inclusion and exclusion criteria to the articles. The inclusion

criteria were as follows: studies published between 2017 and

2022, studies concerning short- and long-term graft survival after

liver transplantation, studies concerning adult liver

transplantation, and studies in English.

The exclusion criteria were as follows: case reports; systematic

reviews, literature reviews, or meta-analyses; abstract-only

publications; studies concerning pediatric liver transplantation;

studies concerning multi-organ transplantation; studies concerning

liver transplantation candidate survival and mortality; and studies

with algorithms created to evaluate radiology images or biopsies.
3 Results

3.1 Literature review

We selected the literature for our narrative review by searching

the PubMed, Cochrane, and Web of Science databases, and
frontiersin.org
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applying exclusion and inclusion criteria to the selected studies.

After our initial search of the aforementioned databases, we had

976 results. We then applied the inclusion and exclusion criteria

to the articles and 958 studies were excluded. Only 18 articles

remained. One of the articles was unavailable due to fees.

Therefore, we finally had 17 articles for our literature analysis.

The process of identification of studies is represented

in Figure 1.

Most of the studies (six studies) were carried out in the USA

(18–23). Six of the studies were conducted in Asia (14, 24–28)

and there were three European studies (2, 13, 29), one Australian

study (12), and one Canadian study (30).
3.2 Artificial intelligence models

The included studies handled the problem of evaluating short-

and/or long-term liver graft survival and choosing types of

artificial intelligence models that could be the most appropriate for

survival prediction. In eight studies, models estimating only

short-term (up to 6 months) liver graft survival were created

(12, 14, 21, 22, 26–29), while in five of the included studies,

models for the prediction of only long-term liver graft survival

were built (11, 13, 26–28). In four studies, models predicting both

short- and long-term survival were created (2, 18, 23, 24). Eight of

the studies used large datasets (including more than 10,000

patients) (2, 11, 13, 19–23), whereas four of the studies included a

medium number of patients (1,000–10,000 patients) (14, 18, 19, 28).

Small datasets (including less than 1,000 patients) were used in six

studies (12, 24–27, 29).

Most of the studies (12 studies) used more than one type of

artificial intelligence algorithm (2, 11–14, 19–21, 23–28). Brain-

inspired machine learning algorithms were used in 10 studies:
FIGURE 1

Identification of studies via databases.
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deep neural networks (DNNs) were used in three studies (2, 22,

23), artificial neural networks were applied in five studies (12–14,

20, 27), and a multilayer perception neural network was used in

two studies (25, 26). Popular machine learning algorithms for

classification, such as logistic regression (LR) (used in eight

studies) (2, 11, 12, 14, 20, 21, 26, 27), random forest (used in

seven studies) (2, 11, 12, 24, 26–28), support vector machine

(used in four studies) (11, 24–26), and decision tree (used in

three studies) (2, 24, 27) were also widely used in the

aforementioned studies. Cox models were applied in five studies

(13, 19, 24–26). Yu et al. (24) and Yang et al. (26) not only

applied machine learning models but also compared their

efficacy with the conventionally used MELD score.

Most of the studies use large databases and more than one type

of artificial intelligence algorithm when creating artificial

intelligence models for the prediction of liver graft survival.
3.3 Study characteristics

To create an accurate artificial intelligence model, certain

variables must be picked out to train the algorithm. Here, we

discuss the variables that were deemed most important in our

selected studies – having most impact for the accuracy of the model.

In most of the studies, up to 50 variables were used as an input to

train artificial intelligence models (11, 14, 18, 19, 21, 24, 25, 27–29);

however, there were four studies that used more variables. Two

studies used up to 100 variables (13, 20), in two models up to 200

variables were used (20, 23), and there were two studies that used

more than 200 variables as an input (2, 22). In the study by

Lau et al. (12), more than 200 variables were used initially;

however, after selection, only 15 variables were included in the

most accurate model.

The most important characteristics were selected in only 16

studies, as they were not mentioned in the study by Ershoff et al.

(22). Among the most important variables, the demographic data

of the recipient and donor played an important role. The

recipient’s age was selected as an important variable in 12 of the

studies (2, 11, 13, 14, 18–21, 23, 24, 27, 29), whereas the donor’s

age was a significant variable in four studies (2, 13, 20, 23). The

recipient’s sex was significant in two studies (11, 29).

Anthropometric data, such as the weight and BMI of the recipient,

were also among the important variables. The recipient’s BMI was

a significant variable in six studies (19, 21, 23, 24, 27, 29) and the

recipient’s weight was mentioned as a relevant characteristic in

two studies (24, 29). Laboratory findings were indicated as

significant in almost all studies. Creatinine levels in the recipient’s

serum were an important variable in five studies (2, 14, 19, 26,

29), and bilirubin levels in the recipient’s serum were mentioned

as a relevant characteristic in two studies (14, 19). The recipient’s

international normalized ratio (INR) was also a significant variable

in four studies (24, 26, 27, 29) and albumin was deemed to be

relevant in models of two studies (18, 24). The impact of

hyperlactatemia on liver graft survival was analyzed in detail in

the study by Cheong et al. (28). The comorbidities of the recipient

were also included in the list of relevant characteristics of the liver
frontiersin.org
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transplantation: the recipient having diabetes mellitus (DM) was

mentioned among the important characteristics in five studies (13,

18, 20, 21, 25) and its importance was thoroughly analyzed in the

study by Bhat et al. (30), in which they researched the impact of

new-onset and pre-existing diabetes mellitus on liver graft survival.

Dialysis before transplantation was also mentioned as relevant in

two studies (21, 29). Among the scores used in liver

transplantation, only the MELD score was selected as an

important characteristic in five of the studies (20, 21, 23, 25, 28).

Cold ischemic time was a significant variable in three studies

(2, 13, 24), whereas other characteristics, such as donor intensive

care unit (ICU) stay (13, 24) and length of hospital stay (2, 18),

were mentioned as important in only two studies.

According to the selected studies, the most important variables

were the recipient’s age, recipient’s BMI, creatinine levels in the

recipient’s serum, recipient’s INR, diabetes mellitus, cold ischemic

time, and recipient’s MELD score. Using 50 characteristics or less

as a training input for the artificial intelligence models seemed to

be the most preferred decision in our selected studies.
3.4 Metrics of survival prediction

After creating the artificial intelligence algorithm, the accuracy

of the model is measured to estimate whether the model could be

applicable in everyday clinical decisions (2).

The accuracy of the models in 12 of our selected studies was

compared using the area under the curve (AUC). A model with an

AUC higher than 0.9 was created in only four studies (21, 25, 26,

29). Other models in six studies reached an AUC in the range of 0.7–

0.9 (2, 12, 20, 22, 24, 27). An AUC below 0.7 was reached in only

two studies (2, 23). The AUC of the models was not measured in six

studies (11, 13, 14, 18, 23, 28). In the study by Kong et al. (14), the

model C-statistic was measured and reached the highest result of
TABLE 1 Short-term survival.

Reference Dataset Number of
variables

Top predictive charact

Liu et al. (27) 480 recipients 17 variables BMI, age, Na, lymphocyte, IN
platelets, Mg

Ershoff et al.
(22)

57,544 recipients 202 variables —

Molinari et al.
(21)

30,458 recipients 13 variables Recipient age, MELD score, BM
diabetes, and dialysis before
transplantation

Börner et al.
(29)

529 recipients 48 variables Age, sex, weight, BMI, dialysis
potassium, ALT, INR, creatinin

Kong et al. (14) 1,495 recipients 33 variables Creatinine, age, total bilirubin,

Yang et al. (26) 132 recipients — Creatinine, INR

Cheong et al.
(28)

2,002 recipients 10 variables Hyperlactatemia, MELD score
circulatory failure, hemoglobin
respiratory failure

Lau et al. (12) 180 recipients 276 variables; after
selection:
15 variables

Recipient disease, donor serum
level, donor cause of death, do
after brain or cardiac death

CTA, classification tree analysis; MLP, multilayer perceptron neural network; RSF, rand
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0.668 in the original model. In the study by Bhat et al. (30), the

squared error of the model was calculated and achieved 0.1059 in

predicting diabetes mellitus 1 year after transplantation. In the study

by Andres et al. (18), only the calibration of the model was measured

and the p-value of 0.278 suggested good calibration. In two studies,

the C-index was used to estimate the accuracy of the models. In the

study by Kantidakis et al. (13), the RF model achieved a C-index of

0.622. In the study by Farzindar and Kashi (23), the C-index results

of 0.82 on the Scientific Registry of Transplant Patients (SRTR)

database and 0.57 on the united network of organ sharing (UNOS)

database were achieved. In the study by Cheong et al. (28), the

accuracy of the model was not measured.

In summary, most of our selected studies managed to create

models with sufficient accuracy and good calibration.

The summary of each study can be seen in Tables 1–3.
4 Discussion

Today, transplant physicians are faced with the task of

discussing the risk of postoperative death with potential

transplant recipients. As this task is often challenging, simple

scoring systems based on mental calculations are very useful in

clinical practice (14). To help the physicians in their practice

daily, MELD, BAR, Child–Pugh, SOFT, and other scores were

created; however, to estimate the survival of a liver graft more

accurately, artificial intelligence models can be applied (1). In

order to create a highly specific and accurate model, the input

characteristics used to train the models must be chosen carefully.
4.1 Recipient’s age

One of the most important factors that reduce the survival of a

liver graft is the recipient’s age at the time of transplant (19). Age
eristics Models used Best model accuracy

R, WBC, RF, XG-Boost, DT,
LR

AUC:0.771, specificity: 0.815

DNN AUC: 0.703

I, ANN, LR, CTA AUC: 0.952 (90-day mortality)

, serum
e levels

NN Accuracy: 94.3%, AUC: 0.940

albumin ANN, LR Original model C-statistic: 0.668; simplified model
C-statistic: 0.647.

CR, SVM, LR, RF,
MLP

RF model—highest accuracy: AUC: 0.940

,
,

RSF, Kaplan–
Meier survival
curve analysis

Kaplan–Meier analysis showed clear separation of
survival curve of 90-day mortality between patients
with low and patients with high lactatemia
(>4 mmol/L)

albumin
nation

RF, ANN, LR RF with the top 15 donor and recipient
characteristics achieved AUC-ROC of 0.818

om survival forest.
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TABLE 2 Long-term survival.

Reference Dataset Number of
variables

Top predictive variables Models used Best model accuracy

Nitski et al.
(20)

42,146
recipients and
3,269 recipients

190 and 63
variables

Donor age, recipient age, MELD score Deep learning models and
baseline LR model

First model AUC: 0,804 (1-year survival);
0,733 (5-year survival). Second model:
AUC: 0.807 (1-year survival); 0,722
(5-year survival)

Kantidakis
et al. (13)

62,294
recipients

97 variables Re-transplantation, donor age and type,
total cold ischemic time, diabetes, black
race, life support, recipient age, incidental
tumor, HCV, ICU

Cox models (all variables,
backward selection and
LASSO), RSF and two partial
logistic ANN

Best model: random survival forest with
C-index of 0.622

Yasodhara
et al. (19)

18,058 and
1,290 recipients

26 variables Bilirubin, high creatinine, BMI, recipient’s
age

Cox proportional hazards and
gradient boosting survival
models

AUC 0.6 and 0.7

Kazemi et al.
(25)

902 recipients 26 variables Graft failure, Aspergillus infection, acute
renal failure, vascular complications, graft
failure, diagnosis interval, previous diabetes
mellitus, MELD

CR, C5.0 DT, SVM, BN, KNN,
MLP

AUC: 0.90; sensitivity 0.81

Bhat et al. (30) 61,677
recipients

17 variables Increasing age, male sex, obesity, use of
sirolimus, tacrolimus, diabetes mellitus

High-performance RF, high-
performance NN, gradient
boosting, high-performance
SVM, LR

High-performance random forest (0.1059
average squared error in predicting
diabetes mellitus first year after liver
transplantation)

BN, Bayesian network; MLP, multilayer perceptron neural network; KNN, K-nearest neighbors; RSF, random survival forest; ICU, intensive care unit; HCV, hepatitis C virus.
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and mortality do not exhibit a linear relationship. However, when

the patient’s age is above 65 years, the mortality rate increases

sharply (14). Although the age limits for liver transplantation are

now widened, older age has an adverse effect on the survival of a

liver graft (13). Older patients have a higher risk of

cardiovascular mortality (19). Moreover, according to the study

by Su et al. (31) on aging of liver transplant registrants and

recipients, older patients are usually more prone to diabetes,

hepatocellular carcinoma, non-alcoholic liver disease, and other

comorbidities. Therefore, the 5-year survival probability after

transplantation is higher in the 18–49-year group than in the

>70-year group (78% in the first group and 62% in the second

group). The recipient’s increasing age also significantly increases

the risk of new-onset diabetes after liver transplantation. Each

year increase in the recipient’s age at the time of the transplant

increases the odds of new-onset diabetes by 0.1%. This may

affect the long-term survival after the transplant (11). The

recipient’s age also defines which risk factors can influence acute

graft rejection or a higher risk of death after transplantation. It is
TABLE 3 Short- and long-term survival.

Reference Dataset Number of
variables

Top predictive variable

Zhang et al. (2) 41,455 patients 217 variables Age, donor age, serum
creatinine, hospitalization, cold
ischemia time

Yu et al. (24) 785 recipients 46 variables Cold ischemic time, donor ICU
stay, recipient weight, BMI, age
albumin, INR

Andres et al.
(18)

2,769 recipients 17 variables Recipient age, hospitalization,
diabetes, albumin

Farzindar and
Kashi (23)

59,115 recipients
and 87,334
recipients

Around 150
variables

MELD score, recipient BMI,
donor and recipient age

PSSP, patient specific survival prediction; ICU, intensive care unit; UNOS, united netw
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indicated that the mortality risk for the older subgroups is more

influenced by chronic diseases and geriatric conditions, which are

variables that cannot be modified. For younger patients, features

such as cold ischemic time, donor age, serum albumin, recipient

weight, and BMI are the most important (2).
4.2 Recipient’s BMI

BMI is generally used to evaluate the obesity of a patient.

Preoperative visceral adiposity, as well as low muscularity, is

closely involved with post-transplant mortality (32). Obesity is a

risk factor for various health disorders, including type 2

diabetes mellitus, hypertension, cardiovascular disease, and

non-alcoholic steatohepatitis (33). Obese patients are also more

prone to comorbidities, such as gallstones and colon cancer

(34), which may affect the patient’s outcome and mortality after

the liver transplantation. According to the study by Naoko et al.

(35), patients with sarcopenic obesity had lower survival rates
s Models used Best model accuracy

LogitBoost, LR, DT, RF, DNN,
AdaBoost, extreme gradient
boost

XG-Boost: AUC in all of 3-month survival:
0.717, 1-year survival: 0.681 3-year survival:
0.662, 5-year survival: 0.660, 10-year survival:
0.674

,
RF, ANN, DT, naive Bayes, CR,
SVM, MELD score, donor
MELD score, BAR score

Random forest AUC values: (1-month = 0.80;
3-month = 0.85; 12-month = 0.81) for
predicting survival

PSSP model The p-value (Hosmer–Lemeshow) is 0.278,
suggesting good calibration

DNN, seep survival mode C-index results of 0.82 and 0.57 on the SRTR
and UNOS datasets, respectively

ork of organ sharing.
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after liver transplantation than non-obese patients. Even

if obese patients might have acceptable survival after

transplantation, their body habitus makes them particularly

susceptible to obesity-related complications and recurrence of

non-alcoholic steatohepatitis (36).

Although the recipient’s BMI seems to be an important

characteristic of liver transplantation when estimating graft

survival, it must be considered that BMI is an indirect

measurement of adipose tissue and it cannot account for

differences in fat distribution. This way, BMI is usually

overestimated due to massive ascites and systemic edema in

patients with end-stage liver disease who require liver

transplantation (32). Therefore, it might be misleading to rely on

the recipient’s BMI alone to analyze his or her body constitution.

To that matter, computed tomography imaging is used to evaluate

the patient’s body composition more accurately and distinguish

between areas of visceral and subcutaneous adipose tissue (37).
4.3 Creatinine levels in patient’s serum

Kidney function in patients with liver cirrhosis waiting for liver

transplantation is dynamic. Yet, the ability to identify which patients

will have the greatest variation of creatinine levels and understanding

of the impact of this variation are limited. However, it can be seen

that all fluctuations in serum creatinine levels are associated with

worse pre- and post-liver transplantation outcomes, because it

might indicate that the patient is at risk of experiencing acute

kidney injury (38). In the study by Nacif et al. (39), higher

creatinine levels in patients with hepatitis C virus was one of the

predictors of mortality and late acute rejection in liver

transplantation. Another study by Asrani et al. (40) indicated that

a set of recipient factors, among which was higher (>1.5 mg/dl)

creatinine levels, can help identify patients who may not do well

after a transplant. As an overwhelming majority of liver

transplantation recipients develop chronic kidney disease (41),

which might be due to calcineurin inhibitor-toxicity, perioperative

acute kidney injury, diabetes mellitus, hypertension, and chronic

hepatitis C infection (42), it is crucial to assess the kidney function

of the liver graft recipient as it might have a huge impact on the

long-term survival of the patient.
4.4 Recipient’s INR

Chronic liver disease, particularly in the advanced or

decompensated stages, has historically been regarded as an example

of an acquired bleeding diathesis primarily based on abnormalities

in basic conventional laboratory tests of coagulation, such as

prothrombin time, activated partial thromboplastin time, and INR

(43). The higher the INR value, the worse the prognosis (27); INR

is a distinct prognostic factor of poor short-term survival (26). In a

study by Yu et al. (24), INR was a significant characteristic

predicting a recipient’s survival 3 months after a transplant using

the random forest model, although it was not statistically significant

in the Cox model. Another study by Okamura et al. (44) showed
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that total bilirubin of 10 mg/dl or greater and/or prothrombin time/

INR of 1.6 or greater on postoperative day 7 predicted early graft

loss after living donor liver transplantation, and their coexistence

worsened patient outcomes.

However, it must be noted, that prothrombin time and INR are

no longer accepted as means of determining thrombotic or bleeding

risk in patients with cirrhosis (45), as these tests only measure the

levels of procoagulant proteins and fail to account for the

concurrent alterations in anticoagulant proteins or platelets that

are known to occur in those patients (46). Clinicians should avoid

making medical decisions based on these values alone without

properly assessing the other components of the system (45).
4.5 Diabetes mellitus

Liver transplantation differs from other solid organ transplants,

because diabetes mellitus is frequently observed before surgery in

susceptible individuals, possibly favored by certain etiological

agents of liver disease (47), which lead to so called

“hepatogenous diabetes mellitus” (48). Diabetes mellitus is

usually not included in widely used prognostic tools such as

Child–Pugh and MELD (49); however, diabetes is an

independent factor for poor prognosis in patients with cirrhosis

as it is associated with the occurrence of major complications of

cirrhosis, including ascites and renal dysfunction, hepatic

encephalopathy, and bacterial infections as well as hepatocellular

carcinoma (50). According to Gitto et al. (51), pre-transplant

diabetes can predict the cardiovascular mortality of liver

transplant patients, as it is the main risk factor for a post-liver

transplantation atherosclerotic vascular event, which, together

with diabetes mellitus, is a strong, long-term predictor of

cardiovascular mortality. Thus, patients with pre-liver

transplantation diabetes should obtain a personalized follow-up

for the prevention or early diagnosis of atherosclerotic vascular

events. Furthermore, new-onset diabetes after liver

transplantation adversely affects the long-term survival of the

liver graft in a manner similar to pre-existing diabetes. This

indicates the need to be vigilant and implement close follow-up

regarding glycemic control in patients with new-onset diabetes

after transplantation to maximize their survival (30).
4.6 MELD score

The MELD score is calculated using bilirubin, INR, and

creatinine and could be considered as a combination of the three

features (27). It can be one of the features usually used when

creating a model for predicting the survival of a liver graft (20).

In a study by Molinari et al. (21), MELD, among other factors,

such as recipient’s age, BMI, dialysis, and diabetes, was one of

the strongest independent predictors for 90-day mortality.

Moreover, the MELD score is used to predict hyperlactatemia

after liver transplant as it is related to hepatic dysfunction

leading to reduced metabolism of lactate (28).
frontiersin.org

https://doi.org/10.3389/frtra.2024.1378378
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Gulla et al. 10.3389/frtra.2024.1378378
Although the MELD score is widely used in organ allocation

practice, it fails to accurately predict the survival of a graft, as it

only considers a few factors of the recipient. The SOFT score

and BAR score, on the other hand, consider the factors of both

the recipient and the donor and therefore show better results at

predicting the recipient’s mortality after transplantation (2).
4.7 Artificial intelligence models

In our analyzed studies, the artificial intelligence methods that

were mainly used were random forest and logistic regression. Both

methods can be used to select the most important features for the

model (27) as well as for the prediction of liver graft survival (1).

Among other artificial intelligence models that are usually

mentioned in the literature as applicable for liver graft survival

evaluation, support vector machine, artificial neural networks,

and random forest are mentioned (1, 12, 24, 27). As there are so

many different algorithms that can be applied, it is hard to argue

which model is the best for liver graft survival prediction.
4.8 Limitations of the study

In this study, due to strict study selection criteria, we only

scrutinized 17 studies; therefore, our results and conclusions

could be limited due to the number of studies examined.

Moreover, analyzing studies that are related to the use of

artificial intelligence not only in estimating the survival of the

liver graft, but also in donor-recipient matching, predicting the

risk of hepatocellular carcinoma recurrence after liver

transplantation, and other liver transplantation fields could give

us more detailed findings about transplantation characteristics

that have the biggest impact on the accuracy of the artificial

intelligence model.
5 Conclusions

Machine learning and artificial intelligence offer new working

styles for managing liver transplantation, impacting both early

graft and patient survival. These technologies hold the potential

to enhance predictive accuracy and influence surgical decisions.

In addition, they can identify critical intervals of donor and

recipient factors, parameters, and features, thereby potentially

improving surgical outcomes, reducing complications, and

optimizing pre- and postoperative care.

In this narrative review, we analyzed 17 studies to find which

liver transplantation factors have the biggest influence on the

accuracy of artificial intelligence models when predicting graft

survival. We can conclude that recipient’s age, recipient’s BMI,

creatinine levels in recipient’s serum, recipient’s INR, diabetes

mellitus, and recipient’s MELD score tend to be important

variables in most artificial intelligence models when estimating
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the short- and long-term survival of liver recipients. The most

popular artificial intelligence models for the prediction of liver

graft survival among our selected studies were random forest and

logistic regression.

Directions for further research also emerge. First, there is a need

to develop machine learning models capable of determining whether

allocating a specific donor organ to a particular patient would result

in the patient’s survival. Such models should be based on the

experiences of various clinics or regions. Second, but equally

important, machine learning models should be applied to analyze

the factors influencing surgical outcomes. We see good potential

for applying decision trees and other related models.
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