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invariant Natural Killer T cell
therapy as a novel therapeutic
approach in hematological
malignancies
Chaiyaporn Boonchalermvichian*†, Hao Yan†, Biki Gupta,
Anabel Rubin, Jeanette Baker and Robert S. Negrin

Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine,
Stanford University, Stanford, CA, United States
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy
for cancer treatment. This unique cell population is a promising candidate for
cell therapy for cancer treatment because of its inherent cytotoxicity against
CD1d positive cancers as well as its ability to induce host CD8 T cell cross
priming. Substantial evidence supports that iNKT cells can modulate
myelomonocytic populations in the tumor microenvironment to ameliorate
immune dysregulation to antagonize tumor progression. iNKT cells can also
protect from graft-versus-host disease (GVHD) through several mechanisms,
including the expansion of regulatory T cells (Treg). Ultimately, iNKT
cell-based therapy can retain antitumor activity while providing protection
against GVHD simultaneously. Therefore, these biological properties render
iNKT cells as a promising “off-the-shelf” therapy for diverse hematological
malignancies and possible solid tumors. Further the introduction of a chimeric
antigen recetor (CAR) can further target iNKT cells and enhance function. We
foresee that improved vector design and other strategies such as combinatorial
treatments with small molecules or immune checkpoint inhibitors could
improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor
activity along with the abatement of iNKT cell dysfunction or exhaustion.
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1 Introduction

Invariant Natural Killer T cells (iNKT cells) belong to a subset of innate lymphocytes

that express an invariant T-cell receptor (TCR) that recognizes specific lipid antigens

presented by cells expressing the MHC-like molecule CD1d (1). iNKT cells are known

to have cytotoxicity against cancer cells as well as immunoregulatory like properties

where unlike T cells, iNKT cells do not cause GVHD (2). Furthermore, there are

several lines of evidence supporting the suppression or prevention of GVHD by iNKT

cells through the expansion of CD4 + CD25 + FOXP3 + regulatory T cells (Treg) (3).

These unique biological properties render iNKT cells as an ideal “off-the-shelf” product

for allogeneic adoptive cell therapy for various hematologic malignancies and perhaps

other cancers (4). Chimeric antigen receptors (CARs) can be introduced into iNKT

cells to augment cytotoxicity (4–8). Further advantages of CAR iNKT cells are that they

are distinct cells that can be isolated and expanded, recognize a unique marker CD1d
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that is frequently expressed on hematological malignancies and

have cytotoxic capacity that may be augmented through other

ligands (1, 5, 9). Interestingly, these engineered iNKT cells can

exert both direct antitumor activity as well as an indirect

activation of host CD8 mediated immunity and do not cause

untoward effects such as GVHD (10). In this review, we discuss

the biology of this unique cell population, their interaction with

other immune cells, and the potential strategies to harness their

biological properties to abate immunological dysregulation in

hematological malignancies and their complications (1) such as

GVHD and to treat disease and prevent relapse.
2 iNKT—basic biology

iNKT cells are a unique cell population that shares properties

of both T cells and natural killer cells (1, 11). They express an

invariant TCR (define mouse and human) defined by the specific

interaction between their semi-conserved T cell receptors and

either self or exogenous lipid antigen presented by CD1d

(a conserved polymorphic MHC class I like molecule) on antigen

presenting cell such as dendritic cells (1, 12). CD1d restriction

defines this cell population (1, 2). In mice, iNKT cells TCR

expression includes Vα14Jα18 chain paring with a limited Vβ

repertoire (Vβ2, Vβ7, Vβ8.1, Vβ8.2 or Vβ8.3) (13, 14). In

humans, Vα24Jα18 chain pairs almost exclusively with Vβ11.

Like conventional T cells, iNKT cells develop in the thymus

(1, 15). The double positive (CD4+ CD8+) thymocytes act as

progenitor cells for all lymphocytes that belong to the αβ T cell

lineage (16). Thymic selection shapes the development and

differentiation of functional iNKT cells through the expression of

promyelocytic leukemia zinc finger protein or PLZF (17). In C57

BL/6 mice, iNKT cells represent about 1%–2% of lymphocytes in

the spleen or liver (13, 14). Mature iNKT cells are widely

distributed in various tissues such as bone marrow,

gastrointestinal tract, liver, and adipose tissue (13, 18). However,

iNKT cells rarely recirculate as compared to MHC restricted T

cells (1). In humans, iNKT cells consist of 0.1%–0.2% of T cells

and are enriched in omentum (19–22). There are two

fundamental lipid antigens that stimulate iNKT cells (1)—(1)

glycosphingolipids or ceremide-based glycolipids and (2)

glycerol-based lipids such as membrane phospholipids as self-

antigens (1). The glycosphingolipid has α-orientation of

glycosidic linkage between the carbohydrate head group and the

lipid backbone, and this is not known to exist in mammals (1).

However, this configuration is found in various pathogens

(1, 23–26). This may explain how iNKT cells are stimulated

during infection (1, 26). The lipid antigens exert their interaction

with CD1d and TCR by regulating the strength of binding of this

complex rather than the specificity of interaction (1). The first

well characterized lipid antigen is α-galactosylceramide

(α-GalCer) which is derived from a murine sponge (27). This is

a well-known compound used to stimulate and enhance the

expansion of iNKT cells in vitro (5). Unfortunately, a-GalCer has

shown limited therapeutic efficacy in several clinical trials of

cancer treatment but may be an effective strategy to reduce or
Frontiers in Transplantation 02
ameliorate acute GVHD (28–30). Subsequently, there is a newly

synthesized non-glycosidic analog—Threitolceremide-6 which

potentially enhances anti-tumor activity and renders a potent

stimulation of iNKT cells (31). This compound has now been

investigated in clinical trials as a potential strategy to enhance

the antitumor activity of iNKT cells (32, 33).

CD1d, it is a transmembrane protein like MHC class I that binds

non-covalently to β-microglobulin (1). CD1d expression is found

mainly on immune cells such as dendritic cells, macrophages,

granulocytes, and B cells (34–36). CD1d is also frequently and

strongly expressed on various hematological malignancies such as

acute myeloid leukemia (AML) (37–39). This hypothesizes that

iNKT cells may be an excellent candidate for adoptive cell therapy

for hematological malignancies since all individuals have identical

CD1d molecules (2). Further, iNKT cells are amendable to the

adoptive cell transfer across MHC barriers without significant

alloreactive consequences (2). This cell population has a unique

immunoregulatory role that redirects immune response to both

internal and exogenous signals (1). Several lines of evidence

support the concept that iNKT cells can elicit hybrid immune

responses encompassing both innate and adaptive immunity (1).

iNKT cells have direct cytotoxicity against cancer (1, 2, 4, 40).

Furthermore, the transcriptional profiles of iNKT cells are

comparable to those of both innate and adaptive immune cells

depending on the antigens or stimuli (1). Substantial compelling

evidence indicates that iNKT cells can prime CD8 T cells (2, 10).

iNKT cells can also interact with other immune cells such as

dendritic cells, macrophages, and B cells to mediate the complex

adaptive-innate immunological interactions in response to various

antigens such as pathogens, cancer cells or other antigens (1). In

the next section, we describe iNKT cells subsets and their

development in details.
3 iNKT cell subsets and their
development

The heterogeneity of iNKT cells has been extensively

investigated in rodents which suggest three primary iNKT

sublineages: iNKT1, iNKT2, and iNKT17 (41). iNKT cells

differentiate during murine thymic development into these three

distinct subsets that are characterized by their transcriptomic and

epigenomic differences (42). iNKT1 cells can be identified by

their production of interferon-gamma (IFN-γ) and dependence

on the cytokine IL-15 for survival (43). iNKT1 cells express the

transcription factor T-bet and are characterized by cell surface

expression of CXCR3, CCR5, and VLA-1. iNKT2 cells are

characterized by their production of interleukin-4 (IL-4) and

expression of Gata-3 transcription factor as well as CCR4 and

CCR9 surface receptors. iNKT17 cells produce IL-17 and express

the ROR-γ transcription factor as well as the cell surface markers

CCR6, Itgb4, Itgb5, and Itgb7 (44). While the differences in

transcription factors maintain cellular identity, the differences in

molecular phenotype drive unique tissue distributions (45).

Murine iNKT1 cells are generally found in the liver and spleen,

iNKT2 cells are most prevalent in the spleen and lymph nodes,
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and iNKT17 cells are generally located in the lymph nodes and

lungs (46). Tissue residence of iNKT cells is long lived, enabling

a rapid specific response to local stimuli.

The development of iNKT cell subsets and the signals

regulating the commitment of these subsets have been

thoroughly reviewed (47–50). Thymic positive selection of iNKT

cell precursors depends on recognition of “self” lipid-CD1d

complexes by their TCR or presentation of endogenous ligands

α-galactosylceramide (α-GalCer) and α-glucosylceramide. iNKT

cells are positively selected at the CD4+ CD8+ double-positive

(DP) stage by CD1d-expressing DP thymocytes leading to “stage

0” which is characterized by CD69+ CD24hi cells with high Egr2

expression (48, 49). As these cells continue to mature they reach

stage 1 characterized by down regulation of CD24 and CD69 and

expression of high levels of PLZF (48, 51, 52). These stage 1

iNKT cells can be differentiated based on expression levels of

IL-17RB which is selectively expressed on mature iNKT2

and iNKT17 cells but not iNKT1 cells (53). Stage 2 iNKT cells

are characterized by acquisition of memory-like CD44hi

phenotype, where they differentiate into distinct sub-populations

(stage 3): iNKT1 cells, which cease proliferation and acquire

T-bet and NK-like characteristics (NK1.1+ and CD122hi) with

downregulation of PLZF and GATA3, iNKT2 cells, which exhibit

retention of PLZF and high expression of GATA3 and produce

IL4 and IL13 upon stimulation, and iNKT17 cells, which are

characterized by upregulated expression of RORgt, intermediary

expression of PLZF and downregulated expression of T-bet and

produce IL-17 upon stimulation (48). The stages of development

of thymic iNKT cells have been summarized in Table 1. Despite

exhaustive studies into iNKT cell development and identification

of roles of different signaling pathways and transcription factors,

the knowledge regarding mechanisms controlling the

differentiation of the iNKT subsets remains elusive.
4 iNKT cell activation

The semi-invariant TCR enables iNKT cells to swiftly respond

to specific antigens presented by CD1d molecules (54). CD1d-

mediated lipid antigen presentation is a critical process in iNKT
TABLE 1 Development of thymic iNKT cells in mice.

Stage of
development

Surface
expression

Features

Stage 0 CD69+ iNKT cells positively selected at DP stage
express high Egr2 levelsCD24hi

Stage 1 CD69− iNKT cells differentiate into IL-17RB+ and
IL-17RB− cells that express high levels of
PLZF

CD24−

CD44low

Stage 2 CD69− IL-17RB+ cells retain high PLZF
expression and acquire high levels of
GATA3 expression (iNKT2) or retain
intermediary levels of PLZF and express
high levels of RORgT (iNKT17)

CD24−

CD44high

Stage 3 CD44high IL-17RB− cells downregulate PLZF and
GATA3 expression & acquire T-bet
expression (iNKT1); iNKT cells exhibit
differentiation into 3 distinct subsets.

NK1.1+

CD122high

CD69+
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cell activation (55, 56). While TCR recognition of glycolipids by

CD1d remains central to iNKT cell activation, non-TCR

signaling, including cytokine-mediated activation and direct

glycolipid binding to CD1d, plays an essential role in modulating

iNKT cell responses (46, 57). Understanding the multifaceted

mechanisms underlying iNKT cell activation is crucial for

harnessing the potential of these unique immune cells in

therapeutic and immunomodulatory applications.
4.1 CD1d mediated lipid antigen
presentation

The nature of the lipid antigens presented by CD1 molecules

necessitates specific mechanisms for their uptake by antigen-

presenting cells (APCs) and loading onto CD1 molecules (58). Lipid

transfer proteins, including apolipoprotein E and fatty acid amide

hydrolase could facilitate antigen presentation by CD1d (59–61).

Similar to MHC antigens, to generate bioactive fragments lipid

antigens need be processed in the lysosome (62). CD1d can present

a wide range of antigens, including synthetic antigens (62), microbial

antigens (63), and self-antigens (59). α-Galactosylceramide (α-

GalCer), a synthetic glycolipid derived from galactosylceramides

found in the marine sponge Agelas mauritianus, serves as a potent

agonist and is widely used to investigate CD1d-mediated iNKT cell

activation (64, 65). Studies using CD1d-deficient mice demonstrated

the indispensable role of CD1d in presenting α-GalCer to iNKT cells

(12, 66). Thus, a-Galcer is a tool to study and optimize CD1d-

mediated iNKT activation.

iNKT cells, recognized by their expression of the NK cell

receptor NK1.1, exhibit a repertoire of receptors akin to natural

killer (NK) cells (67). This characteristic led to their initial

classification as “NK T cells.” This nomenclature created

confusion concerning the involvement of cytokines like IL-12,

IL-18, and IFN-α in iNKT cell stimulation, given the dependence

of NK cell activation on these cytokines (68). However, extensive

in vivo and in vitro data indicate that initial iNKT cell activation

is cytokine-independent. Tools such as CD1d tetramers have

enabled the discrimination between iNKT cells and NKT cells,

providing clear evidence that inflammatory cytokines and

co-stimulatory molecules are dispensable for iNKT cell activation

(69, 70). In vitro studies using soluble CD1d coated on plates

demonstrated that agonist glycolipids bound to CD1d were

sufficient to activate iNKT cells (71). Microbial glycolipids from

α-proteobacteria could also directly activate iNKT cells without

TLR or IL12 (23, 24, 26, 72). It is important to note

that excessive iNKT cell activation with analogs can lead to

iNKT cell anergy (73–75).
4.2 Activation of iNKT cells by non -TCR
signaling

iNKT cells express various cytokine receptors, such as IL-2R,

IL-7R, IL-12R, and IL-18R, and are capable of rapid cytokine

production due to the presence of cytokine transcripts
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(57, 76, 77). iNKT cells can release IFN-γ when stimulated by

cytokines like IL-12 and IL-18 without TCR involvement,

suggesting a potential NK-like cell role for iNKT cells (78, 79).

During certain infections, iNKT cells can become activated,

characterized by the upregulation of CD25 and robust IFN-γ

production (80, 81). The invariant TCR recognition mediated by

CD1d plays a crucial role in this process as either anti-CD1d

antibodies or iNKT cell adoptive transfer into CD1d−/− hosts

could diminish activation (82). Infections like MCMV activate

dendritic cells via TLR9, leading to IL-12 production, which

subsequently activates iNKT cells to produce IFN-γ (81). TLR9

deficiency in mice infected with MCMV does not lead to

significant iNKT cell activation, emphasizing the role of TLR9 in

this type of activation (81). Similar findings have shown that

CpG-induced iNKT cell activation is dependent on IL-12, with

CD1d playing a minimal role (83). Additionally, LPS, another

TLR ligand, has shown that CD1d is not always essential in all

conditions (84). To sum up, iNKT cells can effectively respond

to some pathogens with minimal TCR engagement.

IL-33, a member of the interleukin-1 family, has been shown

to promote iNKT cell activation in both humans and murine

models (85–87). This cytokine promotes IFN-γ production by

iNKT cells in the presence of CD1d-mediated α-GalCer

stimulation. Notably, when IL-12 is introduced into the

system, IL-33 can induce IFN-γ production from iNKT cells

even without TCR engagement.
FIGURE 1

(A) Illustrates the interaction between iNKT cells, and other immune cells.
antigens presented by cells expressing CD1d. Non-TCR signaling, includin
are sine qua non of modulating iNKT cell responses. In addition, iNKT ce
IL-12R, as well as modulatory molecules like PD-1 and CD40l. iNKT c
interaction results in activation of dendritic cells, triggering IL-12 productio
cells. Upon recognition of self or foreign lipid antigens presented by CD1d
enhancing IL-12 production by dendritic cells. The interaction between
response such as NK cell transactivation, T cell activation/differentiation, r
macrophages in tumor microenvironment, or expansion of T regulatory
innate immune response to either exogenous or self-antigen. (B) iNKT
eliminate cancer by two main mechanisms. The first mechanism is to dire
granzyme. The other main mechanism that iNKT cells use to control
microenvironment (TME). iNKT cells can promote dendritic cell maturatio
and CD8+ T cells.
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5 Interaction of iNKT cells with other
immune cells

iNKT cells, characterized by their distinctive T Cell Receptor

(TCR) composition, possess a remarkable ability to engage with

CD1d-expressing antigen-presenting cells (APCs), including

dendritic cells (DCs), macrophages, neutrophils, and B cells. This

interaction is not only characterized by the recognition of

specific antigens but also involves the intricate interplay of

cytokines, chemokines, and surface molecules. These multifaceted

interactions empower iNKT cells to participate actively in the

immune regulatory network (Figure 1A).
5.1 Interactions with dendritic cells

Dendritic cells, a vital component of the immune system,

constitutively express CD1d, making them pivotal in mediating

iNKT cell activation, especially within the spleen (88, 89). Upon

presentation of lipid antigens to iNKT cells, an immune response

ensues characterized by robust IFNγ production and NK cell

transactivation. Notably, a specific subset of dendritic cells, the

CD8a + DEC-205+ DCs, stands out for their ability to capture

and present diverse glycolipid antigens, including various forms

of a-galactosylceramide, leading to distinct cytokine responses

(90). Post glycolipid presentation, these DCs dynamically
iNKT cells possess T-cell receptor (TCR) that recognizes specific lipid
g cytokine-mediated activation and direct glycolipid binding to CD1d,
lls express a variety of receptors, including cytokine receptors such as
ells interact with other cells such as dendritic cells, their reciprocal
n and an upregulation in stimulatory lipid antigen presentation for iNKT
on APCs, iNKT cells engage in CD40–CD40 ligand interactions, further
iNKT cells and other immune cells results in the complex immune

ecruitment/regulation of neutrophils, activation of B cells, regulation of
cells. Taken together, iNKT cells act as the mediator of adaptive and
cells and immune dysregulation in hematological cancers. iNKT cells
ctly recognize and eliminate cancer cells harboring CD1d via perforin/
tumor is indirect crosstalk with other immune cells in the tumor

n. iNKT cells can also secrete IL-12 which activates anti-tumor CD4+
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modulate their expression of costimulatory and coinhibitory

molecules, a process intricately dependent on antigen structure.

The interaction between these two cell types is bidirectional,

particularly during infection. Signals from pattern-recognition

receptors activate DCs, triggering IL-12 production and an

upregulation in stimulatory lipid antigen presentation for iNKT

cells (91, 92). Upon recognition of self or foreign lipid antigens

presented by CD1d on APCs, iNKT cells engage in CD40–

CD40ligand interactions, further enhancing IL-12 production by

DCs. Resting iNKT cells express the IL-12 receptor, with its

expression intensifying in response to dendritic cell-derived IL-12

(93, 94). This interaction cascade leads to NK cell transactivation

(95), heightened responses to protein antigens by MHC-restricted

CD4+ and CD8+ T cells (96), and the licensing of dendritic cell

cross-presentation (97).

These bidirectional interactions highlight the cooperative

synergy between iNKT cells and dendritic cells, amplifying innate

and adaptive immune responses. The ability of activated iNKT

cells to facilitate adaptive T cell responses holds significant

clinical implications, underscoring the importance of

understanding these intricate immunological mechanisms for

therapeutic advancements.
5.2 Interactions with macrophages

The intricate communication between iNKT cells and

macrophages is orchestrated through multiple molecular

interactions. The semi-invariant TCR of iNKT cells engages with

lipid-loaded CD1d molecules on macrophages (98). This

interaction is complemented by co-stimulatory signals mediated

through CD40-CD40l and CD80/CD86-CD28 axes (94, 99).

Additionally, both cell types secrete a spectrum of pro- and anti-

inflammatory cytokines, further enhancing their communication

network. In the liver, Kupffer cells, specialized macrophages, are

pivotal for iNKT cell activation and clearance of pathogens,

exemplified during B. burgdorferi infection, a microorganism

producing an α-linked lipid antigen recognized by iNKT cells

(100). Lymph node macrophages could also mediate iNKT cell

activation. For example, CD169+ subcapsular sinus macrophages

present lipids derived from particulate antigens to iNKT cells in

the paracortex (101). Thymic macrophages play essential roles in

activating and shaping effector functions of thymic iNKT cells

(102), demonstrated by the decrease in NKT2 abundance and

IL-4 production upon deficiency of thymic F4/80+ Mertk +

macrophages or abrogation of CD1d expression in thymic

CD11c + cells (103). In the intestine, macrophages derived from

murine embryonic and non-bone marrow sources influence the

local establishment of iNKT cells in the colon during early life,

impacting susceptibility or resistance to iNKT cell-associated

mucosal disorders in later stages (104).

On the flip side, activated iNKT cells exert regulatory control

over macrophages. In the lean state, iNKT cells aid in

dampening adipose inflammation by polarizing macrophages

towards an M2 phenotype, a regulatory function impaired in

obesity (105, 106). Moreover, iNKT cells modulate tumor
Frontiers in Transplantation 05
growth, partly by altering the phenotype of tumor-associated

macrophages, a cell population crucial for the growth of certain

neoplasms (107, 108). This bidirectional crosstalk between iNKT

cells and macrophages underscores their intricate regulatory roles

in immune responses, inflammation, and disease progression.
5.3 Interactions with B cells

iNKT cells play a crucial role in regulating B cell functions

through cytokine release and CD40 ligand signaling (102, 109).

Notably, all B cells express CD1d, with marginal zone B cells

(MZBs) in both mice and humans showing particularly high

CD1d expression (110). B cells can present foreign or self-lipids

on CD1d following B cell receptor-mediated uptake. iNKT cells

offer cognate B cell help when their stimulatory lipid antigen is

linked to a specific B cell epitope (111). This interaction

facilitates the internalization of the antigen complex, enabling the

presentation of the stimulatory lipid by CD1d on the same

B cell. Additionally, in an inflammatory environment, iNKT cells

can provide non-cognate B cell help (112). For instance,

co-administration of αGalCer with a protein antigen allows

iNKT cells to recognize lipids separately from B cell antigen

recognition, ensuring efficient B cell help.

Moreover, iNKT cells contribute to protection against

autoimmunity by supporting regulatory B cell (Breg) responses.

Activation of iNKT cells by αGalCer expands innate IL-10

producing MZBs, which suppress autoimmunity through IL-10

secretion (113, 114). In a reciprocal manner, Bregs induce iNKT

cells to produce IFNγ and modulate cytokine production,

reducing Th1 and Th17 responses and consequently ameliorating

experimental arthritis (115). The essential role of B cell

presentation in iNKT cell regulatory responses is highlighted by

studies in mice lacking CD1d on B cells, which exhibited

exacerbated arthritis, emphasizing the contribution of activated B

cells in engaging the iNKT regulatory pathway. Human studies

corroborate these findings, underscoring the clinical relevance of

these regulatory interactions (116).
5.4 Interactions with neutrophils

In certain infections, iNKT cells recruit neutrophils to infected

tissues, a process facilitated by the secretion of chemokines like

CXCL2 (117, 118). Moreover, iNKT cells have demonstrated

their regulatory function in neutrophil recruitment during events

such as ischemia–reperfusion injury and exposure to ozone

(119). Additionally, activated iNKT cells exhibit rapid release of

IL-4, which enhances neutrophil survival and contributes to

hepatitis (120). Paradoxically, these activated iNKT cells also

produce IFN-γ in a sequential manner, initiating a negative

feedback loop that ameliorates iNKT hepatitis by inducing

neutrophil apoptosis. Conversely, heightened concentrations of

neutrophils suppress the iNKT cell response in both mice and

humans (121). Peripheral Vα14iNKT cells from mice with

spontaneous neutrophilia exhibited diminished cytokine
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production in response to the model iNKT cell antigen αGalCer.

Furthermore, these cells displayed lower expression levels of the

transcription factors T-bet and GATA3 compared to wild-type

controls. Similarly, iNKT cells from the human peritoneal cavity

exhibited reduced transcription factor levels during neutrophilic

peritonitis, underscoring the intricate interplay between iNKT

cells and neutrophils in the immune response (121).
5.5 iNKT cells as the mediator of adaptive
and innate immune response

The immune system safeguards the organism by detecting and

regulating various danger signals, whether originating from within

the body or from external sources. This intricate defense

mechanism requires a harmonious coordination between the

innate and adaptive immune responses, with each equipped to

protect the organism in its unique way. iNKT cells, a subset of

innate-like T cells, serve as vital mediators bridging the innate

and adaptive arms of the immune system. iNKT cells have

features of both T cells and Natural Killer (NK) cells as they

express an invariant TCR that can interact with the CD1d

receptor, as well as NK1.1 and Ly49 receptors (56).

This unique feature allows iNKT cells to transcend the

conventional boundaries between innate and adaptive responses

due to their diverse surface marker expression. Furthermore,

iNKT cells express a variety of receptors, including cytokine

receptors such as IL-12R (122), as well as modulatory molecules

like PD-1 and CD40l (123, 124). Additionally, they harbor

cytotoxic molecules such as granzymes and perforins, providing

them with a wide array of response capabilities tailored to

specific contexts. iNKT cells play pivotal roles in modulating

both innate and adaptive immune responses. They can activate

or inhibit various cell populations on either side of the immune

spectrum. Moreover, iNKT cells secrete distinct sets of cytokines

and induce the proliferation of different subsets of cells,

showcasing their remarkable versatility and significance in

orchestrating the immune defense mechanisms.
6 iNKT cells and immune dysregulation
in hematological cancers

Increased iNKT cells are found in various infectious diseases (1).

Rarely, other pathological processes result in increased iNKT cells

except in sickle cell crises (125, 126). Decreased iNKT cells

correlate with the severity of several autoimmune diseases, cancer

and GVHD (127–130). Of interest, decreased iNKT cells are

associated with the poor outcome of bone marrow transplant (131),

including the severity of GVHD although it is difficult to draw a

conclusion whether the changes in number of iNKT cells are the

cause or the consequence of these clinical settings (1).

From the perspective of tumor immunology, iNKT cells

eliminate cancer by two main mechanisms (Figures 1B). The first

mechanism is to directly recognize and eliminate cancer cells

harboring CD1d via perforin/ granzyme, TNFα, TRAIL dependent
Frontiers in Transplantation 06
apoptosis, FasL dependent apoptosis, or B cell mediated

cytolysis (2, 39, 40, 66, 132–135). Particularly, CD1d is more

commonly expressed in hematological malignancies as compared to

non-hematological malignancies (39, 107, 136, 137). However,

CD1d expression can be lost or diminished during disease

progression (138, 139). This may have an unfavorable impact

on tumor control. The other main mechanism that iNKT cells use

to control tumor is indirectly crosstalk with other immune cells in

the tumor microenvironment (TME) (2, 140). iNKT cells can

promote dendritic cell maturation (1). iNKT cells can

also secrete IL-12 which activates anti-tumor CD4+ and CD8+

T cells (1). Ultimately, iNKT cells can modulate myelomonocytic

populations of tumor microenvironment to antagonize tumor

progression (1, 2). Tumor associated macrophages (TAMs) can

either promote anti-tumor activity (M1) or augment immune

dysregulation (M2) leading to tumor progression or metastasis (99,

141). The dysregulation of TME can accelerate disease progression,

render the survival advantages for cancer cells such as angiogenesis,

invasion or proliferation, and interfere with or even negate

therapeutic effect of cancer treatment including immunotherapy

(2). The balance between tumor infiltrating T cells along with NK

cells and immunosuppressing Treg shapes the outcome of

immunologic interaction between immune cells and cancer cells

(142). More importantly, 50% of tumor mass consists of tumor

associated leukocytes such as tumor associated neutrophils (TANs),

and tumor infiltrating myeloid-derived suppressor cells (MDSC)

(143). iNKT cells can selectively eliminate CD1d expressing M2

like macrophages in a transgenic mouse model of CLL that delayed

disease progression and improved survival (141, 144). On the

contrary, tumors can evade immune response by upregulating the

inhibitory NK receptor Ly49C/F/H/I resulting in unresponsive

iNKT cells in murine prostate cancer model (145). The

coadministration of IL-12 and α-GalCer can overcome this

inhibitory signal (2). The upregulation of PD-1 on tumor

unresponsive iNKT cells could also be thwarted by PD-1 or PD-L1

blockade. The coadministration of PD-1 or PD-L1 blockade along

with iNKT agonist like Threitolceremide-6 is under investigation in

the clinic for the treatment of patients with non-small cell lung

carcinoma and melanoma (32). The PD1-CD28 CAR containing

extracellular domain of PD1 fused to the intracellular co-stimulatory

CD28 could also render the higher antitumor activity against PDLI+

lymphoma cells (146). Binding this CAR and its PDL1 transmits

activating signals instead of inhibitory signals in lymphoma (146).

Similar strategies addressing immune dysregulation associated with

TME can also be potentially investigated in hematological

malignancies to enhance anti-tumor activity.

iNKT cell therapy has been explored in the context of several

autoimmune diseases. One aspect of potential therapeutic

applications of iNKT based cell therapy is to utilize iNKT cells

or engineered iNKT cells as either a preventive or treatment

modality of graft-vs.-host disease (GVHD)—a life-threatening

immunological complication that can occur after hematopoietic

stem cell transplants (147). Donor derived T cells recognize and

target recipient tissues, resulting in alloreactivity, tissue injury

and destruction (147). Pro-inflammatory cytokines such as

interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha
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(TNF-alpha) aggravate GVHD whereas interleukin-4 (IL-4) and

interleukin-10, which are anti-inflammatory cytokines suppress

GVHD. Treg suppresses GVHD by producing interleukin-10 and

transforming growth factor beta which can abrogate the

activation and proliferation of T cells (148, 149). More

importantly, there is growing evidence supporting the

suppression or prevention of GVHD by iNKT cells through the

expansion of Treg (150). The adoptive transfer of iNKT cells was

10–50x more potent than Treg in protecting mice from lethal

GVHD in an identical model across major histocompatibility

barriers (3). Further, the adoptive transfer of iNKT cells was

effective in reducing pathology in a murine model of chronic

GVHD (151). As such, iNKT based cell therapy can be

potentially used to treat hematological malignancies and prevent

or even treat GVHD simultaneously (152).
7 Potential clinical applications of iNKT
cell therapy in hematological cancers

7.1 Dendritic cell vaccine (DC vaccine) and
tumor-based vaccine

To overcome the limited therapeutic efficacy of administration

of only α-GalCer due to anergy and unresponsive iNKT cells, the

ex vivo stimulation and α-GalCer pulsed DC with or without

tumor cells have been explored in several hematologic

malignancies including multiple myeloma and lymphoma in

murine models (152–156). This strategy improved survival and

in vivo persistence of iNKT cells in a murine model. However,

limited clinical benefits were observed in a clinical study (153).

The administration of α-GalCer loaded tumor vaccines improved

survival in murine models of B cell lymphoma, acute myeloid

leukemia and multiple myeloma (153, 157–161). In addition, the

tumor vaccine given after chemotherapy prevented the relapse of

leukemia (161). Ultimately, clinical trials are required to endorse

the clinical efficacy and validity of this approach.
7.2 Engineered iNKT cells utilizing chimeric
antigen receptors (CAR)

The utilization of adoptive transfer of in vitro expanded iNKT

cells has been explored in both murine models and patients with

hematological malignancies Tables 2, 3 (162–170) Figure 2 given

the fact that it is feasible to expand iNKT cells in vitro and

iNKT cells have inherent antitumor activity against CD1d cancer

cells as well as immunosuppressing immune cells such as

macrophages in TME (2, 4, 5, 140). Interestingly, Watarai and

colleagues developed induced-pluripotent stem cells or iPSC—

derived iNKT cells which retained the biological properties and

their antitumor activity (171). Human CD34+ HSC derived

iNKT (HSC-iNKT) cells also maintained their biological

properties (172). In addition, these HSC-iNKT cells could protect

against multiple myeloma and melanoma that expressed CD1d

(172). Further investigation in clinical trials is required to
Frontiers in Transplantation 07
confirm its clinical application which is poised to begin in 2024.

iNKT cells have some unique beneficial biological properties

which make them the ideal candidate for adoptive cell transfer

approach to treat cancer: (1) they inhibit immunosuppressive

myelomonocytic cells in TME via CD1d- cognate recognition (2),

(2) the suppression of inhibitory signals from TME, and

elimination of CD1d harboring cancer cells along with specific

antitumor activity through CAR signaling likely to enhance

therapeutic efficacy of CAR-iNKT cells through these synergistic

mechanisms (2, 140). Rotolo and colleagues demonstrated that

CAR iNKT cells against CD19 could exert better tumor control

as compared to CAR T cells against CD19 through the

synergistic interaction with CD1d and CD19 on lymphoma

(173). In addition, CAR iNKT cells directed against CD19 could

render the control of brain lymphomas (173). To maximize

antitumor activity of iNKT cells, the adoptive transfer of CAR-

iNKT has been investigated in several preclinical and phase I

clinical studies (5, 7, 8, 173) (Figure 2).

Our group and others have demonstrated that the adoptive cell

therapy approach utilizing CAR-iNKT cells could render survival

benefits in murine models in hematological malignancies such as

B cell lymphoma and multiple myeloma (10, 174). Simonetta

and colleagues demonstrated that allogenic CAR iNKT could

induce host CD8 T cell cross priming (10). As a result, this

rendered durable antitumor activity beyond the physical presence

of transferred CAR iNKT cells and this also improved tumor

control in murine model (10).

CD62l+ CAR iNKT cells appeared to have prolonged in vivo

survival and they were highly effective against B cell lymphoma,

and neuroblastoma in NSG mice (5). Further, Ngai and

colleagues found that the administration of IL-21 could protect

and enhance CD62+ CAR iNKT’s antitumor activity and

increase survival in a murine model of lymphoma (6). CD4+ T

cells and iNKT cells produce IL-21 (175, 176). IL-21 can

abrogate apoptosis by increasing the expression of BCL-2. This

improves survival of iNKT cells. IL21 also binds with motif

YXXQ on IL-21R, then activates STAT3 pathway resulting in

generating more memory cells and effector cells (6, 175, 177).

Several studies demonstrated that CAR iNKT cells were effective

against multiple myeloma and they prolonged survival in murine

models. O’Neal and colleague showed that the co-administration

of long-acting IL-7: rhIL-7-hyFc and CAR iNKT targeting

BMCA improved anti-myeloma activity in a preclinical study

(178). CAR iNKT cells were demonstrated to be safe and able to

infiltrate tumors in patients with neuroblastoma in the recent

update of a phase I clinical trial (8). In this clinical trial,

autologous anti-GD2 CAR iNKT cell therapy against

neuroblastoma exploiting the co-expression of GD2 and IL15

appeared to be safe with acceptable adverse events (8). Like

fourth generation CAR T cells, CAR constructs can be designed

to secrete additional cytokine to enhance antitumor activity, and

in this clinical trial the co-expressing IL-15 promoted the

development, expansion, and in vivo persistence of central

memory iNKT cells (8, 163). The CAR-iNKT cell therapy in this

clinical trial showed anti-tumor activity with two partial

responses (2/12) and one complete response (1/12) in relapsed or
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TABLE 2 The advantages and disadvantages of utilization of various sources of cell-based therapies in hematological malignancies.

Cell
type

Source Advantage Disadvantage Immunologic
interaction

Cell
engraftment

Duration
of

response

Example

HSCs Autologous/
Allogenic

Graft-versus- leukemia or
tumor (allogenic source)

Immunosuppression is
required for allogenic source.
Conditioning preparation is
still required for autologous
cell transplant. High dose
chemotherapy is required
(autologous and allogenic).
Autologous HCT likely
improves survival mainly in
chemotherapy sensitive
patients. GVHD (allogenic
source)

Immunosuppression is
required for allogenic
source.

Potentially
permanent

Long term,
highly
variable

HSCT for leukemia/
lymphoma/multiple
myeloma

T cell Autologous/
Allogenic

Known clinical efficacy
against hematological
malignancies (CAR-T cell)

Conditioning preparation is
still required.

GVHD and potential
rejection of treatment
cells (for allogenic source,
genetic modification is
required)

Potentially
permanent

Long term,
highly
variable

CAR-T both autologous
source such as
Tisagenlecleucel,
Axicabtagene ciloleucel,
Brexucabtagene
autoleucel, and allogenic
source such as
UCART19, an allogeneic
genome-edited anti-
CD19 chimeric antigen
receptor (CAR) T-cell in
refractory B-cell ALL

High cost of production.

The potential risk of GVHD
(allogenic source, genetic
modification is required).
Potential CRS, neurotoxicity,
and other immune mediated
side effects.

iNKT
cell

Autologous/
Allogenic

Do not cause GVHD. A short in vivo persistence
(This requires cytokine
supplement or a vector
design to augment its in vivo
persistence).

Do not cause GVHD.
iNKT cells may help to
protect or even treat
GVHD.

Potential
transient.

Highly
variable

CD19.IL15.CAR-iNKT
for B cell malignancies.
(clinical trial
NCT04814004)

Potential off-the-shelf
product.

Known inherent anti-
tumor activity against
CD1d + tumors. iNKT cells
can modulate
myelomonocytic
populations of tumor
microenvironment to
antagonize tumor
progression.

A very small population of
cells.

May require re-infusion to
achieve a durable response,

NK
cell

Autologous/
Allogenic

More manageable safety
profiles as compared to T
cell therapy. Potential off-
the-shelf product.

Immunosupression in tumor
microenvironment depresses
NK cell anti-tumor activity
and shortens its in vivo
persistence.

Do not cause GVHD. It
may suppress GVHD.

Potential
transient.

Short term,
highly
variable

iC9/CD19-CAR-CD28-
zeta2A-IL-15 NK cells
for relapsed and
refractory B cell
malignancies
(NCT03056339).

FT500 (off-the-shelf
iPSC NK cells) for
advanced solid and
hematological cancer
(NCT03841110)

HSC, hematopoietic stem cells; HSCT, hematopoietic stem cell transplant; GVHD, graft versus host disease; iNKT cells, invariant natural killer T cells; NK, natural killer cells.

TABLE 3 Current clinical trials of iNKT/ engineered iNKT/CAR-iNKT for hematological malignancies and related diseases.

Clinical trial
ID

Phase Source Indication Route of
administration

Intervention/Treatment/Product

NCT03774654 1 Allogenic Relapsed or Refractory
B-Cell Malignancies

IV CD19.CAR-aNKT cells

NCT05487651 Phase 1 dose
escalation

Allogenic B-Cell Malignancies IV KUR-502 (CD19.CAR-aNKT cells) consists of transduced allogeneic
natural killer T cells (aNKT) genetically modified with additional features
to enhance their anti-tumor activity against CD19+ B-cell malignancies

NCT03605953 Not provided Allogenic GVHD Not provided Invariant NKT Cells for a Cell Immunotherapeutic Approach allowing the
Control of Graft Versus Host-disease and preserving the Graft Versus
Leukemia effect after Allogeneic Hematopoietic Stem Cell Transplantation

NCT04814004 1 Allogenic Relapsed/Refractory/
high-risk B-cell tumors

IV hCD19.IL15.CAR-iNKT
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FIGURE 2

Shows the progress on CAR construct design in preclinical and clinical studies to date.
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refractory neuroblastoma (8). iNKT cells can also be engineered to

acquire a second specific antigen by expressing recombinant TCRS

that recognize tumor associated antigens, for example, human

iNKT cells could be engineered with TCR specific for an HLA-2-

restricted peptide epitope derived from melanoma such as

MART or PRAME (2, 179). This iNKT-TCR demonstrated HLA-

restricted antitumor activity in a xenogenic murine model (179).

To further leverage the unique immunotherapeutic application of

CAR-iNKT cells in hematological malignancies, a novel universal

CAR platform can also be designed (Figure 3). In general, this

universal CAR-iNKT cell system consists of the flexible antigen

binding component (e.g., svFC, monoclonal antibody or tumor

specific ligand), and the iNKT cell signaling component (180).

This off-the-shelf, universal CAR platform is flexible, scalable,
Frontiers in Transplantation 09
and amendable to diverse and multiple antigen specificity. The

current FDA approved CAR T cells for hematological

malignancies are autologous CAR T cells and CAR iNKT cells

may be particularly attractive as an allogeneic product.

In the context of stem cell transplantation, iNKT cells mitigate

the severity of GVHD and they maintain antitumor activity

(151, 152). No evidence of GVHD was demonstrated in several

murine models of hematological malignancies (152). Of interest,

further modification to lower MHC expression on iNKT cells

may be required to prevent host immunity from rejecting

adoptive transferred allogenic iNKT cells, and this has been

investigated in clinical trial of B cell lymphoma (2). Furthermore,

the complete absence in MHC expression on allogenic gene

edited iNKT cells may provoke “missing self” response by NK
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FIGURE 3

Schematic representation of universal CAR system design and immunological synapse of universal CAR, switch molecule and tumor antigen. This
universal CAR-iNKT like CAR-T cell system consists of the flexible antigen binding component (e.g. svFC, monoclonal antibody or tumor specific
ligand), and the iNKT cell signaling component.
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cell, and this will compromise the survival of allogenic gene edited

iNKT cells (2). Hence, allogenic gene edited iNKT cells may require

to be engineered to express ligands for the NK inhibitory receptors

or they may require modification of CD47/SIRPα pathway to

protect them from phagocytosis (2).

Like CAR T cell therapy—one of the historic successful trailblazers

in cell therapy for hematological malignancies leading to the first FDA

approved CAR T cell for precursor B cell acute lymphoblastic leukemia

(pre-B ALL) (181) then followed by a number of other FDA approved

treatments for pre-B ALL, B cell lymphoma, and multiple myeloma

(182), CAR-iNKT cell based therapy can be adopted to enhance

antitumor activity, improve survival, mitigate serious or decrease

adverse reactions (2, 4, 8, 40, 180). We foresee that the advancement

of vector design and refined treatment schedule to improve CAR

iNKT in vivo persistence, and functionality resulting in better clinical

outcomes. Further investigation to combine CAR iNKT based cell

therapy with other treatment modalities to leverage its therapeutic

efficacy may be warranted. For example, the combination of CAR

iNKT cell-based therapy with traditional hematopoietic stem cell

transplantation to achieve synergistic antitumor activity and

minimize or prevent immunological complications such as GVHD
Frontiers in Transplantation 10
(2, 152, 183). The combination of CAR iNKT cells with immune

checkpoint blockade or small molecule such as ibrutinib to mitigate

iNKT cell dysfunction and enhance anti-tumor activity like in CAR

T cell therapy may increase therapeutic efficacy (163, 184, 185). The

expected adverse effects such as cytokine release syndrome,

neurotoxicity, or other unforeseen adverse effects in CAR -iNKT

cells-based therapy and confirmation of their clinical application

require additional further investigations in clinical trials.
7.3 iNKT cell therapy to prevent and treat
GVHD

Graft-vs.-host disease (GVHD) is a major concern leading to

high morbidity and mortality in patients undergone allogeneic

hematopoietic cell transplantation (HCT) (186). The infused

allografts during HCT contain mature CD4+ and CD8+ αβ T cells

which establish hematopoietic engraftment, reconstitute T cells

immunity, and induce graft-vs.-tumor (GVT) effect that is key for

elimination of the malignant cells. However, these donor cells may

recognize the host as “foreign” and invade the host tissues causing
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GVHD manifested as acute damages to the skin, gastrointestinal

tract, and liver, termed acute GVHD, or as prolonged

inflammation and immune dysregulation that could affect limited

organs or be widespread, referred to as chronic GVHD (187–189).

Immunosuppressive drugs are primarily employed as preventive or

therapeutic measures to manage the complications presented by

GVHD. But these are typically associated with severe toxic

complications while do not always lead to complete resolution of

GVHD manifestations (190–192). Therefore, a better understanding

of the underlying mechanisms of immune dysregulation is

necessary to overcome GVHD while maintaining appropriate GVT

response, and thereby improve the outcome following HCT.

iNKT cells are one of the key immune regulatory cell

populations extensively studied for their role in protection from

GVHD. Murine studies of allogenic HCT by the group of Strober

et al. demonstrated key role of host NKT cells in protection

against GVHD following nonmyeloablative conditioning with total

lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) (193,

194). Our group employed adoptive transfer of CD4+ iNKT cells

to major histocompatibility complex (MHC)-mismatched murine

models of GVHD to demonstrate protective effects of donor-type

(3, 195) as well as third-party (150) iNKT cells against GVHD.

Furthermore, our group and others showed that specific activation

of host iNKT cells using invariant T cell receptor (iTCR)

stimulator a-galactosylceramide (a-GalCer) leads to mitigation of

GVHD (30, 196, 197). Recently, we isolated highly purified

murine iNKT sublineages: iNKT1, iNKT2 and iNKT17, and

demonstrated antitumor function associated with iNKT1 while

GVHD suppression function associated with iNKT2 and iNKT17

(42). These studies suggest iNKT cells enact key roles in the

mechanisms underlying immune regulation leading to GVHD

suppression. For the GVHD suppressive function of iNKT cells,

their interplay with other immune regulatory cell populations is

crucial. Multiple studies have provided compelling evidence that

iNKT-induced interleukin-4 (IL4) dependent regulatory T (Treg)

cell expansion drives inhibition of GVHD response in HCT (3, 30,

150, 198–201). Treg cells have potent immune suppressive

function in allogeneic HCT with demonstrated capability to

suppress GVHD while preserving the GVT effect (202–204).

Further insights into the underlying mechanisms of tolerogenic

immune pathways driving anti-GVHD response in HCT are

provided by numerous murine studies implicating myeloid-derived

suppressor cells (MDSCs) and CD8+ dendritic cells (DCs) in the

interplay between Treg and iNKT cells (150, 205–207).

Various clinical studies validate iNKT cells being associated

with GVHD suppressive function. Higher number of iNKT cells

in the graft for allogeneic HCT is reported to be associated with

lower risk of acute GVHD (128, 208, 209). Following allogeneic

HCT, iNKT cells have widely been reported to persist and

rapidly recover which is correlated with protection against

GVHD. Post-HCT recovery analysis of iNKT cells demonstrated

correlation between increased number of iNKT cells and

protection against GVHD resulting in improved GVHD relapse

free survival (129, 210). Likewise, in patients that received

allogeneic HCT with total lymphoid irradiation (TLI) and anti-

thymocyte globulin (ATG) conditioning, we revealed increased
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persistence of iNKT compared to CD4+ and CD8+ T cells post-

TLI/ATG and protection against acute GVHD in patients with

residual iNKT cells than those without detectable iNKT cells

(211). To summarize, these studies suggest a key role of iNKT

cells in suppression of GVHD in humans, and therefore attempts

have been made to expand iNKT cells in HCT patients. A phase

2A study utilized RGI-2001, a liposomal formulation of a-GalCer

to activate and expand iNKT cells which induced Treg expansion

and reduced the incidence of grade 2 to 4 GVHD in the HCT

patients (212). A recent study sheds light on a probable

underlying mechanism of GVHD prevention by human iNKT

cells where human culture-expanded iNKT cells were shown to

induce DC apoptosis, and thereby impair the activation and

proliferation of allo-reactive T cells (213). One of the key

considerations in this regard could be the heterogeneity of iNKT

cells, as evidenced by our own murine studies (42).

Heterogeneity in human iNKT cells has been well characterized

by a recent study where two iNKT phenotypes have been

identified which correlated with a T helper 1 function and

enhanced cytotoxic function (214). Identification of human iNKT

subsets with Th2 function and ensuring their preservation during

in vitro expansion could be crucial in clinical trials using iNKT

cells. Despite a multitude of questions, the therapeutic potential

of iNKT cells appear promising in overcoming a major limitation

of HCT by achieving long-lasting suppression of GVHD.
8 Concluding remarks and future
directions

The roles of iNKT cells in the specific immune mediated disease

aspects are emerging, and the use of iNKT cells as a platform for cell

therapy is beginning to be appreciated, with potential impact and

roles in a wide range of diseases such as autoimmune diseases,

infection, and especially cancer. CD1d restriction defines this cell

population which is ubiquitously expressed and not polymorphic.

In addition, CD1d is commonly expressed in hematological

malignancies. Hence, iNKT cells are a potential candidate for “off-

the-shelf” allogeneic cell therapy for hematological malignancies.

iNKT cells have some unique beneficial biological properties

which make them the ideal candidate for adoptive cell transfer to

treat cancer such as the synergistic mechanism between the

inherent anti-tumor activity against CD1d harboring cancer cells

and the induction of host CD8+ T cell responses. The isolation,

enrichment, and expansion of iNKT cells in vitro are feasible and

iNKT cells can be readily transduced with viral approaches to

express a CAR and as such are amendable as the “off-the-shelf”

therapeutic agents for large-scale clinical application. We anticipate

that the improved vector design and other strategies such as

combinatorial treatment with small molecules or immune

blockade inhibitor could improve CAR iNKT in vivo persistence,

and its functionality, leverage its anti-tumor activity along with the

abatement of iNKT cell dysfunction or exhaustion. These unique

and beneficial biological properties along with several strategies

adopted from development of CAR T cell therapy to address

shortcomings make iNKT cell therapy an attractive novel
frontiersin.org

https://doi.org/10.3389/frtra.2024.1353803
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Boonchalermvichian et al. 10.3389/frtra.2024.1353803
therapeutic approach to address immune dysregulation and disease

relapse in hematological malignancies.
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