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Two common obstacles limiting the performance of data-driven algorithms in
digital histopathology classification tasks are the lack of expert annotations and
the narrow diversity of datasets. Multi-instance learning (MIL) can address the
former challenge for the analysis of whole slide images (WSI), but performance
is often inferior to full supervision. We show that the inclusion of weak
annotations can significantly enhance the effectiveness of MIL while keeping
the approach scalable. An analysis framework was developed to process
periodic acid-Schiff (PAS) and Sirius Red (SR) slides of renal biopsies. The
workflow segments tissues into coarse tissue classes. Handcrafted and deep
features were extracted from these tissues and combined using a soft attention
model to predict several slide-level labels: delayed graft function (DGF), acute
tubular injury (ATI), and Remuzzi grade components. A tissue segmentation
quality metric was also developed to reduce the adverse impact of poorly
segmented instances. The soft attention model was trained using 5-fold cross-
validation on a mixed dataset and tested on the QUOD dataset containing
n = 373 PAS and n = 195 SR biopsies. The average ROC-AUC over different
prediction tasks was found to be 0.598+ 0.011, significantly higher than using
only ResNet50 (0.545+ 0.012), only handcrafted features (0.542+ 0.011), and
the baseline (0.532+ 0.012) of state-of-the-art performance. In conjunction
with soft attention, weighting tissues by segmentation quality has led to further
improvement (AUC = 0.618+ 0.010). Using an intuitive visualisation scheme,
we show that our approach may also be used to support clinical decision
making as it allows pinpointing individual tissues relevant to the predictions.

KEYWORDS

digital histopathology, kidney transplant, multi-instance learning, Bayesian Neural

Network (BNN), computer vision

1 Introduction

Computational pathology can assist pathologists by providing an automated second

opinion on their assessment. Moreover, it may help us to better understand the

mechanisms of organ injury by detecting and quantifying subtle histological changes in

biopsies. While these models can help us improve the discriminative power of
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assessment tasks with performance unrivalled by classical image

processing algorithms, several challenges are limiting their

applicability. Firstly, training neural networks often requires large

amounts of labelled data. However, most datasets contain no

more than several hundred slides. In our setting, samples with

known outcomes are biased due to pre-transplantation screening

(either based on the patient’s clinical information or histology).

The only available data are “hard examples” that have either

been missed by pathologists or are plagued by factors not

guaranteed to be visible in biopsies. There is also a “bootstrap”

problem - while a severe shortage of pathologists is a primary

motivation to expedite the development of an automated tool,

this shortage limits the speed and scale in which labelled data

can be procured.

To date, most deep-learning-based computational pathology

platforms are designed to predict or assess only a bespoke set of

narrowly defined clinical outcomes or visual changes (collectively

known as slide-level labels). Most existing work (1–5) is limited

to fully-supervised learning, which requires labelling large

number of tissue compartments or rectangular tiles as either

normal or diseased. To adapt these platforms for a different

diagnosis would require additional time from pathologists to go

through the entire dataset, adding further to the project’s

investment. Regrettably, the expert-time cost of fully-supervised

learning is prohibitive and has been a major reason for the

limited number of publications applied to renal histology.

To address the lack of local expert annotations, a number of

multi-instance learning approaches (6–9) have been developed to

train classification tasks using only slide-level labels. However,

available multi-instance learning models typically need to be

trained on large datasets or slides with plenty of tissue area with

good diagnostic quality. In our setting, where many slides

contain sub-optimal tissue areas, existing approaches fail to

deliver acceptable classification performance.

Furthermore, models trained under multi-instance learning

tend to have limited diagnostic transparency - features are often

extracted from rectangular tiles which are inconsistent with the

anatomical, irregular tissue compartments within the biopsies. It

is common for different functional tissue structures to vary in

size by several orders of magnitude (e.g., cell nuclei vs. arteries).

This may be partially addressed by using tiles from several

magnifications (8), but this solution could make visualisation

considerably more challenging.

Any histology analysis framework also needs to be robust to

artefacts. This is particularly true in our application for two

reasons. Firstly, in needle biopsies, a large proportion of tissue

resides close to the edge and is often distorted or truncated.

Exclusion of these tissues is not always possible as biopsies are

often narrow and have limited material available. Secondly,

transplantation decisions are time-sensitive; hence, the long-term

aim is to eventually read histology from frozen biopsies that are

often plagued with artefacts. There is a lack of definitive attempts

to reduce the impact of artefacts. Treatment of artefacts is often

either not mentioned or is excluded manually in most

experiments. To our knowledge, the most common approach to

tackle artefacts includes explicitly labelling artefacts and
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aggressive data augmentation (1, 4). However, these approaches

would only work on objects that resemble the training data.

This pilot study aims to show the feasibility of a flexible yet scalable

platform for providing quantitative insight into visual associations to

transplant dysfunction using renal biopsies stained with periodic

acid-Schiff (PAS) and Sirius Red (SR) while addressing the

aforementioned issues. Our workflow extracted a number of

histologically relevant visual features from tissues and was developed

with minimal laborious labelling by expert pathologists. We used

these visual features in combination with convolutional neural

network (CNN) features to predict several slide-level labels such as

Delayed Graft Function (DGF) - defined as patients who need

dialysis within the first week after transplantation (10), Acute

Tubular Injury (ATI), and Remuzzi Scores (11). We compared the

predictive performance of our framework with features based on

tissue compartments with a standard workflow that relied only on

CNN-derived features and on rectangular tiles and showed that the

proposed workflow produces consistently higher area-under-the-

curve (AUC) in the models’ receiver operator characteristics (ROC)

and Precision-Recall (PR) curves.

Furthermore, we developed a visualisation scheme that works

specifically for our proposed workflow. Compared to prior work

(6, 7, 9), using tissue-derived features enabled us to pinpoint a

diagnosis of specific tissues irrespective of their size and shape,

enabling the potential for transparent diagnosis and visualisation.

Finally, through our experiments, we also find that tissue quality

and quantity may play a significant role in the predictability of a

slide. By incorporating a metric derived from Bayesian Neural

Networks (BNN) describing tissue quality similar to Tam et al.

(12) derived from an ensemble of CNN models, we can improve

the quality of predictions measured by AUC consistently.
2 Method

We propose a computational framework to extract visual

histopathological features from different functional components

of the biopsy. A schematic of the workflow is shown in Figure 1.

In the first step, we identify specific tissue compartments

(Figure 1A). Details of the segmentation algorithm are discussed

in Section 2.2. Subsequently, we extract a set of tissue

compartment-specific features (Figure 1B) which are described

in Section 2.3.

Finally, we combine instance level features into a fixed-length

description of the whole slide (Figure 1C). We evaluate different

approaches to combining these features. The most trivial method

is to simply perform an average/max pooling from the feature

values of all the tissues. However, if the segmented tissues were

only coarsely categorised, a large portion may be irrelevant for

diagnosis. Pooling features from different tissues irrespective of

their histopathological importance could lead to erroneous

predictions that lack transparency.

Multi-instance learning (MIL) (6, 13, 14) is another approach

commonly applied to histology analysis for making slide level (bag)

predictions from a variable number of instances. A slide is

classified as positive if at least one positive instance is detected.
frontiersin.org
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FIGURE 1

Overview of the framework. This figure shows an overview of the proposed quantitative analysis framework. (A) Tissue segmentation returns the
instance outline of three different tissue types and cell nuclei. (B) Feature extraction returns a mixture of handcrafted and deep features iterated
over each tissue. (C) Finally, features from a variable number of tissues are pooled together with soft attention to form a single vectorial
description of a slide to predict the slide’s label. The slide label could either be clinical endpoints, assessment results given by pathologists, or
other biomarkers.
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Implementation of the original MIL algorithm involves predicting a

probability value for each instance and then converting these

instance probabilities into a bag-level value using max-pooling.

However, this approach has several limitations that make it

unsuitable for predicting kidney function. Firstly, the use of max-

pooling means that the method is particularly sensitive to noise.

Our slides often have artefacts or tissues with morphology not

previously seen during training. There is an inherent risk that the

presence of these artefacts could sway the predictions as the

classifiers have not been trained on embeddings beyond the

original data. Secondly, although we are formulating our problem

as a classification task, kidney function and the grading of slides

have an inherent progressive nature. Standard MIL is not well

adapted to handling multi-class classification problems, and it gives

predictions that lack symmetry between the positives and negatives.

To partially mitigate the aforementioned limitations, we

implement a soft attention mechanism. As a result, we can use
Frontiers in Transplantation 03
attention-weighted averages of the instances to make predictions,

as shown in the schematic in Figure 2. The model consists of

multiple stages: Firstly, it converts each instance’s features into a

permutation-invariant embedding. From these embeddings, a

gated attention mechanism (13) assigns weights to each instance

depending on their relative importance for the bag-level

predictions. A gated mechanism is used to enhance the non-

linearity of tanh when the function’s input values are small.

Because soft attention is learned, theoretically, it should be

capable of rejecting instances not relevant for the assigned bag-

level prediction task. The fractional contribution ak of an

instance k to the final prediction is given in Equation 1:
ak ¼ exp (w`( tanh (Vh`k )� sigmoid(Uh`k )))PK
j¼1 exp (w

`( tanh (Vh`j )� sigmoid(Uh`j )))
(1)
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FIGURE 2

Attention model - this model is used for combining feature vectors from a variable number of tissues into a single vector describing a slide. The gate
attention module learns which instances are relevant for the bag-level prediction tasks. Optionally, in addition to the learned attention, we also weight
instances by their segmentation quality and how much the instances resemble our locally-delineated training examples.

Tam et al. 10.3389/frtra.2024.1305468
Where h is an embedding derived from the feature vector of one

instance, w, U, V are learnable weights in our neural network.

In practice, however, in many biomedical datasets, the number

of instances in each bag could be greater than the number of bags,

making it very difficult to train a reliable attention mechanism. The

attention network may also fail to assign a meaningful score for

instances that do not resemble any of those from the training

examples. To address this challenge, we propose to include an

additional factor g into the weighted average. The weight gk over

an instance k can be described as a confidence score of the

neural network on an instance indicative of its resemblance to

the training data. Such a score can be derived using probabilistic

predictions from BNNs (15–17). As we have a plethora of

delineated tissues, we decided to obtain g using our UNet

ensemble (described in Section 2.2). To account for the Bayesian
TABLE 1 Datasets.

Dataset/Stain Donors Kidneys Biop
QUOD ! PAS 348 373 39

QUOD ! SR 173 195 19

NMP ! HE 35 35 16

NMP ! PAS 4 4 2

NMP ! SR 4 4 2

Native ! PAS 12 12 1

TCGA ! HE 11 11 1

Slides were digitised by at least 4 different scanners. All slides from the NMP dataset,

scanner at 40� (0.22mpp). The other QUOD slides were digitised using a Glissand

delineation from each dataset is shown in the right-most column. (Note: 65 tiles con
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uncertainty of different instances, we simply incorporate g into

the attention as follows:

ak ¼ exp (w`( tanh (Vh`k )� sigmoid(Uh`k ))gk)PK
j¼1 exp (w

`( tanh (Vh`j )� sigmoid(Uh`j ))gk)
(2)
2.1 Datasets

Two main datasets are used in this study. A breakdown of the

datasets is summarised in Table 1. The datasets contain slides

stained using PAS and SR. While PAS is a routine stain for renal

biopsy assessment, SR could be promising for the computational

quantification of fibrotic tissues. SR is normally viewed under
sies Slides Tiles Delineated
4 414 85 253

5 215 20 20.1

9 169 240 400

3 26 12 5.89

2 26 20 9.69

2 12 26 235

1 11 22 282

169 QUOD-PAS slides, and 20 QUOD-SR slides were digitised using a Hammatsu

o Desktop scanner at 40� (0.27mpp). The total area (mm2) selected for tissue

tain only annotations of cell nuclei that are not included in the table.)
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polarised light (18) for maximum signal-to-noise ratio, but

attempts to quantify the extent of fibrosis under unpolarised light

have also been shown to be highly reproducible (19).

The QUOD Dataset consists of paraffin-embedded 22mm pre-

implantation half-core needle biopsies from the Quality in Organ

Donor Biobank,1 a national multi-centre UK-wide bioresource of

deceased donor clinical samples procured during donor

management and organ procurement. These biopsies were from

a larger cohort of cases where both kidneys from the donor have

been transplanted and yielded similar outcomes (12-month

eGFR) in both recipients. This cohort selection criteria allow us

to reduce the importance of recipient-related factors amongst

other variables influencing transplant outcomes. Clinical

parameters of the QUOD dataset are listed in the Supplementary

Table S6. We have received biopsies from n ¼ 354 donors from

this dataset. Histology slides prepared from pre-implantation

biopsies from n ¼ 348 donors (373 recipients) were stained in

PAS, and n ¼ 174 donors (174 recipients) were stained in SR.

180 donors had biopsy sections that were only stained with PAS

but not SR, and 6 donors were stained vice versa.

A characteristic of these QUOD biopsies is that they are very

small for two reasons. Firstly, a small needle is used to minimise

bleeding complications after the transplant. Secondly, biopsies

were halved in length as the other halves were used for other

assays. The majority of slides do not contain enough tissues for

full assessment according to the Banff criteria (20), which state

that � 7 glomeruli and � 1 artery is necessary for assessment.

(Distributions of glomeruli and arteries are available in

Supplementary Figures S3 and S4.) Slides that contain no arteries

or , 7 glomeruli are only partially assessed. Hence only 90 PAS

slides had received a full Remuzzi score. Several slides containing

only fractions of an artery also received a Remuzzi artery score.

A large proportion of tissues also suffer from artefacts such as

forceps compression, folding, or duplication of serial sections.

The NMP dataset2 originated from an organ normothermic

perfusion experiment (21, 22) from 35 donors. The slides were

18 gauge 33mm core needle biopsies obtained from deceased

donor kidneys that were discarded as deemed unsuitable as

transplants for mechanical reasons. These kidneys were placed

into a normothermic machine perfusion (NMP) system. Biopsies

were obtained at different time points during NMP; hence most

samples suffered notable ischemic damage. Most of the slides

(n ¼ 169) were stained with Haemotoxylin and Eosin (H&E) but

had been computationally converted to PAS stain using a

CycleGAN (23) with image quality largely indiscernible by our

collaborating pathologist. From the same dataset, we also have a

smaller number of slides stained directly with PAS and SR

(n ¼ 26 from 4 donors for each stain).
1Collection of QUOD samples and the research ethics approval was provided

by QUOD (NW/18/0187).
2Research ethics approved by the National Ethics Review Committee of the

United Kingdom (12/EE/0273).
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Apart from the two main datasets, we have also included

additional slides from native biopsies3 in PAS (Supplementary

Section S5) and slides from The Cancer Genome Atlas (24)

stained in H&E. These slides were solely used for strengthening

the segmentation algorithms (Section 2.2) to ensure it would

generalise well to unseen data.

From each dataset, we manually marked out a number of

rectangular tiles to delineate different tissue compartments -

tubules, glomeruli, vessels, and cell nuclei. The number of

delineated tissues for each dataset is shown in Table 2. Delineating

the outline of tissues is a laborious task. To make the task scalable,

initial annotations were performed by an engineer with limited

training in pathology. Thus, we only have the coarse classification

of these tissues. For instance, proximal tubules are relevant for

assessment, but a notable portion of objects marked as “tubules”

were actually distal tubules or the collecting duct. Objects marked

as “vessels” consist of a mixture of arteries, arteriole, and veins;

some casts might be misidentified as sclerosed glomeruli. The

boundaries of glomeruli were inconsistent regarding the inclusion

of the urinary space. Owing to the small size of many biopsies,

tissues that were truncated near the edge of the biopsies were also

delineated as long as they were human-recognisable. A subset of

these tissues was cross-checked by our pathologist (Details in the

Supplementary Tables S2 and S3).

The tiles selected for tissue delineation may contain a mixture

of tissue-containing and blank areas and are of different sizes and

aspect ratios such that it covers a diverse range of tissue

morphology. As the number of tubules is far greater than the

number of glomeruli and vessels, in 165 out of 425 tiles (967 out

of 1210 mm2 in terms of area) listed in Table 1 we only

delineated the glomeruli and vessels but not tubules.
2.2 Tissue segmentation

Segmenting tissues according to functional compartments

allows us to incorporate known visual features into histology

analysis and maximises the interpretability of predictions made

by algorithms. Tissue segmentation was performed using an

ensemble of UNets (25). As we have a varying number of

annotations available, we chose to use a different number of

UNets for PAS and SR-stained slides.

For segmenting tissues in PAS-stained slides, we used a total of

13 models as follows: 2 models to segment cell nuclei at 0.44

microns-per-pixel (mpp); 2 models to segment tubules,

glomeruli, and vessels at 0.44mpp; 3 models to segment tubules

and glomeruli at 0.44mpp; 3 models to segment glomeruli and

vessels at 0.88mpp; 3 models to segment glomeruli and vessels at

1.76mpp. Models that process identical tissue classes at the same

magnification were trained on a different train:validation (4:1)
3Ethics approved by the Research Ethics Committee of Oxford University

Hospital NHS Foundation Trust Research and Governance (19/WM/0215).
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TABLE 2 Overview of tissue instances delineated.

Number of Instances Area (mm2)

Tub Glom Vessels Tub Glom Ves
QUOD ! PAS 2145 323 119 4.68 3.87 2.60

QUOD ! SR 889 24 22 2.03 0.309 0.254

NMP ! HE 13103 581 175 31.8 7.39 4.37

NMP ! PAS 753 25 40 1.64 0.270 0.236

NMP ! SR 1311 38 17 2.70 0.411 0.493

Native ! PAS 1156 226 55 3.62 4.15 1.11

TCGA ! HE 1739 422 143 5.84 7.53 9.49

This table gives an overview of the number of tissue instances delineated by hand.

Tam et al. 10.3389/frtra.2024.1305468
split. These UNets were trained and validated using tissues

delineated from the NMP, TCGA, and native biopsy slides.

For SR-stained tissues, we used 4 models as follows: 2 models

to segment tubules, glomeruli, and vessels at 0.44mpp; 2 models to

segment the same tissues at 0.88mpp. Cell nuclei are not segmented

as they are not visible under SR.

We implemented the ensemble of UNets with dropout to

simulate Bayesian Neural Networks (16, 26) to process the test

data with the same hyperparameters as Tam et al. (12). The

motivation for using BNNs is that they generally output

predictions where the soft values are more representative of the

probability of a correct prediction. However, in cases where

uncertainties are data-limited (aleatoric uncertainties) rather than

model-limited (epistemic uncertainties), there could still be

notable discrepancies between the predictions and the actual

probabilities. In particular, if the relevant class is rare or looks

very different in the test data, it could lead to under/over-

confident predictions. Thus, we propose to correct the

predictions using a data-driven approach as shown in Equation 3:

~p ¼ max (�p� Asp, 0) (3)

Where �p is the mean output from the neural network ensemble;

sp is the standard deviations from the ensemble over a single

pixel; A is a constant to be empirically determined from the

training data; ~p is the corrected probabilistic output from the

network ensembles, which is clamped to a value above zero. we

shall see in Section 3.1, this serves to remove overconfident pixels

and would help suppress false-positive pixels caused by artefacts.

From the ensemble-averaged (Equation 3) segmentation maps,

we obtain tissue instances using the max-flow-min-cut (27)

algorithm. Individual tissues are cropped from the original slide

with 1:32m padding on each side. In order to perform localised

diagnostics based on individual tissues, areas outside of the

tissues are blurred. This helps prevent extra-tissue regions from

contributing to visual features at later steps.

In our case, we have chosen to derive g from the UNet

ensemble. For a slide with K tissue instances, the weight assigned

to the instance k is given as:

gk ¼
max j[K (s2j )� s2k

max j[K (s2j )�min j[K (s2j )
(4)
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sj is the mean value of sp over the segmentation mask for instance

j. If all UNets from the ensemble predict similar values for the

pixels within instance k, gk would have a value close to

1. Otherwise, high discordance between different UNets would

result in gk close to 0.

More details regarding the implementation of tissue segmentation

are detailed in Section S3 under Supplementary Materials.
2.3 Extraction of histological features

We aim to demonstrate (i) the benefits of using handcrafted

features to augment deep features and (ii) how extracting features

from functional tissue structures can boost performance and

interpretability in multi-instance learning settings. As there are

currently very few studies that quantitatively assess how

individual histological features correlate with physiologically

relevant measurements, we tested a wide range of features in our

study, including both handcrafted and deep features. Using the

aforementioned workflow, we extracted a number of histological

features from our slides from tissues. We designed handcrafted

features that comprise tissue morphological descriptors, colour,

texture, and second-order features such as how colour/texture are

distributed with respect to the tissue compartment. The majority

of handcrafted features were designed with one tissue type in

mind but implemented across all tissue classes such that the

feature vector is the same length for all tissue types.

Some of these features are designed to reflect visual changes in

tubules that have undergone chronic or acute injuries. For PAS-

stained slides, cell nuclei are typically visible within each tissue,

so their colour and distribution may also shed light on the state

of the biopsy. In proximal tubules, darker nuclei in epithelial

cells may be a feature of mitosis and cellular repair; whereas cell

nuclei located far away from the boundary of proximal tubules

may signify cell dropout or cytoplasm expansion which is a

feature of acute tubular injury (28, 29). As the number of nuclei

in each tissue is variable, the values are pooled together at every

tenth percentile. This has an advantage over max-pooling of

being less sensitive to artefacts/falsely detected cell nuclei.

The complete list of handcrafted features used in this study is

shown in Supplementary Table S7. Several features are derived

from the distribution and colour of segmented cell nuclei.

However, we recognise that some tissue compartments may not

have any nuclei, leading to missing feature values. To prepare

our data for machine processing, missing values are imputed

with the mean value from the rest of the datasets. Some slide-

level information, such as the total area of the biopsy, is

appended to the feature vector of each individual tissue. In total,

this resulted in 98 unique handcrafted features for the PAS-

stained slides and 40 features for the SR slides.

Figures 3 and 4 show a selection of tissue examples with close

to minimum/maximum feature values from the QUOD/PAS slides.

In addition to handcrafted features, we also experimented with

features from several established deep neural networks. Deep

features are obtained from the same patch (with surroundings

blurred) as the handcrafted features at 0.44mpp. The crops were
frontiersin.org
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FIGURE 3

Glomeruli with (A) minimum/(B) maximum urinary space area. Examples are algorithmically selected from the entire QUOD dataset. Visual differences
of individual handcrafted features can be easily interpreted by inspecting the collection of tissues with low vs. high values. Note that regions outside
the tissue are blurred.

Tam et al. 10.3389/frtra.2024.1305468
not resized before we fed them into neural networks as we want

objects of the same physical size to elicit the same filter

responses. Fully-connected layers of neural networks were

replaced by adaptive average pooling, resulting in a single 1D

feature vector for each tissue. Each feature is normalised to unit

variance with zero mean over our datasets to speed up

convergence during training.
FIGURE 4

Vessels with (A) minimum/(B) maximum ratio between the lumen area to tot
Score criteria. Examples are algorithmically selected from the entire QUOD d
avoid geometric template fitting, as most vessel sections are not round.
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2.4 Predicting slide level labels

Several different physiologically relevant measurements are

available for our datasets.

A subset of PAS-stained slides has been assessed by an

experienced pathologist (blinded to the donor characteristics and

outcome) to determine the extent of histological changes. Slides
al vessel area. This exemplary feature corresponds to one of the Remuzzi
ataset. We choose to calculate the ratio of areas instead of diameters to
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are graded according to the Remuzzi criteria (11) based on the

severity of Tubule Atrophy (Remuzzi TA), arterial and arteriolar

narrowing (Remuzzi A), glomerular global sclerosis (Remuzzi G),

and interstitial fibrosis (Remuzzi IF). In addition, as part of the

assessment routine, biopsies are also graded for Acute Tubular

Injury (ATI). The distribution of the assessed grades can be

found in the Supplementary Figure S1.

For labels with insufficient cases for training or testing, we

regrouped the most severe cases until there were enough donors

for cross-validation to reduce class imbalance. As a result,

Remuzzi G, TA, and IF become a binary classification task,

whereas labels for ATI are regrouped to either two or three (0–2)

grades instead of four grades from the original assessment.

Apart from eGFR, the QUOD dataset also contains binary

labels regarding whether the recipient has suffered from DGF.

DGF may have origins in a variety of diagnoses. While ATI is

one of the known leading culprits there are other causes such as

T cell-mediated rejection, antibody-mediated rejection, and acute

calcineurin toxicity (30, 31). While it may not be possible to

detect some recipient-related factors (such as rejection) or

surgical causes (such as anastomosis) from histology, subtle or

localised acute lesions may be within small regions of some

biopsies. A method based on multi-instance learning may have a

chance of detecting these localised changes missed by human

inspectors or not meeting histological thresholds of established

grading criteria.

Combinations of handcrafted histological features and deep

features are used as input for our multi-instance soft attention

model (Figure 2). The length of training is determined using the

validation AUC at 40 epochs after the metric becomes stagnant.

A weighted sampling approach was used to increase the

frequency of sampling the rarer classes.

Our attention model’s hyperparameters are tuned based on a

trivial task to reduce bias. Slides are labelled by whether they

contain enough glomeruli for assessment. Slides with , 7, 7� 9,

and � 10 unique glomeruli are separated into three classes.

Hyperparameters are searched using HyperOpt (32) and remain

fixed for other tasks in order to be able to compare different

featuresets fairly. Examples of hyperparameters explored include

the choice of gated/un-gated attention network, size of network

layers, and regularisation weight.

Because the QUOD slides were obtained from real transplant

settings, there were several challenges to developing an

algorithmic workflow based on these slides. Firstly, these slides

consist mostly of kidneys with little chronic damage - the dataset

is biased due to pre-transplant donor screening, and the

distribution of biopsies with pathological changes is highly

imbalanced. Secondly, the majority of biopsies are inadequately

small in that they do not meet the Banff criteria (20). For

predicting assessment grades given by pathologists, we only

included slides with enough tissues for each grade. As for the

prediction of DGF, we found that it was necessary to include

slides of all sizes in order to achieve at least one donor per label

per cross-validation. Cross-validation splits are subjected to the

constraint where all slides from each donor remain in the same

training/validation/test set.
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3 Results and discussion

Experimental results are presented in four sections. Section 3.1

briefly describes the segmentation results on the QUOD dataset. In

Section 3.2, features are extracted based on segmented tissue

instances and are used to predict slide labels. We also compare

classification performance between different featuresets across

several tasks. Section 3.3 shows a pilot visualisation scheme of

the proposed workflow. Finally, Section 3.4 presents results

showing that segmentation uncertainty can be used to improve

prediction performance.
3.1 Segmentation results

As per earlier experiments, we found that UNets that were

trained on the same magnification tend to produce false-positive

segments in the same areas of the test data regardless of how

dataset splits, weight parameters, input tile size, and

regularisation are initialised. These false positives were likely

caused by tissues with morphology not present in the training

data. Combining multiple magnifications according to Equation 3

has helped to remove most of these false positives. Figure 5

shows the segmentation examples from individual models and

the combined soft prediction. It can be seen that most artefacts

from individual UNets (b-e) are no longer visible once combined

(f). Although it may be sufficient to use fewer UNets in the

ensemble to reduce the amount of computational work, for this

experiment, we are interested in the rest of the workflow where

segmentation is not a limiting factor. More details on tissue

segmentation are described in Supplementary Section S3.
3.2 Performance of different featuresets

In this section, the soft attention models are implemented

directly without accounting for the segmentation quality

(Figure 2) of the tissues.

We compared predictive performance using a variety of

featuresets as the input to the soft attention models. In order to

avoid the need to set up an arbitrary threshold, we reported

results in the form of ROC and PR curves. Curves are weighted

by the number of tissues/patches in each slide to reduce the

noisy impact from biopsies that do not meet the Banff criteria.

To conclude the optimal methodology, we have calculated not just

AUCs but also their variability. Reported ROC-AUC values of the soft

attention model in all tables in this paper averaged across 5 fold cross-

validation test set (3:1:1 training/validation/testing) and 5 different

seeded weight initialisation (total 25 models). Multi-class models are

macro-class-averaged. We reported the unbiased standard error of

the mean AUC to ensure that comparisons are meaningful and to

account for data and model noise. Standard errors are calculated as

if the different prediction tasks are independent. In addition, because

the training was performed on mixed datasets, neural networks may

have learned to look for “shortcuts” (e.g., classification based on
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FIGURE 5

Output from the UNet ensemble. (A) Original PAS-stained slide; (B)–(E) Softmax predictions of glomeruli from single UNets at different magnifications
segmenting specific tissue classes. (B) 0.44mpp, all tissue classes; (C) 0.44mpp, tubules þ glomeruli; (D) 0.88mpp, glomeruli þ vessels; (E) 1.76mpp,
glomeruli+vessels; (F) Ensemble-combined predictions showing tubules, glomeruli, and vessels in red, green, and blue respectively.
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staining protocol rather than pathological changes) instead of

performing the main task. Thus, all AUC values are evaluated based

on only the QUOD slides.

Deep features are extracted from a number of neural networks,

including several networks pre-trained with ImageNet (ResNet50

(33), VGG16 (34), InceptionV3 (35)), two networks trained using

cropped image patches (ResNet50 and a Variational

AutoEncoder (36)), and ScatterNet (37). Details of these features

are summarised in Table 3 with further description in the

Supplementary Table S8. Features extracted from the segmented

tissues are given the prefix “Tissue”. We have also extracted

features using fixed-sized rectangular tiles - these are given the

prefix “Tiles” in the table. While handcrafted features can be

calculated for individual tissues, there is no intuitive way to do

so for rectangular tiles as they may contain a varying number of

tissues. A breakdown of the predictive performance of some of

these featuresets for different tasks is shown in Table 4.
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To compare the general utility of the different methodologies,

we averaged the AUCs from different tasks. ROC-AUCs are

averaged with inverse variance weighting, so tasks with higher

prediction consistencies are weighted more. Precision-Recall (PR)

curve AUCs are also given in the results (Table 3) as a

complementary metric to ROC-AUCs. PRs could be insightful

for tasks with highly imbalanced labels. However, variances of

PR-AUCs tend to be small for the more challenging tasks, so we

only reported the arithmetic mean rather than the inverse

variance weighted mean in the table.

The mean ROC-AUC values in Table 3 demonstrate the

progress towards improving performance by using features

extracted from tissue compartments vs. the simplistic model that

uses only features from rectangular tiles. For example, when

comparing the ResNet50 featuresets (rows 1 and 7) we get

AUC ¼ 0:598+ 0:011 and 0:532+ 0:012 for features extracted

from tissues and rectangular tiles, respectively. These results
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TABLE 3 Overview of featuresets.

# Featureset Mean DNN PAS SR

ROC-AUC PR-AUC HC HC
1 Tissue ResNet 0.598+ 0.011 0.279+ 0.009 1024 98 40

2 Tissue ResNet (ATI) 0.598+ 0.009 0.283+ 0.008 1024 98 40

3 Tissue VGG16 0.596+ 0.011 0.280+ 0.009 1000 98 40

4 Tissue VAE 0.559+ 0.009 0.252+ 0.007 200 0 0

5 Tissue InceptionV3 0.553+ 0.011 0.269+ 0.009 768 98 40

6 Tissue ScatterNet 0.551+ 0.012 0.269+ 0.008 1029 0 0

7 Tiles (2 Levels) ResNet 0.532+ 0.012 0.258+ 0.007 2048 0 0

8 Tiles (2 Levels) ScatterNet 0.514+ 0.010 0.275+ 0.009 1029 0 0

9 Tiles (1 Level) ResNet 0.507+ 0.014 0.252+ 0.005 1024 0 0

10 Tiles (2 Level) VAE 0.460+ 0.012 0.226+ 0.007 200 0 0

11 Tissue ResNet Only 0.545+ 0.012 0.259+ 0.011 1024 0 0

12 Tissue HC 0.542+ 0.011 0.259+ 0.007 0 98 40

13 Tissue ResNet Metadata* 0.607+ 0.010 0.280+ 0.008 1024 98 40

14 Tissue ResNet CLAM 0.597+ 0.011 0.259+ 0.011 1024 98 40

15 Tissue ResNet MIL 0.553+ 0.008 0.259+ 0.007 1024 98 40

Featuresets are made by concatenating deep neural network (DNN) and handcrafted (HC) features. We have also tested adding donor/recipient metadata (*Supplementary

Section S4) as feature vectors, as shown in row 13. Mean AUC values over multiple tasks are shown. Detail breakdown of AUC values of some of these featuresets is shown

in Table 4. Qualitative description of these featureset is also available in Supplementary Table S8.
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show that our proposed approach is superior in most cases. If we

look at the results at a more granular level, we will find some

tasks where tile features may have the potential to outperform

tissue features. From the prediction task breakdown for these two

featuresets (corresponding columns in Table 4), we see that tiles

perform better for Remuzzi G (0:556+ 0:049 vs.

0:631+ 0:074), DGF/PAS (0:504+ 0:025 vs. 0:525+ 0:018),

and DGF/SR (0:649+ 0:031 vs. 0:656+ 0:032). However, the

differences for these individual tasks have not yet reached

statistical significance so this could be down to noise in the data.

A second observation to note is that performance is better

when deep and handcrafted features are combined compared to

using only deep features or only handcrafted features

(AUC ¼ 0:598+ 0:011, 0:545+ 0:012, and 0:542+ 0:011 in

respective order as seen from rows 1, 11, and 12 in Table 3).

While the overall AUC values for “Tissue ResNet50 Only” and

“Tissue HC” are not significantly different, from the task

breakdown in Table 4 we can see that AUCs are more variable
TABLE 4 Overview of AUC values of predictions based on different featurese

Label/Stain Tissue ResNet Tissue ResNet (ATI) Tissue ResNet O
ATI 0.673+ 0.021 0.651+ 0.013 0.535+ 0.026

DGF 0.504+ 0.025 0.512+ 0.023 0.521+ 0.027

DGF/SR 0.649+ 0.031 0.634+ 0.021 0.607+ 0.03

Remuzzi A 0.590+ 0.028 0.581+ 0.024 0.539+ 0.024

Remuzzi G 0.556+ 0.049 0.566+ 0.047 0.575+ 0.05

Remuzzi IF 0.427+ 0.029 0.526+ 0.036 0.430+ 0.075

Remuzzi TA 0.571+ 0.047 0.588+ 0.034 0.528+ 0.056

Mean ROC-AUC 0.598+ 0.011 0.598+ 0.009 0.545+ 0.012

Mean PR-AUC 0.279+ 0.009 0.283+ 0.008 0.259+ 0.011

The second last row shows the inverse-variance weighted mean of the various tasks

clearly be seen that features extracted from tissues (column prefix “Tissue”) perform

“Tiles”). Note also that combining deep features with handcrafted features (Tissue R

features (Tissue ResNet Only, AUC ¼ 0:545) or handcrafted features (Tissue HC, AUC
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for the predictions based on handcrafted features. This could be

because handcrafted features are specialised in specific tasks. For

example, in our dataset, most slides that have been graded for

Remuzzi A had only the minimum number of one artery, many

of which are partially truncated. So it may be hard for our

attention model to learn to predict Remuzzi A grades based on

only deep features. Handcrafted features can help to supply

complementary information based on domain knowledge. These

results suggest that both types of features may have their

respective advantages. Thus, implementing a hybrid approach in

the workflow may be optimal for general tasks.

Furthermore, we have also attempted to compare our soft

attention model with other multi-instance methods such as

CLAM (9) and MIL (6, 14), as shown in rows 14 and 15 in

Table 3. While soft attention has consistently outperformed MIL,

a comparison is more challenging for CLAM due to the extra

hyperparameters. An extensive search over several

hyperparameters using HyperOpt’s Bayesian optimisation
ts (columns) and prediction tasks (rows).

nly Tissue HC Tiles (2 Levels) ResNet Tiles (1 Level) ResNet
0.525+ 0.019 0.482+ 0.035 0.424+ 0.039

0.463+ 0.035 0.525+ 0.018 0.502+ 0.028

0.579+ 0.039 0.656+ 0.032 0.674+ 0.037

0.594+ 0.027 0.466+ 0.03 0.461+ 0.029

0.580+ 0.038 0.631+ 0.074 0.604+ 0.073

0.521+ 0.035 0.469+ 0.06 0.466+ 0.058

0.569+ 0.05 0.556+ 0.044 0.482+ 0.045

0.542+ 0.011 0.532+ 0.012 0.507+ 0.014

0.258+ 0.007 0.258+ 0.007 0.252+ 0.005

above. Columns are arranged in descending order of the mean ROC-AUC. It can

better than features extracted from fixed-sized rectangular tiles (column prefix

esNet, AUC ¼ 0:598) resulted in better performance than using only either deep

¼ 0:542)
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algorithm (32) with the Ray Tune platform (38) has shown that the

extra clustering step in CLAM has not led to any benefits to our

prediction tasks.

In additional to neural networks pre-trained with ImageNet,

we have modified a ResNet50 architecture to predict ATI scores

(0–3) based on localised tissue patches (Image patches with ATI

distribution are shown in Supplementary Figure S7). This

modified ResNet was trained and validated on 731 images of

proximal tubules with a 4:1 split. The purpose of this model is to

test whether convolution filters would better capture

histopathological changes if it has prior exposure to such images.

The results (AUC ¼ 0:598+ 0:011, 0:598+ 0:009 from rows 1

and 2 in Table 3) show there is no significant difference in

performance regarding how the networks were trained,

suggesting the convolution filters learned from ImageNet may

already be adequate for capturing diversity in renal histology.
3.3 Attention visualisation

Multi-instance learning on whole slide images is not

commonly trained end-to-end due to their large size. Features

are usually saved onto the disk before being processed by the

MIL model. Gradients from neural network feature extractors
FIGURE 6

Comparison of visualisation of attention map. (Left) Our visualisation scheme
rectangular tiles are used, diagnostic could be ambiguous as the tile boundar
pinpoint the offending tissue if they are much larger or smaller than the t
overlapping tiles, this will merely be a visual gimmick - the resolution of t
have already been lost.
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could take up an enormous amount of space, so they are

discarded during the feature extraction process in real-life

implementations. As a result, the most straightforward

parameters that could be directly visualised are the attention

values attributed to the different instances. However, visualisation

of attention parameters could often be ambiguous. In the case

where rectangular tiles are chosen, the resolution of the attention

map is limited by the size of the tile. Localisation of the

diagnostic will be poor if the tile size is too large. If the tile size

is too small, there would be limited a receptive field, and we may

risk truncating meaningful tissue structures; a hybrid approach

that uses tiles at multiple scales may be complicated to visualise

as interpolations may be required to fuse them.

On the other hand, soft attention mechanism based on

individual tissues allows for improved diagnostic interpretability

strictly confined to the anatomical boundaries of these tissues.

Figure 6 shows how our visualisation scheme (left) compares to

the standard approach (right), which uses deep features from

rectangular tiles. The models producing these exemplary overlay

images were both trained to predict Remuzzi G grade. Both

overlays show that the networks have learned to attend to the

Glomeruli. In the standard approach, we see that the tiles around

most glomeruli are highlighted in red, but in many cases, it may

not be clear to an inexperienced observer which tissues within
highlights individual tissue instances relevant to the prediction. (Right) If
ies do not generally convey any diagnostic meaning. This makes it hard to
ile. While it may be possible to produce a smoother heatmap by using
he attention map cannot be improved because the information would
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FIGURE 7
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the tiles triggered the prediction. Conversely, our approach clearly

pinpoints the tissues of interest as the glomeruli are mostly

highlighted in red whereas irrelevant tissues, including those

adjacent to the glomeruli, are shaded in blue.

Saliency maps within individual instances can be produced if

greater clarity is desired at the cost of processing time. In

implementations where only deep features are used, it may be

possible to produce saliency maps directly by chaining up feature

extractors with the soft attention model while keeping track of

gradients in only a small number of instances. However, if

handcrafted features are included, direct localisation to the image

space would not be possible using the original network. In these

cases, heatmaps can be produced with an ad-hoc network trained

using only the relevant tissues (as given by the soft attention

model) to predict slide-level labels.

We demonstrate the overlay of the saliency map based on a soft

attention model trained on ResNet50+handcrafted features to

predict binary ATI grades as this is a case with high AUC

(corresponding model in Figure 9). Using the attention values

and slide labels, we trained a ResNet18 model to predict ATI

slide labels using individual tissues as inputs. The network is

trained using L2 loss, where different instances are scaled by

outputs from an attention model which learns the same task. All

instances are used for training this ResNet18 model but instances

with low attention scores contribute to smaller loss. Figure 7

shows the result of this attempt - saliency map within each tissue

is produced using an occlusion-based approach (39) using the

Python package Captum (40); whereas the outline of the tissues

is colour-coded by the instance-level attention. We can see that

the attention model has learned to focus on the proximal tubules

in the cortical regions of the biopsy (outlined in red). Within

these tissues, there is some evidence that the saliency maps

highlight areas close to the epithelial cells’ boundaries. Apart

from the occlusion-based approach, we also attempted to use

Integrated Gradients (41) and Noise Tunnel (42), but

visualisation was found to be less intuitive as the saliency maps

generated were too rough for the magnification we worked on.

Visualisation of instance-level attention combined with saliency
maps from individual tissues. Tissue boundaries are coloured by
the learned instance-level soft attention value, indicating its
relevance to the slide-level prediction. In this example, the slide-
level label is ATI. The image clearly shows our network is able to
attend to proximal tubules (mostly outlined in red). The saliency
maps are produced from an occlusion-based approach using an
additional network trained on individual tissues to predict the
slide label.
3.4 Confidence-weighted predictions

In the previous sections, we presented results whereby tissue

features were combined using soft attention models without

accounting for the quality of the segmentation. We argue that

the soft attention vectors learned by the models may not always

be meaningful. This will happen if the instances do not resemble

those in the training data, in which case the presence of the

instance would only contribute to noise. We propose a scheme to

consider the quality of the instances in the form of Equations 2

and 4. Under the proposed scheme, g is added as a feature to the

original featureset and each instance k is weighted by gk during

both training and testing time.

Figures 8, 9, and 10 show examples of ROC/PR curves on

three different tasks, all of which were weighted by

segmentation quality in the models. The solid plot lines show

the median values, and the shaded regions show the range of
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five bootstraps. Figure 8 plots the “Trivial” task where models

are trained using only ResNet50 features to classify whether a

slide contains an adequate number of glomeruli. This task

differs from counting glomeruli as there are duplicated tissue

sections in 268 out of 612 slides (some slides contain multiple

cut-throughs of the same biopsy). A naive model that only

counts glomeruli would overestimate the number. We tuned

our model based on this task as all slides are labelled, so the

dataset-induced noise would be minimal.
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FIGURE 8

ROC/PR plots from tissue quality-weighted models predicting whether a PAS-stained slide has an adequate number of unique glomeruli for
assessment (3 classes). Class 0: , 7; Class 1: 7� 9; Class 2: � 10; !Class 0: � 7 glomeruli. The curves with the median AUC from 5 bootstraps are
shown as solid lines. There are duplicated tissue sections in approximately 268 of the slides, so models are likely to overestimate the number of
unique glomeruli. The marker on the plots shows the optimal operating threshold for the respective class. ROC/PR curves for !Class 0 represent
the performance when Class 1–2 are grouped as a single class. (A) !Class 0: Median ROC-AUC = 0.934; (B) !Class 0: Median PR-AUC = 0.963.
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Figure 9 shows ROC/PR curves for ATI grades where each solid

line (Grade 0-2) represents the trade-offs from one-vs.-other

classification with models trained using ResNet50 combined with

handcrafted features. If the grading is instead re-formulated as a

binary task (labelled “Binary” in the plot), grouping all . 0

grades together and re-training the models, we get a mean

AUC ¼ 0:874+ 0:016. The optimal operating threshold can be

found using the curve’s intercept with the maximum iso-accuracy

line. At this threshold, we report a performance of tpr ¼ 0:985

and fpr ¼ 0:495.
FIGURE 9

ROC/PR plots from tissue quality-weighted models predicting ATI grades b
features. Curves with the median AUC from five bootstraps are shown a
and . 2; Binary: ROC/PR curves from models specifically trained to pred
(B) Binary: Median PR-AUC = 0.963.
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As for DGF, we find that performances are generally higher

in SR slides. Figure 10 shows the performance of the models

trained on ResNet50 and handcrafted features. Based on the

optimal threshold from the ROC curve, we get tpr ¼ 0:645 and

fpr ¼ 0:277.

Table 5 shows the mean AUCs for different tasks with the

proposed addition where instances are weighted by segmentation

quality. Entries in this table correspond to those in Table 4. Again,

a comparison of individual predictive tasks is not always possible

due to the limited size of the labelled data, but an improvement
ased on PAS slides. Models are trained using ResNet50 and handcrafted
s solid lines. (Grade 0–2): Models trained to predict ATI grades 0, 1,
ict only two grades: (0, . 0). (A) Binary: Median ROC-AUC = 0.873;
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FIGURE 10

ROC/PR plots from tissue quality-weighted models predicting the presence of DGF after transplant based on SR slides. 37 out of 143 cases exhibited
DGF. Models are trained using ResNet50 and handcrafted features. Curves with the median AUC from 5 bootstraps are shown as solid lines. (A) ROC:
Median AUC = 0.676; (B) PR: Median AUC = 0.406.

TABLE 5 Segmentation quality-weighted performance.

Label/Stain Tissue Resnet Tissue Resnet (ATI) Tissue ResNet Only Tissue HC
ATI 0.652+ 0.021 0.644+ 0.015 0.654+ 0.012 0.581+ 0.019

DGF 0.591+ 0.022 0.543+ 0.022 0.569+ 0.022 0.489+ 0.027

DGF/SR 0.642+ 0.036 0.635+ 0.037 0.613+ 0.027 0.562+ 0.033

Remuzzi A 0.589+ 0.028 0.601+ 0.027 0.589+ 0.028 0.625+ 0.024

Remuzzi G 0.569+ 0.033 0.56+ 0.048 0.562+ 0.038 0.506+ 0.038

Remuzzi IF 0.648+ 0.025 0.6+ 0.027 0.589+ 0.021 0.548+ 0.035

Remuzzi TA 0.585+ 0.073 0.596+ 0.045 0.562+ 0.056 0.538+ 0.06

Mean ROC-AUC 0.618+ 0.01 0.609+ 0.009 0.617+ 0.008 0.563+ 0.011

Mean PR-AUC 0.313+ 0.014 0.291+ 0.013 0.292+ 0.012 0.261+ 0.014

Primary performance is in ROC-AUC. Mean PR-AUC over different prediction tasks is also given in the bottom row. Comparison with unweighted predictions in Table 4

shows that weighting instances by segmentation quality gives us a significant boost in performance.
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can clearly be seen when we average over different tasks. For example,

when we use ResNet50 and handcrafted features (column “Tissue

ResNet”), implementation of g has led to an increase in ROC-AUC

and PR-AUC from (0:598+ 0:011, 0:279+ 0:011) to

(0:618+ 0:010, 0:313+ 0:014).

While weighting tissues by segmentation quality has provided a

performance boost for most prediction tasks, the boost is largest for

the prediction of Remuzzi IF (average ROC-AUC improvement:

0:101+ 0:023). One possible explanation is that interstitial

fibrosis is a histological change not so well captured by our

featuresets as the changes reside between, rather than within, the

segmented tissues. Fibrosis also correlates strongly with tubular

atrophy, which is characterised by changes in the basement

membrane near tissue boundaries. Neither of these will be visible

if objects are under-segmented. In our case, most instances with

poor segmentation quality are also the ones that are under-

segmented due to how the segmentation results were combined

(Equation 3). Consequently, these tissues also become less

relevant to the prediction task.
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There may be a second reason why the proposed weighting

improves predictions. As biopsies tend to contain many tissues, it is

often not possible to delineate every tissue within a slide. The

annotator may have the tendency to choose regions where tissues are

legible and create training sets based on these examples. Even

though the delineation task was not performed by an expert, the

choice of tissues on its own may still contain information indicative

of what constitutes as “good quality” or what counts as “relevant”.
4 Conclusion and further work

We propose a scheme to improve the performance of multi-

instance prediction tasks based on soft attention models by

incorporating weak labels at the local level. This approach could

make projects that are currently bottle-necked by expert

annotations more scalable. In our case, the weak labels are the

tissues’ outlines delineated into coarse classes. These delineated

tissue instances provided several advantages over featuresets
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extracted from rectangular tiles. Firstly, having features extracted

from tissues allow us to design handcrafted features inspired by

domain knowledge. We show that the generalised performance

improves significantly when handcrafted features are combined

with deep features compared to models trained using only deep

or handcrafted features. Secondly, features from rectangular tiles

do not generally conform to the functional boundaries of tissue

compartments. Using features based on tissues in soft attention

models allows an intuitive visualisation scheme pinpointing

relevant tissues for transparent diagnostics. Thirdly, we argue

that the attention values predicted could only be meaningful if

the images resemble the training data. Instances significantly

different from the training set could contribute to noise at the

bag-level prediction, so we propose incorporating a tissue quality

metric derived from an ensemble of BNNs to reduce their impact.

Some limitations need to be addressed in our experiments.

Firstly, it is not clear whether the advantage of combining

handcrafted features with deep features will still hold for larger

datasets. Secondly, when there are multiple relevant instances in

a slide, soft attention would only focus on a small number of

instances in most cases. Many relevant instances are predicted

low values. Therefore, it remains challenging to quantify the

number of relevant tissue compartments in a slide - this will be

needed to quantify the uncertainties of slide-level predictions.

We will need to investigate whether it can be solved using an

ensemble of models.

Thirdly, we find that there are currently insufficient diseased

cases in our dataset. For example, there are currently only several

dozens of sclerosed glomeruli from all datasets combined. Hence

the segmentation performance may not generalise well to

diseased instances. In many cases, if the segmentation of diseased

instances is suboptimal, soft attention may focus on tissues with

confounding visual changes. This would result in correct slide-

level prediction but a wrong focus of attention. Isolating highly

correlated pathological changes may be possible through

arithmetic operations with soft attention maps, but this may

require a sufficiently large training dataset.

In some cases, we recognise that performance of multi-instance

learning may still not match models trained by fully-supervised

approaches. If full supervision is needed, our proposed platform

can be used as a guide for a human-in-a-loop labelling scheme

to bootstrap a project. For example, we can choose to label

specifically only tissue compartments with high attention values

from slides that have been given a wrong prediction. The soft

attention model can then be repeatedly re-trained with labelled

instances excluded from the slide in each iteration. This may

help to reduce the time needed for pathologists to go through

the entire dataset when we want to add a new diagnosis.
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