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Immunoregulation: the interplay
between metabolism and redox
homeostasis
E. Perpiñán, A. Sanchez-Fueyo and N. Safinia*

Department of Inflammation Biology, School of Immunology and Microbial Sciences, Institute of Liver
Studies, James Black Centre, King’s College London, London, United Kingdom

Regulatory T cells are fundamental for the induction and maintenance of immune
homeostasis, with their dysfunction resulting in uncontrolled immune responses
and tissue destruction predisposing to autoimmunity, transplant rejection and
several inflammatory and metabolic disorders. Recent discoveries have
demonstrated that metabolic processes and mitochondrial function are critical
for the appropriate functioning of these cells in health, with their metabolic
adaptation, influenced by microenvironmental factors, seen in several
pathological processes. Upon activation regulatory T cells rearrange their
oxidation-reduction (redox) system, which in turn supports their metabolic
reprogramming, adding a layer of complexity to our understanding of cellular
metabolism. Here we review the literature surrounding redox homeostasis and
metabolism of regulatory T cells to highlight new mechanistic insights of these
interlinked pathways in immune regulation.
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Introduction

Oxidative stress, teamed with heightened levels of inflammation and metabolic

disturbances, underlies the pathology of many conditions, including cardiovascular

diseases, cancer, autoimmune and neurodegenerative disorders (1–4). This phenomenon

is the result of either an overproduction of reactive oxygen species (ROS) and/or an

imbalance between production of oxidants and antioxidants defenses (5). However, redox

states have an important role in immunity and T cell function. It is well known that

moderate levels of ROS are essential as pivotal second messengers for T cell receptor

signaling and activation and participate in chemotaxis and antigen cross-presentation (6–

8), whilst elevated levels of ROS have a detrimental effect on immune regulation (9, 10),

causing damage of proteins, DNA and carbohydrates.

Under inflammatory conditions, regulatory T cells (Tregs), a subset of immune cells,

play an important role at curbing excessive immune activation and maintaining immune

homeostasis (11). With the growing appreciation of the relationship between metabolism

and immunity, we now realise that the phenotypic stability, suppressive function and

survival of Tregs are tightly determined by specific metabolic requirements and programs,

with their metabolic adaptation seen in various pathological conditions. Previous studies,

mainly based in murine models, have described the engagement of different metabolic

pathways by Tregs to exert their function. Unlike effector T cells (Teff) that use aerobic

glycolysis to meet their bioenergetic demands under steady state conditions, Tregs largely

rely on mitochondrial metabolism through a selective dependency on fatty acid oxidation

to sustain the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS)

reactions (12, 13). Likewise, Tregs show a distinct metabolic profile during proliferation,
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migration, and suppressive functions. Following stimulation, Treg

proliferation is dependent on an oscillatory switch of glycolysis

dictated by increased activity of the PI3K/Akt and mTOR

pathways at the early phase (14). However, in contrast to Teff,

Tregs also use an array of substrates from the fatty acid

oxidation and amino acid metabolism to fuel the TCA cycle.

During migration, Tregs engage in glycolysis like most migratory

cells (15). Although glycolysis promotes Treg growth and

motility, the immunosuppressive function and stability of Tregs

is compromised. To exert their suppressive functions, Tregs

require a stable FOXP3 expression which in turn controls the

induction of OXPHOS activity and downregulation of glycolysis

via AMPK signaling (16). Of note, in autoimmunity and various

other inflammatory diseases, oxidative stress can disrupt the

mitochondrial network integrity, compromise OXPHOS, deplete

cellular ATP, and alter cellular metabolic pathways (17). In

addition, the systemic and tissue microenvironmental changes

seen in many disorders, including deficiencies in metabolites and

nutrients as well as changes in oxygen levels can result in

alterations in Treg function and stability via their metabolic

reprogramming. In the absence of oxygen, the hypoxia-inducible

factors (HIFs) orchestrate the transcription of an array of target

genes that regulate metabolic pathways to adapt cells to low-

oxygen environments by promoting glycolysis and suppressing

mitochondrial respiration (18, 19). In line with the latter notion,

studies have shown that hypoxia can impair Treg differentiation

by promoting aerobic glycolysis by stabilizing one of the HIF

isoforms (HIF1α) (20). Moreover, Yamamoto et al. provided

further supporting evidence, showing that stabilization of both

isoforms HIF1α and HIF2α in adult mice, through silencing of

the prolyl hydroxylase domain 2 enzyme (PHD2), results in an

impaired ability of Tregs to suppress either skin allograft

rejection or in vitro responder T cell proliferation (21). However,

despite the extensive literature to date, the molecular

mechanisms that define Treg cell fate and plasticity and the

interlinked processes of metabolism and redox homeostasis are

still not well described in health and the changes seen in disease.

This is of paramount importance given the fundamental role of

impaired Treg function in an array of pathological conditions

(22–25), with an increased Treg number and function reported

in several mouse and human cancers (26–29), representing a

major barrier to anti-tumour immunity. To gain an

understanding of the integration of these processes the next

sections review the key antioxidant and nutrient sensing

pathways that determine Treg redox homeostasis and function

and the impact of microenvironmental metabolic perturbations

and nutrient availability.
ROS production and antioxidant
mechanisms

Tregs predominantly use fatty acid oxidation that generates

acetyl-CoA to fuel the TCA cycle. In a series of enzymatic

reactions, the TCA cycle generates the reducing equivalents

NADH and FADH2 which are required to transfer electrons to
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the mitochondrial respiratory chain. The energy released from

these oxidation-reduction (redox) reactions, along with the

creation of a proton gradient, results in the synthesis of ATP by

OXPHOS reactions. During this process, 0.2%–2% of the

electrons leak out of the transfer and interact with O2 to produce

ROS, such as superoxide or hydrogen peroxide (30, 31).

Although most mitochondrial ROS results from OXPHOS,

another three reactions during the TCA cycle generate ROS:

pyruvate to acetyl-CoA (32, 33), α-ketoglutarate to succinyl-CoA

(34, 35) and fumarate to succinate (36). Despite this,

mitochondrial ROS levels can also be increased when there is

disruption to the electron transport chain, resulting several

pathological processes such as ageing, autoimmunity (17) and

neurodegeneration (37).

Aside from the mitochondria, NADPH oxidases (NOXs)

are also a source of ROS, with NOX2 described as a major

ROS-generating enzyme in T cells (38). The negative impact of

ROS in Tregs has been highlighted by studies reporting

that NOX2 deficient Tregs exhibit higher suppressive capacity

than wild-type Tregs both in vitro and in vivo (39, 40).

This, therefore, highlights that the balance between production

and consumption of ROS is an important factor in the

development and function of Tregs. In line with this, and in the

setting of chronic liver disease, recent work from our group has

shown that Treg function and viability is negatively impacted

by oxidative stress and increased intracellular ROS (41).

Mechanistic insights revealed this to be secondary to an

imbalance in redox homeostasis with an increased NOX-2

activity and dysregulated endogenous antioxidant signaling

pathway.

The transcription factor NF (erythroid-derived 2)-like 2 (NRF2)

is a basic leucine zipper transcription factor that serves as a master

regulator of antioxidant defense against the cytotoxic effects of

oxidative stress by regulating an array of detoxifying and

antioxidant genes. Under quiescent conditions, NRF2 is retained

and degraded in the proteasome by Kelch like ECH-associated

protein 1 (Keap1) in concert with the E3 ubiquitin ligase Cullin 3

(Cul3) (42). Oxidative stress induces conformational changes in

Keap1 that allow NRF2 release and translocation into the nucleus

where it promotes the expression of phase II detoxifying enzymes

and antioxidant proteins (43). Of note, NRF2 also targets the

expression of several components of the glutathione (GSH) and

thioredoxin (TRX)-1 antioxidant systems (44). Activated T cells,

maintain the concentrations of intracellular ROS by using GSH

(45) which triggers cytosolic ROS depletion either in a direct way

or through enzymatic catalysis mediated by glutathione

peroxidases (GPX). Cellular GSH content is largely determined by

de novo synthesis, a process mediated by two ATP-dependent

ligases, glutamate-cysteine ligase (GCL) and glutathione synthase

(GS), as well as the availability of its constituent amino acids,

cysteine, glycine and glutamate (46). TRX1 is also critical for

Treg’s resistance to oxidative stress. This enzyme scavenges

reactive oxygen species and regulates other enzymes metabolizing

H2O2 (47). Moreover, TRX1 maintains sustained surface

expression of thiols as the first line of defense against ROS and is

sensitive to proinflammatory stimuli, mainly tumor necrosis
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factor-α, in a nuclear factor-κB-dependent fashion, which likely

boosts Treg survival under inflammatory conditions (48).
mTOR signaling in Tregs

Despite their role in the neutralization of excess ROS, the

cellular antioxidant mechanisms can modulate Treg metabolic

rewiring via engagement of the mammalian target of rapamycin

(mTOR) pathway.

mTOR is a conserved serine/threonine kinase that senses and

integrates diverse immune receptor signaling pathways and

environmental cues to coordinately regulate metabolic programs

that decipher T cell differentiation, proliferation, and function

(49). mTOR is a component of two distinct multi-protein

complexes termed mTOR complex 1 (mTORC1) and 2

(mTORC2) which share the catalytic subunit mTOR and the

associated proteins Deptor and mLST8. PRAS40 and Raptor

proteins are unique components of mTORC1, while mTORC2 is

characterized by the expression of mSIN1 and Rictor (50). The

upstream and downstream components of mTOR signaling differ

in each complex. mTORC1 activity is mainly dependent on the

small G protein RHEB (Ras homologue enriched in brain) which

in turn is modulated by the tuberous sclerosis 1 (TSC1)–TSC2

complex (51, 52). This complex integrates positive and negative

upstream signals transduced from the PI3/AKT and AMPK

(AMP-activated protein kinase) pathways (53). An array of

stimuli induces the PI3K/AKT pathway including TCR

stimulation (54, 55) and co-stimulation signals mediated by

CD28 or OX40 (56, 57), toll-like receptor signals (58, 59),

cytokines (60, 61), growth factors and hormones (e.g., leptin and

bioactive lipid sphingosine-1-phosphate-S1P) (14, 62). Besides

PI3K/AKT dependent mechanisms, essential and non-essential

amino acids can also activate mTORC1 via RAG GTPases (63).

Moreover, other nutrients such as glucose and lipids can

influence mTORC1 activation, however the mechanism for such

regulation remains to be elucidated. During energy deprivation,

AMPK downregulates mTORC1 directly by phosphorylation of

Raptor and indirectly by phosphorylation of TSC2 (64, 65).

Compared to mTORC1, regulation of mTORC2 is far less well

understood. Studies in non-T cell lineages have postulated that

its activity is modulated by PI3K signaling in response to growth

factors and insulin which lastly mediates mTORC2-ribosome

binding (66, 67). Moreover, other signals independent of PI3K

enhance mTORC2 activity such as amino acid, glucose and

glutamine starvation (68–70.) Following activation, mTORC1

drives c-MYC and HIF1α signaling via multiple mechanisms

involving S6K1 and 4EBP1 to ensure induction of aerobic

glycolysis and glutaminolysis necessary for conventional T cell

activation and differentiation (71, 72). Meanwhile, mTORC2

activates AGC kinases, including Akt, SGK1 and PKCα,

to promote cell survival, cell cycle progression and anabolism

(73–75).

Observations regarding mTOR activity in Tregs have been

complex and at times seemingly controversial. First, several

studies revealed that the efficiency of Treg generation both in
Frontiers in Transplantation 03
vivo and in vitro could be markedly enhanced in the presence of

rapamycin (76–80). This result was further supported by genetic

deletion of components of the mTOR signaling pathway (81–83).

In addition, it was found that constitutive activation of the PI3K/

Akt/mTOR network antagonized FoxP3 induction along with

other Treg-signature transcripts (82, 84), which are essential in

the generation and sustenance of the Treg lineage (85–87).

Additionally, induced-Treg cell generation requires a metabolic

switch to fatty acid oxidation via AMPK, thereby inhibiting

mTORC1 signaling (88). In line with these results, studies

demonstrated that negative regulation upstream of mTOR in

Tregs is required for the maintenance of their suppressive

function, thus indicating that the glycolytic metabolism induced

by mTOR is dispensable for Treg cell function (28, 89–91).

Despite these data, it seems paradoxical that other studies

revealed that mTOR activity was increased in Tregs compared to

Teff at steady state and promotes Treg proliferation (14, 92).

According to these findings, Zeng et al. showed that Raptor/

mTORC1 signaling coordinates cholesterol and lipid metabolic

programs to support Treg proliferation, upregulation of the

suppressive molecules CTLA-4 and ICOS, and functional fitness

in part through inhibiting mTORC2 (92). Likewise, effector Tregs

were characterized by increased mTOR activity, glycolysis, and

effector molecule upregulation after robust TCR stimulation and

in presence of a suppressive microenvironment (TGF-β) (93).

Finally, Chapman et al. showed that in vivo inhibition of mTOR

disrupts Treg suppressive function and leads to uncontrolled

conventional T cell activation, especially associated with an

excess of Th2 at mucosal tissues (94). Mechanistically, mTOR

regulates the expression of the transcription factors IRF4 and

GATA3 that are essential to activate the machinery involved in

Treg-dependent suppression (95). Moreover, mTOR promotes

mitochondrial fitness most likely via Raptor-mTORC1 as Raptor-

deficient Tregs were not able to evade T helper responses in a

colitis mouse model while Rictor-deficient Tregs showed normal

mitochondrial activity and in vitro suppressive capacity (92).

mTORC2 signaling by CD28 stimulation is required for Treg

migration and involves the induction of the enzyme glucokinase

(GCK) which is essential to maintain the glycolytic flux (96).

These observations supported a key role for Raptor-mTORC1

pathway in establishing the fate and function of activated Tregs.

However, the local environmental signals that may orchestrate

mTOR tuning and hence the Treg function in health and the

changes seen in various pathologies remain to be deciphered.
Reciprocal regulation of mTOR and
antioxidant mechanisms

The antioxidant mechanisms GSH, NRF2 and TRX1 can

regulate mTOR activity by different mechanisms (Figure 1).

NRF2 directly modulates mTOR transcription by binding to the

mTOR promoter (97). Although it has also been reported that

NRF2 can upregulate mTOR activity indirectly by increasing the

expression of RagD, a protein known as an activator of mTOR

or by modulating activity of components of the PI3K/Akt
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FIGURE 1

Crosstalk between mTOR pathway and anti-oxidant signalling in regulatory T cells. During oxidative stress, high levels of ROS induce the activity of NRF2
by disrupting its binding to KEAP1. Once NRF2 is released, it is translocated into the nucleus where it promotes the expression of mTOR, RagD and
components of the PI3K/AKT pathway, which contribute to activate the mTOR complex signalling pathway. Likewise, increased mTORC1 activity may
be link to an intracellular accumulation of serine due to an upregulated expression of its transporter ASCT1 by NRF2. Following activation, mTORC1
and mTORC2 are involved in many different signalling pathways. While mTORC2 modulates AKT, mTORC1 drives MYC and HIF1α downstream
signalling so as to ensure aerobic glycolysis. mTORC1 reciprocally prompts NRF2 activity by phosphorylation of SQSTM1, inhibits the transcription of
FoxP3 by SMAD3, and regulates the expression of the transcription factors IRF4 and GATA3. Moreover, mTORC1 is linked to the upregulation of
CTLA-4 and ICOS, and to the induction of fatty acid biosynthesis programs. At the same time, NRF2 targets the expression of the glutamate/cystine
transporter SLC7A11 that supports the GSH system and glutaminolysis. GSH boosts the removal of ROS which in turn reduce the activation of NRF2
and antagonize mTOR induction. Along this mechanism, NRF2 can also fine-tune mTOR activity via TRX1 that releases AMPK.

Perpiñán et al. 10.3389/frtra.2023.1283275
pathway (63, 98). In line with these observations, Klemm et al.

showed an increased phosphorylation of mTOR and of the

mTOR target p-S6 in Tregs of Foxp3cre mice with constitutive

NRF2 activation. Their results suggest that enhanced mTOR

signaling led to elevated glucose uptake that impacts Treg long

term survival and lineage stability with reduced FoxP3 expression

and immunosuppressive function (99), supporting the role of

mTORC1 as a negative regulator of Treg cell function. A

previous study also showed that absence of NRF2 in donor T

cells enhanced persistence of Tregs and reduced systemic

inflammation in graft-vs.-host disease mice (100). Additionally,

Noel et al. demonstrated that T cell-specific activation of NRF2

increases the number of Tregs and improves Treg-mediated

suppression of inflammation in an ischemia reperfusion-induced

acute kidney injury mouse model (101).

More recent data have outlined the role of NRF2 along with

other antioxidant mechanisms in controlling mTOR activity and

Treg function. To diminish mTOR activity, GSH scavenges ROS
Frontiers in Transplantation 04
to control NRF2 activation which decreases the amino acid

transporter ASCT1 and therefore serine uptake (102). In line

with this, intracellular accumulation of serine has been shown to

result in Treg proliferation at the cost of FoxP3 expression and

suppressive function (102). As GSH controls NRF2 activation,

which in turn releases TRX1 that inhibits AMPK (103), it

appears evident that Tregs also use GSH to indirectly modulate

mTOR signaling (Figure 1). The antagonistic effect of TRX1 in

controlling mTOR activation is further supported by

Chakraborty et al., who did not report an increase in the

quantity and suppressive quality of induced Tregs generated by

using a recombinant Trx (104).

As the cellular antioxidant mechanisms control mTOR activity,

mTOR can reciprocally regulate them. In this context, mTORC1

enables NRF2 release from its principal negative regulator

KEAP1 by phosphorylation of sequestosome 1 (SQSTM1), thus

inducing NRF2 stabilization and translocation into the nucleus

(105–108), where it drives cystine/glutamate antiporter solute
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carrier (SLC)7A11 expression. This transporter together with

SLC3A2 (or CD98) are responsible for maintaining the cysteine

intracellular pool, which in addition to protein synthesis, is

essential to produce GSH and boost redox balance (109–111). In

an elegant study Procaccini et al. described this mechanism as a

key determinant of Treg proliferative capacity in patients with

relapsing-remitting multiple sclerosis (RRMS) (112). In their

study they showed a decreased expression of SLC7A11 by

patient-derived Tregs, linked to a dysregulated NRF2 signaling,

which was rescued upon treatment of these patients with

dimethyl fumarate (DMF), small molecule inducer of NRF2

licensed for the treatment of RRMS (112). These findings

highlight NRF2 as an indispensable checkpoint to support redox

homeostasis and determine Treg cell expansion (12).
Lipid metabolism and mitochondrial
integrity

The antioxidant mechanisms can directly modulate Treg cell

outcome regardless of mTOR activity. Upon activation, Tregs

markedly reprogram lipid synthesis and fatty acid oxidation in

support of their expansion and suppressive function (88, 113). In

fact, several studies have suggested that Tregs rely on fatty acid

synthesis and oxidation to survive and proliferate in the hostile

tumor environment (114, 115). However, this mechanism

potentially enhances generation of toxic lipid peroxides and

subsequent ferroptosis, that can impair cellular redox

homeostasis. One of the members of the antioxidant GPX family,

GPX4, directly reduces membrane phospholipid hydroperoxides

and oxidizes lipoproteins by using GSH as a cofactor to maintain

redox balance under active lipid metabolism (116–118). Along

these lines, a recent study demonstrated that inducing ferroptosis

of intra-tumoral Treg cells by GPX4 deficiency disrupted

mitochondrial fitness and enhances interleukin (IL)-1β

production, which potentiates Th17 responses (119).
Iron metabolism and PDK1

Iron homeostasis is tightly linked to lipid metabolism and ROS

production. In short, excess iron ions (Fe2+) convert the hydrogen

peroxide (H2O2), produced by mitochondrial respiration, into the

toxic free hydroxyl radical (OH) through Fenton/Haber-Weiss

reactions, which in turn need electrons from lipids resulting in

an accelerated lipid peroxidation and ferroptosis (120). The

phosphoinositide-dependent kinase 1 (PDK1) has been shown to

play a key role in maintaining iron-dependent ROS levels and

the suppressive function of Tregs. A recent study described that

PDK1 inhibits MEK-Erk signaling and thus expression of the

transferrin receptor protein 1 (CD71) and iron uptake (121).

Apart from iron metabolism, PDK1 regulates multiple signaling

pathways including the canonical NF-kB pathway and Akt/

mTOR pathways (122). Indeed, the previous study showed that

PDK1-deficient Tregs exhibit downregulation of the mTORC1

pathway and an altered mitochondrial metabolism which likely
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explains the impaired Treg function. Moreover, Hyunju Oh et al.

reported that PDK1 controls Treg signature gene expression by

regulating the canonical NF-κB pathway and that Treg-specific

deletion of PDK1 in mice results in a severe systemic

inflammation, accompanied by reduced number and suppressive

function of Tregs (123).
Lactate and pyruvate metabolism

Besides the antioxidant mechanisms, different metabolic

pathways may also play a key role in the resistance of Tregs to

oxidative stress in certain environments. As already outlined in

previous sections, Tregs are less dependent on glycolysis and

largely use OXPHOS to fulfill their bioenergetic demands (12,

13). In the setting of metabolic stress, as seen in solid tumors,

the alterations in the availability of nutrients, such as glucose,

glutamine, and tryptophan and the enrichment in lactic acid and

kynurenines (124), have an impact on the tumour immune

compartment. In this regard, extensive literature reports the

negative impact of this metabolic environment on the

cytotoxicity of effector T cell responses, which in-essence are

dependent on glycolysis (125–127). In contrast, intra-tumoral

Treg’s metabolic reprogramming in this environment is evident

by the use of alternative metabolites, such as lactic acid, to

support their survival and function (128). Indeed, FoxP3 has

been shown to favor oxidation of L-lactate to pyruvate while

quenching glycolysis by downregulation of Myc (114). In

addition to their role as substrates to produce ATP, lactate and

pyruvate have also been described to have potent roles in

resistance against oxidative stress. In this regard, in their study,

Tauffenberger et al. show that oxidative metabolism of L-lactate,

and to a lesser extent pyruvate, boosts mitochondrial activity and

promotes a moderate increase in ROS production that is

sufficient to induce NRF2 activity, PI3k/AKT and mTOR

signaling and thereby support cell survival (129). However, this

mechanism has been described in an in vitro model, and it

remains to be elucidated whether lactate activates detoxifying

mechanisms under oxidative stress conditions in vivo.
Therapeutic potential: harnessing the
ROS-metabolism interplay in Tregs for
immunoregulatory therapies

The molecular pathways described above provide multiple

opportunities to finely tune ROS homeostasis and metabolic

programs in Tregs by targeting signaling cascades, enzymes and

metabolites. In so doing, we anticipate it will be possible to either

boost Treg function (to promote tolerance in autoimmunity or

transplantation) or inhibit it (in cancer or chronic infections).

For instance, by specifically targeting a ROS-producing

enzyme, Trevelin et al. observed that the depletion of Nox2

within Tregs in murine heart transplant recipients promoted the

engraftment of allogeneic grafts. Mechanistically, Nox2-deficient

Tregs exhibited notable changes: (1) increased expression of
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chemokine receptors CCR4 and CCR8, promoting their migration

toward the allograft; (2) heightened capacity to suppress the

proliferation of CD8+ T effector cells and the production of

interferon-gamma (IFN-γ); and (3) improved survival (40). The

understanding of the metabolic pathways underpinning the

heightened functionality of Nox2-deficient Tregs, however,

remains to be elucidated.

mTOR is another target influencing Treg metabolism that has

been explored for therapeutic purposes, although its downstream

effect on Treg function appear to be highly context dependent

and far from being well understood. Thus, several studies have

reported that mTOR inhibition, using Rapamycin or Everolimus

(EVR), facilitates the selective ex vivo expansion of Tregs to

generate cell therapy products for adoptive transfer into

transplant recipients or autoimmune patients (130–132). To

uncover the underlying mechanisms of mTOR inhibition in this

context, Gedaly and colleagues conducted a metabolic

characterization of autologous Tregs from renal transplant

patients during the initial phase of their ex vivo expansion in the

presence of Rapamycin or EVR (133). During the first 5 days of

expansion, both compounds reduced the glycolytic rates and

promoted an OXPHOS energy profile in Tregs, although the

EVR-treated Tregs showed a reduced OXPHOS activity that was

associated with diminished mTORC2 signaling and slow initial

expansion rates. The distinct bioenergetic profiles and the

relative reliance on OXPHOS and glycolysis during the

expansion of Tregs and Tconv cells contributed to the selective

expansion of Tregs. Despite such a study, several questions

remain to be addressed, such as the metabolic characteristics

and redox state of Tregs during expansion and the impact of

the microenvironment on the infused cells. This information

would lend itself to optimization of the current protocols/

process to ensure the expansion of a product that is stable/

functional and resilient to the stressors of the

microenvironment, once injected.

Of note, the difficulties of standardizing Treg manufacture

protocols, together with the known efficacy advantages of

conferring antigen-specificity to Treg products (134), have

prompted the use of the chimeric antigen receptor (CAR)-

engineered technology. Human leukocyte antigen (HLA)-A2-

targeted CAR-Tregs have been shown to efficiently prevent graft-

vs.-host disease and skin graft rejection (135–138), and are

currently in clinical trials in kidney and liver transplantation.

There is limited information, however, concerning their

metabolic requirements, and whether their function, lineage

stability, proliferative potential, and survival can be further

optimized by modifying metabolic programs.

Examples of how this could be achieved are from lessons learnt

from the CAR-T oncology field, where genetic modifications and

extracellular metabolite supplementation strategies have

demonstrated the ability to influence mitochondrial metabolism,

extend the longevity of CAR-T cells, and counteract their

exhaustion. For instance, incorporating the co-stimulatory

endodomain 4-1BB into CAR-T molecules has been shown to

promote the upregulation of the peroxisome proliferator-activated

receptor (PPAR)-γ coactivator (PGC)-1α via p38-mitogen-
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mitochondrial fusion and biogenesis, significantly boosting T cell

respiratory capacity (139). Such CAR-T configurations have

proven clinically effective, enhancing antitumor immunity and

long-term T cell survival in leukemia patients (140, 141). Notably,

a recent publication has underscored the benefits of including

PGC-1α in the CAR structure (142). Alternatively, Ligtenberg

et al. described a different strategy involving the co-expression of

catalase with the CAR construct (CAR-CAT) in adoptive T cells.

This approach neutralizes H2O2 and bolsters cellular antioxidative

capacity, thereby sustaining CAR-T viability and antitumor

function under oxidative stress (143). The pre-conditioning

employed to facilitate the engraftment of CAR-T cells, which

results in increased levels of IL-2, IL-7, IL-15, and IL-21 in the

circulation, offers additional opportunities to influence

metabolism. IL-2 promotes glycolysis through the Akt-mTOR

pathway, and differentiation of CD8+ T cells into an effector

memory phenotype (144); IL-7 enhances memory CD8+ T cell

formation by inducing the expression of glycerol channels and

increasing triglyceride synthesis (145); IL-15 increases the spare

respiratory capacity and oxidative metabolism rate by enhancing

mitochondrial biogenesis and CPT1a (Carnitine Palmitoyl

transferase 1a) expression, which results in a stem cell memory T

cell phenotype (146); IL-21 modulates the induction of central

memory T cells and acquisition of the exhaustion phenotype,

increasing antitumor efficacy in an fatty acid oxidation-dependent

manner (147). Furthermore, pre-treatment of CAR-T cells with

compounds that modulate the PI3K-AKT-mTOR pathway, such

as PI3K inhibitors, Rapamycin, AMPK activators like Metformin

or MAPK inhibitors, have demonstrated the potential to enhance

the fate and potency of CAR-T cells. This approach helps

preserve memory-like characteristics by overall promotion of fatty

acid oxidation and mitochondrial biogenesis (148–152). Finally,

the use of mitochondria-targeted antioxidants offers a novel

strategy to counteract cytotoxic T cell exhaustion. Antioxidant

treatment effectively reduces the levels of ROS generated by

chronically stimulated T cells and mitigates the decline in

mitochondrial fitness (153).

In addition to these mechanisms, therapeutically shaping the

local microenvironment to mitigate oxidative stress and foster

redox homeostasis offers additional opportunities to protect/

boost Tregs. In this context, the gut microbiota appears to be

key. Thus, various metabolites produced by bacteria have been

linked to immune homeostasis and systemic inflammation (154,

155). Some of them have a strong effect on Tregs: microbial

short-chain fatty acids and tryptophan promote the suppressive

function of Tregs (156, 157). On the other hand, certain bacteria

possess the ability to generate and counteract reactive oxygen

species (ROS), thereby regulating the host’s redox state (158–

160). Currently, innovative therapies are in development to

modulate the gut microbiota, particularly in gastrointestinal

diseases characterized by excessive ROS production, such as

inflammatory bowel disease and colorectal cancer (161, 162).

Further studies are needed to understand whether these

approaches hold promise in supporting redox homeostasis and

metabolic fitness of Tregs.
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Concluding remarks

The mechanisms underlying the complex and interlink

networks between redox homeostasis and metabolism as

determinants of Treg fate are ill defined. In this review, we

summarize the signaling and metabolic pathways that are

known to be fine-tuned by oxidative stress in Tregs with

special attention to the antioxidant mechanisms that

coordinate many of the signaling pathways that contribute to

metabolic rewiring, ultimately leading to Treg survival and

function. In this regard, Tregs from healthy subjects express

and secrete high levels of antioxidants, specially TRX1,

indicating a higher endogenous antioxidant capacity than

Tconv (121, 122). However, it is still controversial whether

Tregs exhibit greater resistance to oxidative stress-induced cell

death, particularly in the context of an oxidant/antioxidant

imbalance (122, 123). Indeed, further insight is needed into

the precise modulatory switches that may delineate Treg fate

under steady state and the effect of oxidative stress and

various pathological processes. It is also important to highlight

the main challenges involved in the study of these interlinked

networks. This includes the complexity of environmental cues:

factors such as hypoxia, nutrient deprivation and the presence

of a vast array of extracellular metabolites, all affecting

intracellular regulatory mechanisms. Additionally, the

heterogeneity of Tregs, activation states and interactions with

other immune cells, will inevitably be governed by these

mechanistic processes. Therefore, the future will see an

integration of not only systems-based approaches, but

computational and mathematical modeling of these cellular

networks. The application of these approaches will advance

our understanding of these complex networks and interactions

as determinants of Treg function, inevitably leading to

therapeutic targets in several conditions governed by aberrant

immune responses.
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