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Organ transplantation is characterized by a sequence of steps that involve
operative trauma, organ preservation, and ischemia-reperfusion injury in the
transplant recipient. During this process, the release of damage-associated
molecular patterns (DAMPs) promotes the activation of innate immune cells via
engagement of the toll-like receptor (TLR) system, the complement system, and
coagulation cascade. Different classes of effector responses are then carried out
by specialized populations of macrophages, dendritic cells, and T and B
lymphocytes; these play a central role in the orchestration and regulation of the
inflammatory response and modulation of the ensuing adaptive immune
response to transplant allografts. Organ function and rejection of human
allografts have traditionally been studied through the lens of adaptive immunity;
however, an increasing body of work has provided a more comprehensive
picture of the pivotal role of innate regulation of adaptive immune responses in
transplant and the potential therapeutic implications. Herein we review literature
that examines the repercussions of inflammatory injury to transplantable organs.
We highlight novel concepts in the pathophysiology and mechanisms involved
in innate control of adaptive immunity and rejection. Furthermore, we discuss
existing evidence on novel therapies aimed at innate immunomodulation and
how this could be harnessed in the transplant setting.
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Introduction

The immune system consists, broadly, of two intricately interconnected arms: the innate

and the adaptive. The innate arm is responsible for a rapid and broad response to invading

pathogens, as well as to diverse physical and metabolic insults (1). This response involves the

activation of a complex network of cellular and soluble mediators of inflammation that play a

crucial role in maintaining immune surveillance at critical tissue sites. However, the failure

to resolve the response can lead to persistent inflammation, tissue damage, and fibrosis (2, 3).

The innate immune system uses pattern recognition receptors (PRRs) to detect conserved

pathogenic motifs, such as lipid and carbohydrate moieties. PRRs are expressed on

various immune and non-immune cells and can sense pathogen-associated molecular

patterns and danger signals. Toll-like receptors (TLRs) are the most extensively studied

PRRs, found on the cell surface and endosomes of cells, and they recognize bacterial

lipopolysaccharides and viral nucleic acids. Intracellular signaling pathways are initiated

upon PRR activation, resulting in the mobilization of inflammatory and immune
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responses (4, 5). The innate immune system’s hard-wired

responsiveness provides a critical first line of defense against

invading pathogens and tissue damage, ensuring a rapid and

effective response to potential threats.

In contrast, the adaptive arm is triggered by the presence of

specific antigens, and it involves a highly targeted and specific

response. This response is characterized by clonal expansion and

affinity maturation of T and B cells, resulting in the generation

of high-affinity receptors for antigenic peptides (6). The innate

arm plays a vital role in initiating and enhancing the adaptive

response by providing signals that trigger the recruitment and

activation of cells of the adaptive immune system. The

coordinated and integrated interplay between the innate and

adaptive arms is essential for the acquisition of effective and

long-lasting immunity against invading pathogens (7). The innate

arm provides a rapid and non-specific response, while the

adaptive arm provides a highly specific and targeted response.

Therefore, the ability of the immune system to generate a

successful defense against invading pathogens depends on the

functional interdependence between these two arms of the

immune system (8).

The innate pathway has been extensively studied in the context

of transplantation. Understanding the role of these innate pathways

in graft dysfunction and rejection is of paramount importance. By

exploring the intricate interplay between the innate immune system

and the transplantation process, we can identify novel therapeutic

targets for promoting graft acceptance.

This review aims to provide a comprehensive analysis of the

complement and TLR systems in the context of transplantation.

We will examine the mechanisms underlying their activation,

their contribution to graft dysfunction and rejection, and the

potential for targeted manipulation of specific components to

steer the immune response towards graft protection and

acceptance. In doing so, we hope to deepen our understanding of

the complex immune interactions that underlie innate immune

responses in transplantation and to provide valuable insights into

the development of new immunomodulatory strategies for

improving transplant outcomes.
Components of the innate immune system
and their role in transplant

Complement
The complement system is a vital component of the innate

immune system. It is triggered by pattern recognition molecules

(PRMs) that recognize specific patterns on the surface of invasive

pathogens or damaged cells. The classical and lectin complement

activation pathways converge on C3, the pivotal component of

complement, while the alternative pathway generates a C3

convertase from C3b and factor B (fB). The resulting cleavage of

C3 generates complement effectors, including the membrane

attack complex (MAC), C3a, and C5a, which recruit the adaptive

immune system and mediate inflammation (Figure 1) (9, 10).

Allograft rejection is a complex process that involves both

innate and adaptive immune responses, and complement
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activation has been widely implicated in the initiation and

progression of allograft injury during ischemia reperfusion injury

(IRI) and in the pathophysiology of rejection (10–12).

Complement activation during IRI is triggered by locally released

CL-11, which activates C3a/C3aR interaction leading to

glomerular and tubular injury and stimulates secondary epithelial

cell chemokine production that contributes to local inflammation

(13, 14).

The role of complement activation in acute rejection is more

complex. The inflammatory response triggered by complement

activation in a transplanted organ is mediated via generation of

biologically active complement fragments. These fragments

mediate chemotaxis and activate neutrophils and macrophages,

resulting in a cascade of biological effects that depend on the site

and trigger of complement activation (15). Once the MAC is

formed, cells are induced to produce IL-1α and IL-8, further

increasing local tissue inflammation (16).

Complement activation is detrimental in itself, as it damages

the transplanted organ, but it also leads to recruitment of the

adaptive immune system by enhancing T-cell activity. C5a has

been shown to be a strong chemoattractant, and C5aR deficiency

has demonstrated a protective effect in mouse models of IRI

(17). Understanding the varying roles of complement within the

transplant process is critical to predicting transplant outcomes

and developing strategies to minimize the risk of allograft rejection.
Toll-like receptors
IRI is a multifaceted process that entails the activation of

diverse pathways such as toll-like receptor (TLR) signaling,

extracellular signaling molecules, alterations in gene expression,

production of reactive oxygen species (ROS), regulation of cell

death, activation of innate and adaptive immune factors, and the

triggering of hypoxia-inducible factors (18). In general, this

process constitutes a classic positive feedback loop in which

damaged cells at the transplantation site release redox-sensitive

damage-associated molecular patterns (DAMPs) that promote

local accumulation of recipient-derived monocytes and

polymorphonuclear leukocytes (PMNs), such as neutrophils (19).

These cells sustain immune cascades and amplify the destruction

of foreign tissue. This self-amplified cytotoxic cascade is initiated

by the release of DNA/RNA complexes and/or acetylation of the

non-histone chromatin-associated protein such as high mobility

group box 1 (HMGB1), a representative danger signal.

Additionally, degradation of the extracellular matrix can release

molecules such as heparan sulfate, hyaluronan, fibrinogen,

fibronectin A domain, or tenascin C, which can further amplify

the response to tissue damage (20).

Acute kidney injury (AKI) is a complex disorder characterized

by a rapid decline in renal function resulting from various

etiologies. Neutrophils and macrophages are among the earliest

effector cells involved in AKI, where they are found to persist for

several days. The contribution of these cells to the

pathophysiology of IRI results from their adherence to

endothelium, release of ROS and proteases, and their ability to

synthesize and secrete cytokines/chemokines that recruit other
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FIGURE 1

The pathways of the complement system are a crucial component of innate immunity that influence inflammation and the recruitment of the adaptive
immune system. Steps in this pathway can be targeted to suppress inflammation and influence immune response to organ transplantation. MBL,
mannose-binding lectin; MASP, mannan-binding lectin-associated serine protease; MAC, membrane attack complex.
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effector cells to the organ, thereby amplifying local inflammation

(21–23).

Zhang et al. investigated the inactivation of neutrophils using

mAbs against high mobility group box 1 (HMGB1) in a mouse

model of AKI. They found that the treatment alleviated IRI-

induced renal dysfunction by suppressing the activation of the

HMGB1-Toll-like receptor 4 (TLR4)-interleukin (IL)-23-IL-17A

signaling axis. This resulted in the reduction of neutrophil-

mediated inflammation, chemokine expression, oxidative stress,

and apoptosis (24). Neutrophil trafficking is also dependent on

the crosstalk between donor non-classical and classical

monocytes in a lung transplant IRI model (25).

Depleting neutrophils entirely may not be clinically feasible,

given their critical role in pathogen clearance and immune

surveillance. Instead, selectively blocking the recruitment of

circulating leukocytes to the inflammatory site may be a better

approach. In a recent study, researchers used mAb treatment to

block the vascular surface marker CD321, a marker for the

transmigration of circulating leukocytes into the inflamed tissue.

This blockade attenuated damage responses by hepatic IRI,

evaluated by serum liver enzymes, inflammatory cytokines, and

hepatocyte cell death (26).
The IL-6 pathway
As a critical regulator of inflammation, IL-6 plays a pivotal role

in the pathophysiology of transplant rejection (27). It is noteworthy

that upregulation of IL-6 during brain death promotes a

proinflammatory state even before organ procurement (28, 29),
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and during cold preservation, there is a detectable increase in

graft IL-6 levels (30). This increase in IL-6 then upregulates

adhesion molecules, inflammatory cytokines such as IL-17 and

IFN-γ, and molecules that regulate migration in endothelial cells

(31). Importantly, a growing body of evidence suggests that IL-6

blockade can mitigate the pro-inflammatory environment

associated with brain death and IRI (32). Evidence from

experimental and human studies links IL-6 to allograft injury,

with blockade of the IL-6/IL-6R signaling pathway shown to

mitigate these effects (33, 34). In mouse skin transplantation

models, IL-6 promotes T cell alloreactivity and impairs Treg

function (35). In addition, inhibition of IL-6 signaling reduces

the production of donor-specific antibodies and modulates

immune regulatory and effector cells (36, 37). Studies in murine

models demonstrate that IL-6 plays a critical role in the

pathogenesis of acute and chronic allograft rejection, and

blocking IL-6 reduces/prevents rejection and fibrosis (38–41). In

human transplant recipients, higher levels of IL-6 are consistently

associated with worse outcomes, including a higher risk for acute

rejection (42–44).
Coagulation cascade
The coagulation system, through the extrinsic and intrinsic

pathways, activates factor X. Initiated by vascular injury, the

extrinsic pathway catalyzes thrombin production, vital for

stimulating platelets and vascular cells. The intrinsic pathway is

autoactivated when circulating factor XII contacts negatively

charged surfaces, under the regulation of antithrombin, tissue
frontiersin.org
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factor pathway inhibitor, and activated protein C. Importantly,

coagulation interacts closely with the innate immune system and

the complement cascade, influencing thrombogenesis and

fibrinolysis (45).

Thrombin and tissue factor interact with protease-activated

receptors on immune cells, releasing inflammatory mediators

crucial for transplantation and IRI. In delayed graft function

(DGF), ischemia/reperfusion-triggered coagulation activation,

fibrin deposition, and robust expression of pro-inflammatory

agents primes adaptive alloimmune responses and leads to

allograft dysfunction (46, 47).

Mechanistically, this is explained by infiltrating dendritic cells

expressing protease-activated receptor 1 (PAR-1), which

influences cytokine gene expression and enhances T helper-1 bias

in DGF (48). Interstitial coagulation activation, indicative of renal

graft rejection, involves fibrin stimulation of fibrosis-contributing

cells, and post-transplantation complications like microvascular

thrombi, endothelial dysfunction, and fibrin deposition can lead

to graft dysfunction, particularly in highly sensitized recipients

(49, 50).

The fibrinolytic system, responsible for removing fibrin,

prevents vessel occlusion and is significant in transplantation

(51). The cause of organ donors’ death can affect fibrinolysis

activation, with injured donors exhibiting enhanced fibrinolytic

activity (52). DGF correlates with increased urokinase (uPA) and

urokinase-type plasminogen activator receptor (uPAR)

expression, which impacts graft function and renal filtration.

Chronic renal graft failure is characterized by fibrin deposition

due to a disrupted plasminogen/plasmin system inhibiting

fibrinolysis (53, 54).
Therapeutic strategies

Many current therapies in transplantation target the adaptive

immune system in order to dampen the immune response to the

new organ. The adaptive immune system and innate immune

system are intimately linked, and the various components of the

innate immune system may serve as novel therapeutic targets

(Figure 2).
Complement inhibition

There is increasing experimental and clinical evidence indicating

that complement blockade can be an effective therapeutic target for

improving outcomes in organ transplantation (55). A range of

therapeutic agents, including monoclonal antibodies, small

molecules, and small interfering RNA (siRNA) agents, have been

developed to inhibit complement cascade activation. For example,

the administration of a soluble complement receptor-1 antagonist

(sCR1) can inactivate the C3 and C5 convertases, resulting in

reduced neutrophil migration into grafts and reduced post-

transplantation reperfusion edema in animal models of lung

allotransplantation (56). In clinical trials, sCR1 has been shown to

effectively inhibit complement activation, and treating recipient
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shown to improve graft survival and reduce monocyte/macrophage

infiltration (57, 58).

Eculizumab, a humanized monoclonal antibody that binds to

C5 and inhibits its cleavage to C5a, has been approved by the

FDA to block complement cascade activation and constitutes

another approach to attenuating IRI in organ transplantation (59,

60). Clinical case reports have shown promising results for

eculizumab in patients with atypical hemolytic uremic syndrome

undergoing kidney transplantation (61). Another potential

strategy to inhibit complement cascade activation is to silence C3

using siRNA. In a mouse model of kidney IRI, the systemic

administration of C3-specific siRNA reduced renal injury and

mouse mortality by diminishing renal C3 synthesis, as C3 is the

central component of complement cascade activation where all

three pathways converge (62, 63). Silencing the C5a receptor

(C5aR) gene using siRNA before the induction of ischemia

resulted in reduced expression of the proinflammatory cytokine

TNF-α and chemokines MIP-2 and KC, resulting in reductions

in neutrophil influx and cell necrosis in the kidneys (64).

In a preclinical context, C1 inhibitors (C1 INH), which are

approved for hereditary angioedema treatment, can prevent the

activation of both the classical and lectin pathways (65). Research

using a brain-dead rat model has shown that C1 INH can

mitigate complement activation resulting from brain death (66).

Our preliminary studies using a mouse model of renal IRI

showed that pre-treating animals with C1 INH led to enhanced

renal function, improved survival rates, and decreased C5a

release, C3b deposition, as well as neutrophil/macrophage

infiltration in the grafts. Furthermore, we observed a significant

reduction in tissue fibrosis and TGF-β1 levels 30 and 90 days

post-ischemia (67). Utilizing a nonhuman primate kidney

transplant model, we demonstrated that managing brain-dead

donors with recombinant human C1 INH and heparin

substantially diminished complement pathway activation,

attenuated systemic inflammatory response, and crucially, averted

DGF in all instances compared to controls (68). A subsequent

study suggested that C1 INH, when administered systemically to

either the brain-dead donor or recipient only, could decrease

complement deposition on biopsy and prevent DGF (69). Lastly,

in a pig kidney auto-transplant model, C1 INH treatment

expedited the recovery of glomerular function and significantly

lessened long-term graft fibrosis (70, 71).

Clinical trials pertaining to kidney transplantation have thus far

explored the use of C1 and C5 inhibitors as well as a C3 inhibitor.

The primary objective of these trials was to avert early graft failure

due to DGF, and to prevent both early and late rejection episodes,

particularly antibody-mediated rejection (ABMR). Currently, only

one phase I/II trial (NCT02134314) comparing the use of the C1-

esterase with a placebo has been completed. Although there were

no significant differences between groups in the incidence of DGF,

the duration of dialysis was notably shortened in the C1-esterase

inhibitor group (72). Furthermore, in a follow-up study conducted

3.5 years post-transplantation, a significantly improved estimated

glomerular filtration rate (eGFR) was found in the C1-esterase

inhibitor group (73).
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FIGURE 2

Tissue injury and ischemia activates the innate immune system, which is comprised of intricately interconnected pathways that influence the activation of
the adaptive immune system, which can ultimately lead to graft dysfunction, alloreactivity, and rejection in organ transplantation. Molecules within each of
these pathways may be targeted to suppress those reactions and promote transplant organ function and acceptance by the host immune system.
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Recent alternative anti-complement therapies have shown

promise by directly administering complement inhibitors to

donor kidneys ex vivo before transplantation. This method

focuses on local kidney complement inhibition, minimizing the

impact on the recipient’s systemic complement pool. Mirococept,

derived from human CR1, was tested in the EMPIRIKAL trial to

evaluate its effect on DGF duration. The initial trial

demonstrated the feasibility and safety of ex vivo Mirococept

delivery to kidney allografts and highlighted the need for dose

calibration (74). Subsequent pig kidney studies showed strong

localization to the treated kidney’s tubular epithelium and

capillaries, with minimal recipient release. The EMPIRIKAL trial

is now revising its human study protocol based on the optimal

higher dose achieved in pigs (EMPIRIKAL-2).
TLR inhibition

Inhibitors and antagonists that target TLR signaling or

downstream components have the potential to reduce IRI and

improve allograft survival, and several studies on animal models

suggest that blocking antibodies against TLR pathway molecules
Frontiers in Transplantation 05
can be an effective therapeutic strategy. For example, the

administration of an anti-HMGB1 neutralizing antibody reduced

kidney IRI in mice, as shown by lower levels of inflammation

and apoptosis in tubular epithelial cells, and reduced infiltration

of neutrophils and macrophages (75). In addition, in a model of

cardiac transplantation, neutralizing HMGB1 resulted in a

reduction of inflammatory CD11b + Ly6C high myeloid cells

both at the level of the allograft and the spleen (76).

There have been numerous attempts to block the TLR pathway

as a strategy to attenuate ischemia-reperfusion injury (IRI) and

enhance allograft survival. One such attempt involves the use of

eritoran, a TLR4 antagonist that has been tested in

transplantation (77). Eritoran is a synthetic structural analog of

the lipid A portion of lipopolysaccharide (LPS) that binds to the

MD2-TLR4 receptor and terminates MD2/TLR4-mediated

signaling. This action blocks LPS from binding at the cell surface

and subsequently inhibits the pro-inflammatory signaling cascade

that follows (78). In a rat transplantation model, eritoran

treatment induced less monocyte infiltration; lower levels of

TNF-α, IL-1β, IL-6, and MCP1; and prolonged survival. There is

also evidence to suggest that eritoran may block the HMGB1-

TLR4 interaction, which could explain its ability to attenuate IRI.
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In a mouse model of liver IRI, eritoran was shown to inhibit the

TLR4-dependent release of HMGB1, indicating a potential

mechanism by which eritoran exerts its protective effects (79).

Another TLR-4 inhibitor, TAK-242, is a small compound that

mitigates the release of inflammatory cytokines triggered by

pathogens, primarily by impeding TLR-4-mediated signaling

pathways. Furthermore, it exhibits suppressive effects on the

synthesis of nitric oxide (NO) or tumor necrosis factor (TNF)-

alpha, specifically when induced by the TLR4-specific ligand LPS

(80). A study investigated the effects of TAK-242 on liver

transplant viability in a model of swine Maastricht-category-III

cardiac death. TAK-242 was administered prior to induction of

cardiac death with mRNA and protein levels of TLR4 signaling

pathway evaluated at different time points after induction of

cardiac death. The results showed that the mRNA and protein

levels of important immune and inflammatory response

molecules such as TLR4, NF-ϰB, MCP-1, TNF-α, IL-6, ICAM-1,

and MPO, increased significantly after cardiac death. However,

infusion of TAK-242 one hour before induction blocked the

increase of many of these molecules; though notably, the increase

of TLR4 levels was not affected by the TAK-242 infusion (81).
Other potential targets in the innate
immune system

IL-6 inhibitors
Tocilizumab, a potent antagonist of the interleukin-6 receptor,

has shown remarkable efficacy in reducing HLA antibodies in

highly sensitized patients awaiting kidney transplantation and

those with antibody-mediated rejection. In 2015, Vo et al.

conducted a phase I/II open-label trial (NCT01594424) with ten

unresponsive end-stage renal disease patients. The six-month

treatment regimen with monthly tocilizumab and IVIg

administration resulted in a reduction of DSA levels, enabling

five patients to undergo kidney transplantation. Biopsies revealed

no evidence of antibody-mediated rejection (AMR) six months

post-transplant, but two patients who stopped tocilizumab

experienced mild AMR a year later. The study suggested that

targeting the IL-6 pathway could offer an alternative for

desensitization (82).

A subsequent study by this group evaluated the use of

tocilizumab as a rescue therapy for DSA-positive chronic

antibody-mediated rejection (cAMR) and transplant

glomerulopathy in patients who had previously failed standard

treatments. Monthly administration of tocilizumab yielded an

80% graft survival rate at six years, decreased DSA levels, and

stabilized renal function without significant adverse events. Four

patients did experience graft loss after discontinuing tocilizumab,

suggesting rebound IL-6 pathway signaling may contribute to

generation of an alloimmune response (83).

Furthermore, tocilizumab has been studied as a first-line

therapy for cAMR in kidney transplantation, resulting in GFR

stabilization and a significant decrease in DSA with improved

pathology observed at six months. IL-6 blockade may also be a

potential treatment option for regulating T-cell alloimmune
Frontiers in Transplantation 06
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controlled trial found that kidney transplant recipients who

received tocilizumab had increased T-reg frequency and a

blunted T-effector cytokine response (84). A multicenter phase II

clinical trial investigating the efficacy of tocilizumab in cardiac

transplantation is currently under way to evaluate the impact of

tocilizumab on acute and chronic cardiac allograft rejection

(NCT03644667).

TNF and IL-1 receptor antagonists
The use of anti-inflammatory agents to counteract the harmful

effects of proinflammatory cytokines has been extensively

investigated, primarily in islet transplantation. Anti-cytokine

strategies, such as TNF-alpha inhibition and IL-1 beta

antagonism, have demonstrated promising results in improving

islet cell function and promoting insulin-independence following

transplantation.

TNF-a inhibitors have shown reduced inflammatory markers

in animal models and long-lasting efficacy in treating

autoimmune disorders (85, 86). The pharmacological

characteristics of TNF inhibitors can vary considerably, with

Etanercept (ETA) binding and neutralizing lymphotoxin-α3 and

lymphotoxin-α2β1, while Infliximab (INF) does not possess these

properties (87, 88). A recent qualitative analysis of anti-

inflammatory agents in clinical islet transplantation summarized

findings from multiple studies evaluating Etanercept

monotherapy in allo-islet cell transplantation protocols (89).

Although the studies differed in insulin independence (II)

definitions and assessment time points, the overall results suggest

that Etanercept may contribute to long-term maintenance of II.

Despite some inconsistencies in outcomes, an Etanercept-based

protocol could be associated with lower islet equivalent (IEQ)

requirements (90, 91).

A single prospective, randomized study examined Infliximab as

an adjunct to the Edmonton protocol, but no significant clinical

benefits or substantial differences were observed in oral glucose

tolerance test (OGTT) or intravenous glucose tolerance test

(IVGTT) outcomes (92).

IL-1β, a pro-inflammatory cytokine, has been linked to β-cell

destruction and diabetes development (93). Interleukin-1

receptor antagonists (IL-1RA) have been demonstrated to

effectively counteract the effects of proinflammatory cytokines,

including nitric oxide production, necrosis, apoptosis, glucose-

stimulated insulin secretion, and mitochondrial dysfunction (94).

Several studies have shown that interleukin-1 receptor antagonist

(IL-1RA) can improve pancreatic islet transplantation outcomes

in mice, primates, and humans (95, 96). In two human trials,

anakinra combined with other immunosuppressive agents during

the first 1–2 weeks post-transplantation resulted in better

engraftment without increased infection risk (97, 98).

Limited data exist on IL-1 beta-directed therapies in

transplantation outside the islet field. In renal transplantation,

the safety and efficacy of combining IL-1 beta-directed therapy

with standard immunosuppressive treatment were evaluated in

three patients, with no significant complications except for minor

infections (99). Case reports and series indicate that anakinra can
frontiersin.org

https://doi.org/10.3389/frtra.2023.1277669
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Praska et al. 10.3389/frtra.2023.1277669
be safely used alongside immunosuppressive agents in renal

transplant recipients with IL-1 driven diseases, although one

patient experienced neutropenia and decreased allograft function,

with an unclear link to IL-1 blockade (100).

Coagulation cascade inhibition
The coagulation system, which regulates bleeding and clotting,

also plays an important role in innate immunity; this, and its

interaction with the fibrinolytic system influences IRI. Targeting

coagulation factors is complicated by their presence within fibrin

clots, often protecting them from inhibitors (45). Therapies such

as rapamycin can mitigate fibrinolysis disruption by reducing

plasminogen activator inhibitor type 1 (PAI-1) expression,

slowing the progression of interstitial fibrosis (101). Furthermore,

in porcine models of renal autotransplant, the use of Xa and

dual Xa/IIa inhibitors has been shown to be beneficial to graft

outcome (102, 103). In addition to inhibiting the complement

system, C1 INH has also been shown to inhibit enzymes in the

coagulation and fibrinolytic systems, including factor XII and

plasmin, respectively (104). As discussed above, in pre-clinical

models and ongoing clinical studies, C1 INH has demonstrated a

beneficial effect on graft function.

Steroids
Glucocorticoids (GCs) play a crucial role in

immunosuppression following renal transplantation by mitigating

inflammatory responses and leukocyte infiltration. They also

facilitate the resolution of inflammation through the suppression

of vascular permeability, leukocyte distribution/trafficking, and

modulation of cellular death/survival and differentiation

processes (105, 106). While GCs were initially believed to exert

their anti-inflammatory effects through the inhibition of pro-

inflammatory cytokine-encoding gene regulators, recent studies

have uncovered alternative mechanisms, including negative

interference with inflammatory mediator synthesis, suppression

of immune cell activation, and cooperation between the

glucocorticoid receptor and transcription factors to induce anti-

inflammatory genes (107).

GCs are known to induce neutrophilic leukocytosis by

promoting neutrophil maturation and mobilization, an effect that

can be blocked by L-selectin adhesion protein inhibition. They

also hinder the entire neutrophil activation process, including

respiratory burst-related enzyme expression, chemotaxis,

phagocytosis, and cytokine secretion. In neutrophils, GCs

suppress transcription factors related to pro- and anti-

inflammatory genes, leading to upregulated expression of

interleukin and pro-inflammatory leukotriene receptors and

reduced apoptosis sensitivity, thus extending neutrophil lifespan.

Furthermore, endogenous glucocorticoids under stress conditions

affect natural killer (NK) cells by reducing their cytolytic activity

and inducing pro-inflammatory cytokine synthesis through an

epigenetic mechanism, enhancing the expression of IL-6 and

INF-γ and promoting histone acetylation in their enhancer regions.

GCs also exhibit direct effects on innate immune cells, as

demonstrated by in vitro studies on methylprednisolone-treated

monocytes, which show increased anti-inflammatory cytokine
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expression and reduced antigen-presenting capabilities (108, 109).

In vivo data from renal transplant recipients treated with

methylprednisolone reveal alterations in monocyte populations

and TLR4 downregulation on GC-treated monocytes, a critical

component in monocyte activation during sepsis and the

immune response to transplanted organs (110, 111). Steroids also

impact dendritic cell differentiation and maturation, with

dexamethasone-exposed monocyte-derived dendritic cells

displaying decreased expression of specific markers, impaired

antigen-presenting cell function, and reduced cytokine secretion

(112).

The anti-inflammatory effect of steroids in transplantation has

been widely investigated in the deceased donor setting and initial

studies have not consistently show benefits of donor

methylprednisolone treatment in transplantation outcome (113).

In addition, a large-scale, randomized, double-blind trials in

kidney transplantation found that while methylprednisolone

pretreatment improved inflammatory and apoptotic gene

expression profiles, it did not impact delayed graft function or

serum creatinine decline (114, 115). Therefore, high-dose

methylprednisolone before organ recovery is not recommended

for kidney transplantation.

Although the trial’s results were inconclusive, preliminary

evidence suggests potential benefits of donor steroid treatment in

liver transplantation, prompting continued research efforts into

the routine use of steroids in combined hormonal resuscitation

protocols (116).

Myeloid differentiation factor 88 (MyD88)
Myeloid differentiation factor 88 (MyD88) is a protein that

plays a role in signal transduction through TLRs, prompting the

production of pro-inflammatory cytokines that promote

leukocyte recruitment. Specifically, MyD88 links the IL-1

receptor or other TLR family members to IL-1R-associated

kinase (IRAK) kinases that leads to downstream events including

NFkB activation and MAP kinase activation (117). Thus, it has a

far-reaching effect on the inflammatory response of the immune

system.

TJ-M2010-5 is a MyD88 inhibitor that targets and interacts

with the MyD88 TIR domain, interfering with dimerization. This

molecule has been shown in murine models to play a role in

slowing liver fibrosis, and decreasing myocardial ischemic

reperfusion injury (118), cerebral reperfusion injury (119), and

hepatic reperfusion injury (120). Alleviation of hepatic

reperfusion injury with this molecule has been particularly

successful when coupled with hepatic hypothermic oxygenated

perfusion (121). While these studies have been performed using

animal models, they demonstrate some significant promise as a

viable therapeutic option for the prevention or reduction of

ischemia reperfusion injury in human transplantation.

Resveratrol
Resveratrol is a naturally-occurring phenol produced by plants

that has been shown to play a role in inflammatory disease

prevention and progression. Resveratrol is thought to be

produced in response to oxidative stress, and several studies have
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shown it is able to regulate hepatic metabolism of lipids hence

improving metabolic lipid homeostasis and slowing the

progression of fatty liver disease (122). Resveratrol also functions

as an anti-oxidant, and its main effect is linked to the reduction

of reactive nitrogen species, direct elimination of free radicals,

improvement in antioxidant enzymatic activity and promotion of

synthesis of antioxidant.

Resveratrol interacts with several different immunomodulatory

targets including Sirtuins. Sirtuins are NAD+-dependent histone

deacetylases, and they are thought play a significant role in

immunomodulatory responses and are of significant interest as

targets to treat autoimmune disease (123). They are currently

studied for their role in promoting organ transplant tolerance, in

particular SIRT1 inhibition, which may affect Th17/Treg cell

balance (124, 125).

Overall Resveratrol has the potential to play a crucial role in

prevention and treatment of liver disease such as anti-oxidant,

steatosis and immune-modulator. Additional studies are ongoing

with the goal of highlighting efficacy and safety.

Vitamin D
Vitamin D plays an important role in the regulation of the

immune system, and its deficiency has been shown to play a role

in immune dysregulation, particularly in the context of

autoimmunity (126). Renal failure can lead to disruption of

vitamin D metabolism. In fact, studies have shown that vitamin

D deficiency may be a risk factor for rejection or decreased graft

function (127–129). As such, studies have demonstrated that

vitamin D supplementation may serve as a means to promote

immunity and maintain graft function (130).
Conclusion

In order for the immune system to function appropriately,

there must be a complex synergy between the innate and

adaptive arms. The innate immune system is essential for the

highly specialized adaptive immune system to function.

Furthermore, modulation of this complex system is essential for

successful organ transplantation, particularly to prevent ischemia

reperfusion injury and rejection, and to promote graft function.

There is an abundance of research that highlights components of

the innate immune system, their role in transplantation, and how

those components may be harnessed for therapeutic benefit.
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Ongoing studies are identifying novel therapeutic targets within

the innate immune system that have the potential to greatly

impact management of transplant patients.
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