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Hypoxia within subcutaneously
implanted macroencapsulation
devices limits the viability and
functionality of densely loaded
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Introduction: Subcutaneous macroencapsulation devices circumvent
disadvantages of intraportal islet therapy. However, a curative dose of islets
within reasonably sized devices requires dense cell packing. We measured
internal PO2 of implanted devices, mathematically modeled oxygen availability
within devices and tested the predictions with implanted devices containing
densely packed human islets.
Methods: Partial pressure of oxygen (PO2) within implanted empty devices was
measured by noninvasive 19F-MRS. A mathematical model was constructed,
predicting internal PO2, viability and functionality of densely packed islets as a
function of external PO2. Finally, viability was measured by oxygen consumption
rate (OCR) in day 7 explants loaded at various islet densities.
Results: In empty devices, PO2 was 12 mmHg or lower, despite successful external
vascularization. Devices loaded with human islets implanted for 7 days, then
explanted and assessed by OCR confirmed trends proffered by the model but
viability was substantially lower than predicted. Co-localization of insulin and
caspase-3 immunostaining suggested that apoptosis contributed to loss of
beta cells.
Discussion: Measured PO2 within empty devices declined during the first few days
post-transplant then modestly increased with neovascularization around the
device. Viability of islets is inversely related to islet density within devices.
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1. Introduction

Islet replacement therapy remains a potential cure for type 1

diabetes (1–9). Despite recent improvements in islet

transplantation, only about half of patients treated at the most

experienced centers are insulin independent five years after

transplantation (2–5, 10–19). The current standard for islet

transplantation—the intraportal delivery of islets—is admittedly

imperfect due to significant islet graft dysfunction and loss over

time. Factors contributing to suboptimal engraftment in the liver

include: blood-mediated reactions, resulting in inflammation and

thrombus formation (20–23); recurrent autoimmunity (24);

immunosuppressive drug-related cytotoxicity (25–33); and poor

oxygenation (34–44). Importantly, cells transplanted into the

liver are difficult to monitor for survival and function and are

irretrievable (45–49). Because of the challenges and limitations

imposed by intrahepatic transplantation of islets, there has been

persistent interest in and a resurgence of investigational studies

focused on developing extrahepatic tissue-engineered islet grafts,

a “bioartificial pancreas” (50–55).

Although extrahepatic islet transplantation using tissue-

engineered grafts (TEGs) obviates many of the limitations

imposed by intraportal islet transplantation, the bioengineering,

experimental, and clinical implementation of a TEG-based

approach introduces its own challenges, including: (1) To avoid

the necessity for systemic immunosuppression to protect

allografted islets, the encapsulation strategy may incorporate an

immunoisolation membrane; this prevents host

immunomodulatory cells from gaining access to the islets.

However, the unintended but unavoidable consequence of

immunoisolation is to prevent host vascular penetration into the

graft; biophysically, this distances the vasculature from the

encapsulated islets, creating an additional hindrance to the rapid

diffusion of gases and small molecules. The consequence is that

delivery of oxygen and nutrients to the islets and the efflux of

insulin and other effectors from the graft is to a degree impeded

(50, 56–63). (2) Because transplantation of large numbers of islet

equivalents (IE) based on body weight (>5,000 IE/kg) are needed

to achieve insulin independence (64–66), grafts must be seeded

at high densities in order to use devices of a reasonable size for

patients (43, 57, 67–70). (3) The implantation site for the device

is no less important; the optimal site would ensure proper access

to nutrients and allow for efficient insulin secretion (59, 60).

Many extrahepatic sites have been considered and investigated

(38, 39, 47, 71–78) but the local partial pressures of oxygen

(PO2) at these proposed sites is seldom reported, especially

within TEGs. Adequate oxygenation is critical: the survival and

especially the functionality of islets are highly sensitive to

hypoxic or anoxic conditions (79–83). Accurate and precise

monitoring of oxygenation status is therefore a critical parameter

in the design and implementation of therapeutic TEGs.

This study investigated the effects of increasing islet density on

the viability and function of TEGs implanted in either the

subcutaneous space or the intraperitoneal cavity of inbred rats.

Internal PO2 of sham (acellular) TEGs was measured using
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fluorine-19 magnetic resonance spectroscopy (19F-MRS); this

technique has been validated for the measurement of TEG PO2

in vitro and in vivo (84, 85). These measurements, at intervals

over 29 days post implantation, were employed to inform a

mathematical model constructed to predict the effects of PO2

external to a device loaded with high islet densities, on graft

viability and function. The model was then challenged by loading

TEGs with islets at various densities, then implanting them in

athymic nude rats (to minimize immunological reactivity) for

one week. The devices were then explanted and the viability of

their cellular contents measured by oxygen consumption rate

(OCR); the data obtained were compared to predictions from the

mathematical model.
2. Methods

2.1. Ethics statement and experimental
schema

All animal research was performed with the approval of and in

accordance with guidelines of the University of Minnesota and the

University of Arizona Institutional Animal Care and Use

Committees (IACUC). Procurement of human islets was

approved and overseen by the University of California

Institutional Review Board and informed consent was obtained

for all donors.

The experimental schema is described and illustrated in

Figure 1.
2.2. Sham (acellular) tissue-engineered graft
(TEG) construction

The contents of TEG constructs for 19F-MRS were constituted

as a matrix and protected within a clinically-established

macroencapsulating immunoisolation device (TheraCyte Inc.,

Laguna Hills, CA, USA) (59, 86–92), a device chosen for its

flexibility, biocompatibility, and published record of successful

pre-clinical (86, 93–98) and clinical implementation (91). All

implantation procedures were performed using sterile techniques,

materials, and reagents.

Sham implants (without islets, n = 9) were loaded with equal

volumes of porcine plasma (Sigma Aldrich, St. Louis, MO, USA)

and perfluoro-15-crown-5-ether (PFCE) (Exfluor Research

Corporation, Round Rock, TX, USA), a type of perfluorocarbon

with high oxygen solubility. The emulsion was injected into a

40 μl immunoisolation device using a 250 µl precision syringe

(Hamilton Company, Reno, NV, USA), then cross-linked with

5% v/v bovine thrombin solution. The latter was prepared by

diluting concentrated topical thrombin solution (GenTrac Inc.,

Middleton, WI, USA) in phosphate-buffered saline with calcium

and magnesium. After loading the TEG, the cell access port was

trimmed and sealed with adhesive (Dermabond, Ethicon Inc.,

Somerville, NJ, USA).
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FIGURE 1

Schema for the experiments reported herein. Rats implanted with sham TEGs containing perfluoro-15-crown-5-ether (PFCE) and hydrogel, but without
islets, were submitted to non-invasive fluorine-19 magnetic resonance spectroscopy (19F-MRS) to measure the partial pressure of oxygen within the in
vivo devices. The data obtained informed the mathematical model constructed to estimate graft viability and function for various islet graft densities. The
model results were challenged by implanting islet-loaded TEGs at different densities and measuring their viabilities by OCR after explantation. The OCR
values obtained were used to calculate fractional viability and functionality, the final outputs. All implanted TEGs were examined histologically after their
removal.
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2.3. Surgical implantation of sham TEGs

To measure the oxygenation status of TEGs in vivo, individual

sham TEGs containing PFCE (see 2.2) were implanted in the

subcutaneous space (n = 6) or the peritoneal cavity (n = 3) of

non-diabetic Lewis rats (RT1I, Charles River Laboratories

International, Inc., Wilmington, MA, USA). Anesthesia was

induced with isoflurane by inhalation and maintained by

spontaneous ventilation of isoflurane (1%–3%). The surgical site

was clipped of hair and the skin prepped with chlorhexidine or

an equivalent antiseptic. For subcutaneous implants, a 1.5 cm

dorsal incision was made just inferior to the scapulae and

perpendicular to and symmetrical about the mid-line. Using

gentle blunt dissection, a small pocket sufficient to accommodate

the device was created. After rinsing the pocket with saline, the

device was placed in the pocket. For peritoneal implants, a

1.5 cm incision was made through the anterior abdominal wall to

expose the peritoneum. The TEG implant was gently introduced

into the abdominal cavity and tacked to the peritoneum using

non-absorbable sutures, taking care not to place the TEG directly

beneath the incision. The abdominal fascia and skin were closed

with absorbable suture and the incision sealed with surgical glue

(Dermabond). For postoperative analgesia, a nonsteroidal anti-

inflammatory drug (NSAID) (meloxicam 1 mg/kg) was

administered by subcutaneous injection once daily for at least 3

days. Animals were monitored daily until the incision was fully
Frontiers in Transplantation 03
healed. After completion of the study, anesthetized animals were

euthanized by inhalation of 100% carbon dioxide.
2.4. 19F-MRS oximetry

Oxygen measurements from implanted (see 2.3) TEGs containing

PFCE (see 2.2) were acquired with a 16.4 tesla, horizontal-bore MRI

system (Agilent Technologies, Santa Clara, CA, USA), Figure 1.

Anesthesia was induced and maintained with inhaled isoflurane

(1%–3%) in 47%–49% oxygen; the slight variations in oxygen

content occurred as isoflurane flow was adjusted to maintain

appropriate sedation. The rat was immobilized using a holder which

centered the TEG over a 1.5 cm radius, custom-built, single-loop

surface coil tuned to the 19F resonance frequency (656.8 MHz). The

holder was inserted into the MRI system for scanning, during

which the body temperature of the rat was carefully stabilized at

37 ± 0.2°C, as measured with a rectal thermocouple and regulated

with a forced-air heater. The spin-lattice relaxation rate constant

(R1) was measured using an inversion-recovery pulse sequence with

adiabatic pulses. The inversion-recovery curve was fitted to the

Bloch equation solution for longitudinal magnetization, using 3-

parameter non-linear regression, with Graphpad-Prism software

(Graphpad Software Inc., La Jolla, CA, USA). Each R1 was

measured in six replicates separated by 6 s intervals, to ensure

complete relaxation between repetitions. The R1 of each
frontiersin.org
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measurement was converted to PO2 using the previously determined

multiparametric calibration (84). In vivo PO2 was measured on days

1, 4, 8, 15, 22, and 29 postimplantation (Figure 2). It is important to

note that in vivo PO2 values determined by 19F-MRS oximetry

represent average measurements across each device (84).
2.5. Histology

Sham TEGs were explanted from Lewis rats after 29 days, fixed in

10% buffered formalin for ≥24 h, transferred to 70% ethanol solution,

and then embedded in paraffin wax for histology. Three 5 µm sections

from separate portions of each explant were examined by an

experienced pathologist to assess the degree of vascularization, the

presence of foreign body reaction (FBR), and the extent of fibrosis in

the adherent tissue surrounding the TEG. The degree of

vascularization in the tissue surrounding each TEG was scored in

blinded fashion on a scale from 0 to 3, where 0 = avascular; 1 =

minimal vascularity; 2 =moderate vascularity; 3 = extensive

vascularity. FBR was scored by examining the extent of inflammatory

cell infiltrate composed of multinucleated inflammatory giant cells

and macrophages but absent of lymphocytes and plasma cells; the

extent was scored: 0 = none; 1 =minimal; 2 =mild; 3 =mild/

moderate; 4 =moderate; 5 =moderate/severe; and 6 = severe. The

degree of fibrosis was scored on the same scale as FBR by examining

the density of fibrosis in the surrounding tissue.
2.6. Mathematical modeling of viability and
functionality of densely loaded islets in
TEGs

To elucidate the impact of external PO2 and cell density on

TEG-contained islet viability and function, a diffusion-reaction
FIGURE 2

Oxygen partial pressure (PO2) measurements in subcutaneously
implanted sham TEGs, as measured with non-invasive fluorine-19
magnetic resonance spectroscopy (19F-MRS). Average PO2 of
subcutaneously implanted sham TEGs (N= 6) were measured on days
1, 4, 8, 15, 22, and 29 post-implantation. The mean PO2 was
significantly higher (p < 0.0001) on day 1 than any subsequent time
point, but by day 4 the devices were profoundly hypoxic. Similar
trends were observed at the intraperitoneal site (Supplemental
Information Figures S1A and B).
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oxygen transport model was developed, based on the size, shape,

and dimensions of the devices employed in this study, using

methods previously described (50, 63, 99–102). The dimensions

for the TheraCyte devices used in the study are: 4.5 µl

(17.5 mm × 7.0 mm × 2 mm) and 20.0 µl (22 mm × 11.2 mm ×

3 mm). COMSOL Multiphysics software (COMSOL Inc.,

Stockholm, Sweden) was employed to develop a finite-element

model describing the steady state, 1D diffusion-reaction

condition, within a macroencapsulating TEG device. The TEG is

modeled as a thin slab of oxygen-consuming tissue surrounded

by the device membranes (Figures 3A,B). Oxygen diffusion into

the device is described by the PO2 gradient between the exterior

and interior of the implant and the permeability of the

membrane (103). Transport of oxygen through the oxygen-

consuming islet tissue is governed by two factors: diffusion

through the tissue and oxygen consumption rate (OCR) of the

tissue (63); an OCR of functioning, viable islets of 300 nmol/

min/mg DNA (104) was used for this calculation. The model

predicts the steady-state spatial oxygen concentration within the

tissue content of TEGs containing densely packed islets

(Figures 3C,D); from these oxygen concentrations, the fractional

viability and functionality of the tissue within the central

compartment of the device can be estimated (Figures 3E,F). We

modeled a range of PO2 from 1 to 40 mmHg: a PO2 of

30 mmHg has been reported for in vivo tissues (103, 105–110); an

external PO2 of 10 mmHg is congruent with the PO2 recorded

within the sham TEG by 19F-MRS, see 2.4 and 3.1. Islets were

considered to have some impairment of function at a steady-state

PO2 of 8 mmHg and increasing loss of function as the PO2

diminished further. The islets were deemed non-viable when the

steady-state PO2 was ≤0.1 mmHg (111). The parameters, equations

and results of the simulations for islet cells are given in detail in the

Supplementary Information File 1, and in Figure 3.
2.7. Explant OCR measurements

To test the effects of islet density on viability in vivo within TEGs,

implants containing various quantities of human islets were implanted

in rats for 7 days and then explanted for OCR measurements

(Figure 1). TEGs (n = 19) were of the same construction as the

sham devices described above (see 2.2), except that they were

loaded with islets. Human islets were isolated at the University of

California, San Francisco, cultured at 22°C in supplemented CMRL

culture medium for up to 14 days, and shipped to the University of

Arizona in 10 cm2 G-Rex devices (Wilson Wolf Manufacturing,

New Brighton, MN, USA) (112, 113). Islets were quantified by

DNA content (114–116) and aliquoted into tubes in various doses

ranging from 500 to 8,000 IE per device. Each aliquot was then

allowed to settle by gravity in its tube, the supernatant was

removed, and the islets were re-suspended in 5 or 20 µl of sterile

1% sodium alginate solution. The islet suspension was then injected

into the cell compartment of a 4.5 or 20 µl immunoisolation device,

respectively, using a 100 µl precision syringe (Hamilton Company).

The TEG was submerged in a 1.2 mM calcium chloride solution
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FIGURE 3

Model-estimated (see 1.6) oxygen profiles (C,D) and predicted viability and functionality (E,F) of human islets contained within TEGs at a planar-surface
density of 4,000 or 8,000 IE/cm2, assuming a homogenous slab of either of two thicknesses, 150 (A) and 300 (B) µM and external ambient PO2s ranging
from 0.5 to 40 mmHg; the distance X plotted on the x-axis in (C,D) corresponds to the dashed arrows in (A,B). Thirty mmHg is a value commonly assumed
in the literature and 10 mmHg is a value representative of the steady state derived from in vivo 19F-MRS measurements (Figure 2). (E,F) Islet viability
(threshold > 0.1 mmHg) and functionality (decreasing below 8 mmHg) are plotted against ambient PO2.
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(PBS++) for 20–30 min to cross-link the alginate, then placed in PBS+

+ solution in preparation for implantation.

TEGs prepared with various doses of human islets were

implanted in the subcutaneous space of 7 non-diabetic nude rats

(athymic nude mutant, Hsd:RH-Foxn1rnu, Harlan Laboratories,

Inc, Indianapolis, IN, USA). Each rat received two to four devices,

each separately placed in its own subcutaneous pocket. Seven days

later, the TEGs were surgically removed for measurements of

OCR to assess islet viability and for immunohistochemical

staining. The surgical implantation and explantation procedures

were identical to those described for sham TEGs (see 2.3).
Frontiers in Transplantation 05
The OCR of each explanted TEG was measured by a method

similar to that described for the assessment of free islet viability

(117). The surgically recovered TEGs were stripped of adherent

surrounding tissue, placed in a modified OCR chamber, and

filled with air-saturated cell culture medium. In the sealed

chamber, the PO2 of the medium was continuously monitored

until the values achieved a linear slope; the OCR was

calculated from the slope. By normalizing the OCR to the

number of IE originally loaded into each device, individual

islet graft viability (OCR/IE) was calculated. Previous OCR

data obtained in vitro of human islets in devices under ideal
frontiersin.org
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conditions were used to calculate the “predicted OCR” at

different densities (Figure 4A).
2.8. Immunohistochemistry of human islets
in seven-day TEGs

TEGs containing various densities of human islets were

explanted from nude rats after seven days, fixed in 4%

paraformaldehyde and embedded in paraffin. Sections of 6 µm

thickness were stained with DAPI (1 µg/ml, Roche, Indianapolis,

IN, USA) or for insulin (guinea pig anti-porcine insulin 1:500,

Dako, Carpinteria, CA, USA), and for cleaved caspase-3 (rabbit

anti-human caspase-3, 1:250, Cell Signaling Technology, Danvers,

MA, USA); detection was with affinity-purified secondary

antiserum conjugated to donkey anti-rabbit IgG and donkey anti-

guinea pig IgG (Alexa Fluor 488 and Alex Fluor 594, Jackson
FIGURE 4

(A) Viability, measured by OCR of islets in explanted TEGs (n is given above th
implanted in the SC space seven days previously; a dramatic decline in meas
observed with increasing islet density, far greater than that predicted by the
increasing IE loading. (C) The absolute numbers of IE surviving number abou
sections of the human islet cells within the same TEGs explanted after 7 d
stained with the nuclear stain DAPI (blue) or by immunohistochemistry for eit
densities of human islets within TEGs are illustrated: (D) low density, 500 IE/
fewer viable cells (DAPI), less production of insulin, and prominent caspase-
cells producing insulin and devoid of caspase-3 whereas at the higher den
suggesting that apoptosis and necrosis of the islet cells have occurred. L
surrounding tissue.
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ImmunoResearch Laboratories, West Grove, PA, USA), as

previously described (118). Independent images for each

fluorophore were acquired using a Leica DM5500 microscope

system, and the images were processed using Image Pro Plus 6.3

software (Media Cybernetics, Silver Spring, MD, USA);

composite images were colored and assembled (blue =DAPI; red

= insulin; green = caspase-3).
2.9. Statistical analysis

Average values are reported as the mean value and the standard

error of the mean (SEM). Least squares-weighted-means and error

values are reported for PO2 measurements due to large variabilities

observed with some of the PO2 measurements. Statistical

comparisons were performed with Graphpad-Prism software or

SAS analysis package (version 9.2; SAS Institute, Cary, NC, USA).
e 'Measured OCR' columns), originally loaded with various densities and
ured OCR in comparison to OCR predicted from the loading densities is
mathematical model. (B) Fractional survival declined precipitously with
t 400 per device, regardless of the loading density. (D,E) Representative
ays’ residence in the subcutaneous space of nude rats. The tissues are
her the insulin (red) or caspase-3 (green) proteins (see 2.8 and 3.5). Two
cm2, and (E) high density, 4,000 IE/cm2. At the greater density, there are
3 protein. The composite image at low density demonstrates viable islet
sity caspase-3 co-localizes with the remaining insulin-producing cells,
abeled are the walls of the TEG, the islet cell graft within it, and the
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3. Results

3.1. In vivo PO2 in empty subcutaneous and
intraperitoneal TEGs

An important first step in modeling islet function and viability

in TEGs was to obtain accurate measurements of oxygen

concentrations within devices devoid of cells (see Figure 1). For

this purpose, sham (acellular) TEGs loaded only with PFCE (2.2)

were implanted in the subcutaneous space (n = 6) or peritoneal

cavity (n = 3) of nine rats (2.3), monitored for 29 days using 19F-

MRS oximetry (2.4), then explanted for histologic examination

(2.5). Internal PO2 measurements were successfully acquired in

all animals at six time points (1, 4, 8, 15, 22, and 29 days)

following implantation.

The average internal PO2 of subcutaneously implanted sham

TEGs one day following implantation was 39 (SEM 9) mmHg

(Figure 2), about that of venous blood (40 mmHg). The day 1

value however was the highest obtained; it was significantly greater

(p < 0.0001) than all values at successive time points. By day 4, the

PO2 had decreased nearly to zero and then increased but remained

at very low levels (∼10 mmHg) for the remainder of the time

course. The same downward trend of PO2 over time was observed

in the smaller set of IP implanted TEGs (Supplemental

Information Figure S1A,B). A comparison of the PO2 values at

each site on days 1 and 4 (Supplemental Information Figure S1A)

were not statistically significantly different nor were the total time

averaged PO2 values presented in Figure S1B, 12 (SEM 5) and 8

(SEM 10) mmHg for subcutaneous and intraperitoneal TEGs,

respectively. Again, the difference was not statistically significant. It

should be emphasized that the PO2 measurements using 19F-MRS

oximetry of sham devices represent holistic measures of the entire

TEG compartment, i.e., average values not limited to the boundary

layer or other presumed sub compartments (84). Together, these

data document that for at least the first month after implantation,

the steady state partial pressure of oxygen within empty TEGs is in

fact quite low, about 10 mmHg, in both the subcutaneous and

intraperitoneal sites.
3.2. Histology of explanted sham TEGs

The low partial pressures of oxygen recorded within TEGs (see 3.1,

above) may be the consequence of low blood vessel density around the

empty devices and/or the presence of other oxygen consuming cells on

the device surface, limiting oxygen transfer to its interior. Note that

devices containing cells are reported to have increased densities of

blood vessels around them, presumably due to pro-vascularization

factors released by the implanted cells (119–122).

Hematoxylin and eosin-stained tissues surrounding explanted

(day 29) empty implants from the immunocompetent Lewis rats

were graded for successful vascularization and adverse fibrotic and

foreign body reactions. Successful vascularization—an average score

of 2.3 on a scale of 0 to 3—was evident; it was accompanied by

only mild to moderate amounts of fibrosis (average score of 2.3/6)
Frontiers in Transplantation 07
and a similar degree of foreign body reaction, average score of 2.7/

6. Importantly, these mild responses are not to be confused with

the fibrous encapsulation accompanying the traditional foreign body

response (123) and were not directed toward the vascularizing

membrane nor did they interfere with neovascularization at the

device interface (124). This observation is in marked contrast to the

classic host FBR observed in the absence of an appropriate

vascularization membrane (125) or in reaction to SC LiPc-PDMS

solid oxygen probes which were “enveloped by a fibrous capsule”

after 6 weeks (126). Examination of the internal compartments of

the TEGs showed remnants of the fibrin scaffold in all explants. No

inflammatory cell infiltration was observed within the internal

chamber of the TEGs, evidence that the immunoisolation chambers

had not been breached. Thus, it appeared that TEGs remained

intact for and were moderately-well vascularized by 29 days; images

of explanted TheraCyte TEGs after 28 days residence in the host

are shown in the Supplementary Information Figure S2). We

conclude that host fibrotic and foreign body reactions, although

observed, were mild in comparison to vascularization.
3.3. Predictions from the mathematical
model of TEG oxygenation

Projections from the diffusion-reaction model of in vivo TEG

oxygenation constructed in silico (see 2.6) to quantify the effects

of implant site PO2 and islet cell density on TEG viability and

function are presented in Figure 3. Curves for various oxygen

concentrations external to the device are shown for cell layers of

4,000 (Figure 3A) and 8,000 (Figure 3B) IEQ/mL, in devices

measuring 150 or 300 µM thickness, respectively, Figures 3C,D;

the higher PO2 values are commensurate with assumptions often

made in the literature (see Introduction); the lower PO2 values

are representative of the data from in vivo 19F-MRS oximetry,

described earlier (see 3.1).

Viability [which has a threshold of 0.1 mmHg (111)] was not

affected in the thinner layer model by decreasing the external

oxygen concentration (Figure 3E), except at the very lowest oxygen

concentration (0.5 mmHg). However, the proportion of viable cells

decreased at 3 mmHg in the 300 µM thickness model (Figure 3F).

As anticipated, the model predicts a far more dramatic decline

in graft function [which is known to be compromised at ∼8 mmHg

(57, 127) or lower, see 2.6], a much higher threshold than viability.

In the thinner cell slab model (150 µM), loss of function by about

85% is predicted at an external PO2 of 17 mmHg; at 12 mmHg,

nonfunctionality of all islets is anticipated (Figure 3F). In the

300 µM model, nonfunction of the majority of cells is predicted

even at a 40 mmHg oxygen concentration (Figure 3F). The

mathematical model thus predicts that, for a PO2 of 30 mmHg

(the upper limit of previously expected values) and a planar-

surface density of 4,000 IE/cm2, functionality remains intact in a

thinner device but is severely compromised in the thicker device.

Importantly, at the measured oxygen content of empty TEGs,

namely ∼10 mmHg (see 3.1), the predicted functionality is

essentially null under the conditions of the model (Figures 3E,F).
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3.4. Estimation of viability of explanted TEG
islet grafts by oxygen consumption rate

In light of the low internal PO2 of∼10 mmHg measured in

TEGs (see 3.1) despite histologic evidence of successful

vascularization (see 3.2 and Supplemental Information

Figure S2), and the consequent results from the mathematical

model (see 3.3) of severe loss of functionality with a PO2 of

10 mmHg, we sought data challenging the predictions posited by

the model.

For this purpose, 19 immunoisolation TEGs of identical design

to the sham TEGs were loaded with various numbers (determined

by DNA content) of human islets suspended in alginate, then

implanted subcutaneously in 7 nondiabetic nude rats; each rat

received 2–4 devices in separate locations (see 2.7 and Figure 1).

Seven days after implantation, the TEGs were surgically removed,

stripped of adherent tissue, and placed in an OCR chamber for

measurements of oxygen consumption rate (see 2.7). OCR was

normalized to the number of IE loaded into each device and the

individual islet graft viability (OCR/IE) was calculated.

Logistically, it was not possible to measure OCR prior to

implantation because of the attendant risk of infection after

implantation. Instead, we used prior data from a study of OCR

ex vivo of human islets in similar devices under ideal conditions;

from these data, the predicted OCR for each density was

calculated (Figure 4A).

As the model (Figure 3) had predicted, the measured viability

(% viable tissue) decreased with increasing islet density at a

pronounced rate, especially at low and moderate densities

(Figure 4A). The calculated fractional survival likewise decreased

with increasing IE loads; it was less than 20% for all densities

except the lowest (Figure 4B). The estimated islet (IE) survival

was also calculated (IE loaded*fractional survival); it was below

400 IE/device, even when 8,000 IE were loaded (Figure 4C).

Thus, the mathematical model portrayed trends in

functionality and viability with accuracy; importantly, however,

measured viability—especially at higher densities—did not meet

the predicted rates and fell more precipitously than predicted by

the mathematical model. This is consistent with the values

measured on day 4 post implant (Figure 2) being well below the

10 mmHg measured at steady state when neovascularization had

presumably occurred. In other words, until functional blood

vessels are created, the cells that surround the device may deplete

oxygen, lowering the intra-device PO2 to near zero until newly

formed, functional vessels begin transporting oxygen-bearing

RBCs to the area.
3.5. Immunohistochemistry of insulin and
caspase-3 in explanted TEGs loaded with
islets

To better understand the fate of islet cells at higher densities in

TEGs, the devices retrieved from nude rats at 7 days for the ex vivo

OCR viability study described above (3.4) were studied with
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immunohistochemistry identifying insulin or the caspase-3

protein, a marker of apoptotic activity (see 2.8). Representative

images from TEGs loaded with low-density (500 IE/cm2) or

high-density (≥2,000 IE/cm2) human islets are shown in

Figures 4D,E). At low density, the islet cells displayed staining

for insulin and minimal if any caspase-3 protein (Figure 4D)

whereas sections from high-density TEGs exhibited more

caspase-3 protein, which co-localized with the residual staining

of the insulin protein (Figure 4E). Consequently, we were able to

confirm that human islets loaded at higher densities within

subcutaneous TEG implants indeed quickly lose viability, at least

in part through apoptotic mechanisms, as well as coincident and

subsequent necrosis.
4. Discussion

The intent of this study was to determine whether

immunoisolating tissue engineered grafts (TEGs) implanted

subcutaneously or intraperitoneally in rats would be successfully

vascularized; and, if so, would they have ambient partial

pressures of oxygen (PO2) sufficient to support both viability

and importantly, the functionality of islet grafts of various

densities contained therein. We conclude that even modest

densities of islets are not functionally sustainable within such

implanted TEGs.

One corollary of this conclusion is that in order for islet grafts

to survive and function within encapsulated devices such as TEGs,

they must be loaded at very low cellular densities (128, 129) – an

unacceptable solution since TEGs of a clinically useful size would

not accommodate sufficient islets to reverse diabetes. An

alternative, and far more appealing corollary, is that islet grafts

can be sustained at high densities in reasonably sized devices, if

the chambers of the devices are supplemented with oxygen at

super-ambient partial pressures (79, 128, 130, 131). In

immunoisolating or similar encapsulating TEGs, supplemental

oxygen might well be a permanent requirement;

nonimmunoisolating devices—having more porous membranes

which allow ingrowth of neovasculature—might achieve the

necessary internal oxygen content within weeks to months, thus

allowing cessation of supplemental oxygen. Various laboratories

have developed novel approaches for providing increased

oxygenation to encapsulated islets (53, 70, 79, 132–136).

Our conclusion regarding the inadequacy of oxygenation of the

TEG internal environment was based upon both in vivo

experimental studies and in silico mathematical modelling of the

devices (Figure 1). First, using 19F-MRS oximetry of

subcutaneously or intraperitoneally implanted sham TEGs,

devoid of cells but containing PFCE, an average available PO2 of

12 (SEM 5) mmHg was measured for the SC site and only 6.8

(SEM 10) mmHg in the peritoneal space, after just a few days in

vivo (Figure 2 and Supplementary Information Figure S2). At

equilibrium in vivo, these measurements within sham (empty)

devices can perhaps best be interpreted to represent the PO2

surrounding the implanted device, that is, the expected limit of

oxygen available for transport into the device. Recently reported
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PO2 measurements with a solid, totally implantable probe yielded

roughly comparable values and somewhat similar trends for the

native SC tissue and IP cavity (126). Importantly, the internal PO2

available to islets within the TEG would perforce be lower than

these measured values due to oxygen consumption by the islets

themselves, with the lowest oxygen concentrations in the center of

the device. At higher planar-surface densities, the available PO2

would be considerably lower, perhaps effectively anoxic, because

the oxygen consumption rate of islet cells further sharpens the

oxygen gradient. Examples of this limitation are widely reported in

the literature and have recently been reviewed (128). We

emphasize that these unanticipated low values were not the

consequence of excessive fibrosis or foreign body reaction, as was

confirmed by histologic examination; the devices were in fact well

vascularized (Supplementary Information Figure S2).

Because the in vivo oxygen levels of implanted sham TEGs were

monitored for a 29-day period following implantation, the dynamics

of the changing PO2 portrayed in Figure 2 and Supplementary

Information Figure S1A invite scrutiny. The PO2 on the first day

following implantation was significantly higher than that recorded

at all future time-points, likely due to the continued presence of

residual oxygen in the TEGs (introduced during the preparation of

the device at ambient PO2∼150 mmHG) and the surrounding

surgical site. Then, a dramatic decrease in PO2, reaching near-zero

levels, was observed (day 4). This is likely attributable to the

recruitment of highly metabolic inflammatory cells to tissue

damage at the surgical site. These cells not only compete for

available oxygen but might also affect the graft indirectly though

paracrine signaling and the local secretion of inflammatory

cytokines; these possible effects were not addressed in our study.

From days 8 to 22, we note a gradual, modest increase in PO2

within the devices; we hypothesize that this is the consequence of

neovascularization in the SC or IP tissues surrounding the

implanted TEG, slightly increasing the available oxygen. For the

remaining 22–29 days following implantation, the ambient

oxygenation appears to achieve a steady state. However, this

vascular formation is insufficient to alleviate the hypoxic condition

inside the immunoisolated TEG, especially when high densities of

islets are required.

Mathematical modeling based on a range of external PO2s

encompassing both 30 mmHg (a previously accepted oxygen

concentration within sham devices) and 10 mmHg (representing

our in vivo measurements) produced viability curves which were

calculated with a threshold of 0.1 mmHg; the curves indicate that

viability is sustainable at a moderate (4,000 IEQ/cm2) planar-

surface density. Functionality, however, poses a stark contrast to

viability: with a ∼100-fold higher oxygen requirement than

viability, functionality is likely already declining at 8 mmHg and

is projected to be unacceptable at any islet density when

modeling the 10 mmHg environment (Figures 4E,F). The

mathematical model for predicting viability based on the PO2

available within TEGs is limited by its initial assumptions that

vary depending on the specific environment in vivo (e.g., factors

beyond hypoxia and anoxia may contribute to graft loss) and are

influenced by the characteristics of the particular islet

preparations used for actual TEGs. Recognizing the limitations of
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evaluate any model’s predictive reliability.

The dire predictions of the model were confirmed

experimentally by measuring oxygen consumption rate (OCR), as

a surrogate for viability, in freshly explanted TEGs after one

week’s residence subcutaneously (Figure 1). The results of OCR

measurements (Figures 4A–C) supported the trend derived from

the mathematical model, that viability decreases with increasing

islet density, but the experimental observations indicated a more

pronounced drop in viability at modest densities (500 IE/cm2) and

a more profound loss of viability at high islet densities (>2,000 IE/

cm2) than predicted (Figures 3E,F). Histologic examination was

confirmatory; at a density of 4,000 IE/cm2 (Figure 4E) compared

to 500 IE/cm2 (Figure 4D), far fewer cells stained positive for

insulin; importantly, staining for caspase-3 indicated that many of

the remaining islet cells were undergoing apoptosis. Although the

images documented apoptosis, it must be assumed that necrosis

had also occurred; several reports have noted that the two

processes are often coincident, perhaps sequential (137–139).

However, whether both apoptosis and necrosis are both primarily

the consequence of hypoxia alone remains to be determined.

Our data and conclusions should not be taken as a blanket

condemnation of this technology. Transplanting cells inside a

TEG offers essential advantages (68, 70, 140, 141): it localizes the

graft within the device, the cells are therefore more amenable to

in vivo assessments and, if need be, can be retrieved. Previous

efforts (142) to develop a tissue-engineered islet graft (or

bioartificial pancreas) have struggled to achieve clinical

translation (58, 61, 63, 143–145), but with recent developments

in stem cell and xenogeneic islet technologies (87, 146–155) and

the promise of scalable alternative β-cell sources (142, 151, 156,

157), there is a renewed interest in—and progress toward—

developing a functional insulin-producing, cell-containing TEG

for diabetes treatment (87, 158–161).

Previously published reports described the challenges of

oxygenation for TEGs, especially in scenarios which require high

cell-densities to achieve the therapeutic objective with a device of

practical size (50, 55, 75, 162). The sham TEG measurements of

available oxygen in vivo suggest that the subcutaneous space is

profoundly hypoxic, with an average available PO2 of 12 (SEM

5) mmHg [and only 6.8 (SEM 10) mmHg in the peritoneal space].

These trends in oxygen levels are not statistically significant,

but they are consistent with the pathophysiologic processes that

follow a surgical insult and the implantation of foreign materials.

TEGs implanted in the peritoneum had a similar PO2 trend and

a similar hypoxic environment as subcutaneous TEGs during the

29-day period of observation (Supplementary Information

Figure S1). The histological findings from explanted sham TEGs

support this interpretation of the dynamic PO2 changes in vivo

(Supplemental Information Figure S2). By 29 days, the

surrounding tissue had developed a moderate amount of

neovascularization; in comparison, only mild fibrosis and foreign

body reaction were identified. These findings are consistent with

previous reports using similar TEGs (75, 99, 103); fibrosis and

foreign body reactions are not unexpected with these materials

but can be effectively mitigated with induction of
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neovascularization aided by the proper selection of materials and

membrane microarchitecture (125, 163–165). It should be

emphasized that neovascularization of TEGs having vascularizing

external membranes is – in fact – a rapid process. Padera and

Colton (164) have carefully documented the time course of

vascularization of a suitable membrane: vascularity at the

interface “increased up to 10 days and remained at this level

even at 329 days post-implantation”. Similar observations have

been reported by others (88, 165, 166). Investigations of pro-

angiogenic factors and other approaches to accelerate

vascularization have recently been reviewed (167).

In summary, these results suggest that without oxygen

supplementation, thin devices with high oxygen permeability are

required to maintain viability of encapsulated tissues; even then,

to ensure adequate islet function, only low islet densities can be

loaded. To accommodate TEGs with low islet densities (≤500 IE/
cm2), very large implants would be required to achieve the

surface area needed for oxygenation; a device of the required size

would be impractical for implantation in humans (57). In

addition to the hypoxic stress that encapsulated islets face within

these TEGs, there are other in vivo considerations that may

further decrease or limit the viability and function of such grafts.

Although these considerations are beyond the scope of this work,

they may help explain the greater viability loss observed in our

experimental measurements using OCR in comparison to the

model results. Oxygenation is especially challenging when using

high cell densities, which create significant oxygen transport

limitations within the graft (50). These challenges are recognized

in recent reviews (50, 55, 128). Our results confirm a critical

need for improved oxygenation in macroencapsulated TEGs to

support the high-cell densities needed for therapeutic

applications. Many engineered tissues for the treatment of

human disease will require developing complex tissues with high

(near native) cell densities to provide therapeutic benefit.

Oxygenation is a critical challenge facing the field of tissue

engineering and especially for encapsulation approaches that do

not allow complete re-vascularization of tissues.
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