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Lung transplantation is a life-saving treatment for both chronic end-stage lung
diseases and acute respiratory distress syndrome, including those caused by
infectious agents like COVID-19. Despite its increasing utilization, outcomes
post-lung transplantation are worse than other solid organ transplants. Primary
graft dysfunction (PGD)—a condition affecting more than half of the recipients
post-transplantation—is the chief risk factor for post-operative mortality,
transplant-associated multi-organ dysfunction, and long-term graft loss due to
chronic rejection. While donor-specific antibodies targeting allogenic human
leukocyte antigens have been linked to transplant rejection, the role of
recipient’s pre-existing immunoglobulin G autoantibodies against lung-restricted
self-antigens (LRA), like collagen type V and k-alpha1 tubulin, is less understood
in the context of lung transplantation. Recent studies have found an increased
risk of PGD development in lung transplant recipients with LRA. This review will
synthesize past and ongoing research—utilizing both mouse models and human
subjects—aimed at unraveling the mechanisms by which LRA heightens the risk
of PGD. Furthermore, it will explore prospective approaches designed to
mitigate the impact of LRA on lung transplant patients.
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1. Introduction

Lung transplantation is a potentially life-saving procedure for patients with end-stage

lung diseases who have not responded to other medical treatments. The first successful

lung transplantation was performed in 1983, and since then, advances in surgical

techniques, organ preservation, and immunosuppressive therapies have improved patient

outcomes (1). According to the United Network for Organ Sharing (UNOS), there were

2,692 lung transplants performed in the United States in 2022. The one-year survival rate

for lung transplantation is currently around 90%, while the five-year survival rate is

approximately 50%, which is significantly worse than other solid transplants. For example,

the five-year survival rate for kidney and heart transplantation is approximately 80% and

70%, respectively (https://optn.transplant.hrsa.gov). Primary Graft Dysfunction (PGD) is

the predominant risk factor for early mortality including death within 1 year after lung
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transplantation. However, Chronic Lung Allograft Dysfunction

(CLAD) is the leading cause of death beyond 1 year after lung

transplantation resulting in an estimated 50% of death (2–4).

Importantly, PGD strongly predisposes to the risk of CLAD (5, 6).

Allogeneic immune responses serve as the primary hindrance

to pulmonary graft tolerance. Although immunosuppression can

prevent T-cell-dependent acute graft rejection, antibody-mediated

rejection (AMR), marked by the presence of donor-specific

antibodies (DSA), remains an inadequately managed risk factor

for CLAD development (7). Recently, non-DSA humoral

immune responses have garnered attention in the context of graft

rejection (8, 9). In fact, more than one-third of patients with

chronic lung disease who undergo lung transplantation have pre-

existing antibodies against lung-restricted self-antigens (LRA),

such as collagen type V (ColV) and k-alpha1 tubulin (KAT) (5).

Interestingly, these antibodies can emerge de novo following lung

transplantation, playing a role in allograft rejection. LRA have

been linked to a host of adverse clinical outcomes, including

acute and chronic rejection, as well as increased mortality post-

lung transplantation (10–14). This review will delve into the

mechanisms through which LRA contribute to the development

of lung allograft injury and the prospective strategies designed to

diminish the impact of LRA on graft rejection (Table 1).
2. Pre-existing LRA development and
their role in PGD

2.1. Development of LRA prior to transplant

The well-established presence of pre-existing autoantibodies in

transplant patients, along with their association with poor clinical

outcomes, is evident in multiple solid organ transplants including

lung, renal and heart transplants (15, 16). Several hypotheses aim

to explain the development of autoantibodies against lung self-

antigens (sAgs) in patients prior to lung transplantation. One

hypothesis suggests that low-affinity IgM autoantibodies
TABLE 1 LRA in lung transplantation.

Pre-existing LRA and
Development • IgM somatic hypermutation

• Broken B cell anergy by Tregs loss
• Gastroesophageal reflux (GER)
• Th17-mediated self-reactivity
• COPD

Pathogenesis of LRA-inducedlung
dysfunction

• LRA extravasation via IL1β increased
permeability

• Complement activation
• Non-classical monocyte activation via

Interventions Anti-C5 antibody
IL-1β inhibitor
Ex vivo lung perfusion (EVLP)

PGD, primary graft dysfunction; CLAD, chronic lung allograft dysfunction; IRI, ischemi
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recognize injured and atypically exposed self-proteins as

antigenic, acting as templates for somatic hypermutation and

class switching to high-affinity IgG/IgA autoantibodies (17, 18).

Generally, newly formed self-reactive B cells in the bone

marrow undergo clonal deletion upon binding to sAgs. However,

a significant fraction of B cells in the periphery still reacts with

sAg but is usually silenced by an immunological tolerance

mechanism called anergy. B cells require signals from the BCR

and from T cells for activation, and B cell anergy can be broken

by CD4+ T helper cells. Hence, another hypothesis for the

development of pre-existing LRA is that T cells specific for LRA

are not eliminated in the thymus, but are rendered inactive by

antigen-specific forkhead box P3 (Foxp3)+ regulatory T cells

(Tregs) (19–24). Therefore, loss of Tregs, perhaps due to toxins

or infections, could stimulate the expansion of lung tissue-

restricted T cells, which in turn could help to break B cell anergy

and develop LRA (25–27). These mechanisms also explain the

development of pre-existing LRA in patients candidate for

transplantation with end-stage lung disease, such as those with

COPD or ILD. The end-stage lung disease results in ongoing

inflammation and, when coupled with conditions that lead to

Treg apoptosis, such as respiratory viral infection frequently seen

in lung transplant patients, can result in pre-existing

autoimmunity (18).

Additionally, a recent association between gastroesophageal

reflux (GER) and the development of LRA has been described

(28). The authors demonstrated a strong correlation between pre-

lung transplant GER and LRA development. They propose that

GER-induced aspiration disrupts fibrils of self-proteins,

unmasking Col-V and KAT epitopes, which leads to their

immune-histochemical recognition (28).

Finally, as described in the following section, due to their role

in de novo LRA development, Th17-mediated self-reactivity to

ColV is occasionally observed prior to lung transplantation in

patients with preexisting pulmonary disease. This phenomenon is

typically noted in end-stage lung disease patients who are HLA-

DR15+ and are inclined to have lost Treg control (29).
PGD De novo LRA and CLAD
• Respiratory viral infection Gastroesophageal reflux (GER)
• Tregs loss
• Donor-specific antibody (DSA)
• IL-17-mediated alloimmunity
• Exosomes

endothelial

FcγR

• PGD
• Complement activation
• HIF-1α-mediated upregulation of fibrogenic growth

factors
• Donor HLA-DR15

• Anti-C5 antibody
• Anti-IL17 antibody
• HIF-1α inhibitor
• Exosome inhibitor and
• EVLP

a reperfusion injury.
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2.2. Role of pre-existing LRA in PGD

PGD is a severe form of acute lung injury linked to ischemia-

reperfusion injury (occurring within 72 h post-transplantation),

representing a significant cause of early morbidity and

mortality in the aftermath of lung transplantation.

Diagnostically, PGD is characterized by pulmonary edema with

diffuse alveolar damage, which clinically manifests as

progressive hypoxemia accompanied by radiographic pulmonary

infiltrates (30–32). The incidence of PGD (grade 3 or higher)

was about 25.7% in a cohort of adult lung transplant recipients

in the United States between 2011 and 2018. Furthermore, PGD

was associated with an increased mortality rate at one year [OR

1.7 (95% CI 1.2, 2.3), p = .0001] (33). PGD has also been linked

with a higher risk of CLAD and poorer long-term outcomes

(34, 35).

Lung transplant recipients who develop PGD are more likely to

have pre-existing LRA than those who do not experience PGD (5,

36). LRA against ColV and KAT are present in over a third of

patients undergoing lung transplantation and are associated with

a seven-fold increased risk of PGD following transplantation (5).

These self-antigens are non-polymorphic, identical across all

humans, and part of structural proteins localized to the

extravascular space, likely preventing their interaction with

circulating LRA during homeostasis (37).

The reason why LRA do not bind to self-antigens in the native

lungs before transplantation remains unclear, and interestingly,

LRA-mediated injury spares the contralateral native lung in

single-lung transplantation models (36). We have recently

provided some insights into this question by studying the

mechanism of LRA extravasation after lung transplant (36).

Utilizing a syngeneic murine model of single lung transplant, we

demonstrated that spleen-derived classical monocytes, recruited

to the allograft through a CCL2-CCR2 mechanism, secrete IL1β,

which heightens vascular permeability by opening endothelial

tight junctions via downregulation of the ZO-2 tight junction

protein (38). This increased vascular permeability allows LRA to

extravasate into the interstitium where they bind to cognate

antigens exposed in the transplanted lungs. It is suggested that

ischemia-reperfusion injury could reveal epitopes of sequestered

self-antigens through increased secretion of matrix

metalloproteinases by immune cells, such as neutrophils,

leading to presentation of cryptic self-antigens to the immune

system (12).

While pre-existing LRA are primarily associated with PGD,

recent findings have documented the fast development of de

novo LRA against ColV. Zaffiri and colleagues demonstrated that

ColV is rapidly recognized by B cells, and that the swift

seroconversion to anti-ColV antibody is linked to an increased

risk of grade 3 PGD in lung transplant recipients (39).

Lastly, although an array of auto-antibodies have been described

to develop in patients with COVID-19 (40, 41), none of them seem

to belong to the LRA category and thus far, there is no information

regarding whether these pre-existing auto-antibodies could affect the

development of PGD after lung transplantation (42).
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3. De novo LRA development after lung
transplant and their role in CLAD

3.1. De novo LRA development

Parallel to the mechanism underlying the development of pre-

existing LRA, our laboratory has also identified an association

between respiratory viral infections, Tregs loss, and the

development of de novo LRA. We found that lung transplant

recipients with microbiologically confirmed respiratory viral

infections exhibit decreased numbers of Tregs in the peripheral

circulation, of whom approximately 50% develop LRA against

ColV and KAT (26). Utilizing animal models, we postulated a

“two-hit” model mechanism whereby a combination of Tregs loss

and lung injury exposing the sequestered self-antigens would be

necessary to induce lung-restricted autoimmunity (25). For

instance, we discovered that intra-tracheal administration of

hydrochloric acid (simulating GER) in Foxp3-DTR mice only

triggered autoimmunity if Tregs were depleted using diphtheria

toxin (26). These findings align with our observations that lung

transplant patients with GER and diminished Tregs levels

manifest de novo lung-restricted autoimmunity following

transplant (43). Intriguingly, Jonckheere et al. recently

demonstrated that Tregs deficiency plays a crucial role in

peribronchiolar inflammation, escalating airway permeability, a

phenomenon that could facilitate LRA extravasation (44).

A correlation exists between alloimmune responses following

lung transplant and autoimmune responses to self-antigens, with

DSA development typically preceding that of LRA (45). The

theory is that alloimmunity can expose self-antigens or their

determinants to the immune system. This occurrence post-

transplantation and during calcineurin inhibitor-based

immunosuppression, creates a conducive environment for the

generation of an immune response against the newly exposed

sAgs (46). For example, ColV is released into the transplanted

lung after ischemia/reperfusion injury or rejection episodes,

which may account for the presence of collagen V–specific T

cells isolated from rat lung allografts during rejection (47).

Furthermore, Fukami et al. demonstrated that antibodies to

donor MHC (DSA) can provoke autoimmunity by developing de

novo LRA via an IL-17-mediated mechanism (48). In human

subjects, it has been suggested that while alloimmunity triggers

lung transplant rejection, de novo autoimmunity mediated by

ColV-specific Th17 cells and monocyte/macrophage accessory

cells ultimately leads to progressive airway obliteration (49).

Finally, an additional mechanism for de novo LRA

development has been described, involving the secretion of donor

exosomes (50). Exosomes are small extracellular vesicles secreted

by various tissues and are deemed critical mediators of cell-to-

cell communication. Recently, the presence of donor human

leukocyte antigens and lung sAgs (ColV and KAT) on circulating

exosomes released from transplanted lungs was reported (51).

Additionally, ColV and KAT are expressed on the surface of

exosomes, suggesting that they have the potential to instigate

immune responses (52).
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3.2. Role of de novo LRA in CLAD

CLAD is a leading cause of morbidity and mortality among

lung transplant recipients and is categorized into two distinct

forms: bronchiolitis obliterans syndrome (BOS) and restrictive

allograft syndrome (RAS). BOS accounts for approximately 75%

of cases, while RAS, although less common, is associated with a

poorer prognosis (53, 54). The pathophysiology of CLAD is not

fully understood, but several risk factors have been identified,

including older age, prior PGD, AMR, cytomegalovirus (CMV)

infection, and certain genetic factors. Around 30%–50% of lung

transplant recipients develop LRA post-transplantation (55, 56).

BOS is a fibroproliferative process characterized by inflammation

and progressive fibrosis of the lamina propria, leading to luminal

occlusion of small airways, decline in pulmonary function, and

ultimately, graft failure. The mechanism by which the de novo

development of LRA against KAT after lung transplant leads to

BOS has been studied recently (11). Tiriveedhi et al. described

that the binding of the epithelial gap junction protein KAT with

specific LRA leads to HIF-1α-mediated upregulation of fibrogenic

growth factors, resulting in increased fibrosis and chronic

rejection (57). Similarly, rat studies confirmed that immune

responses to ColV induce OB lesions in a lung isograft, but not

in the native lung of a syngeneic recipient (37). Patient responses

suggest an interaction between Th17 cells and monocytes is

critical in the development of BOS (49). This process is

exacerbated in patients with a specific donor HLA-DR antigen

type, DR15, which confers susceptibility to the development of

BOS. HLA-DR15 has the highest ColV peptide binding activity,

consistent with high levels of endogenous (Treg-controlled)

ColV. Recipients of DR15+ lung transplants who do not possess

the DR15 antigen are more likely to develop BOS (29). Apart

from LRA against ColV and KAT, other autoantibodies have

been associated with the development of CLAD. Conditions of

stress, such as ischemia-reperfusion, lead to increased expression

of major histocompatibility complex class I chain-related gene A

(MICA) in human lung epithelial cells, resulting in apoptosis of

these cells and pulmonary fibrosis (58). The development of

antibodies against MICA alone, or against both MICA and HLA,

is associated with the development of BOS and significantly

contributes to the pathogenesis of chronic rejection after lung

transplantation (59–61). While not specifically lung-restricted,

autoantibodies against angiotensin II type 1 receptor (AT1R) and

endothelin-1 type A receptor (ETAR) are also associated with

allograft dysfunction (62). These antibodies can activate their

target receptors and affect signaling processes. Both AT1R and

ETAR stimulation contribute to tissue remodeling and are

associated with the development of BOS (62–64).
4. Pathogenesis of lung dysfunction
by LRA

The mechanisms by which LRAs cause lung allograft injury are

not entirely understood, but several hypotheses have been proposed
Frontiers in Transplantation 04
to explain the role of LRAs in the pathogenesis of PGD and CLAD.

One of these involves the activation of the complement system. An

essential component of the innate immune system, the

complement system links innate and adaptive immunity through

a combination of soluble and membrane-bound proteins,

receptors, and regulators (65). The complement cascade can be

activated via the lectin, classical, and/or alternative pathways.

These pathways converge at a central amplification step leading

to multimeric C3 convertases (65). The lectin complement

pathway is activated when mannose-binding lectin (MBL)

interacts with carbohydrate motifs, while the classical

complement pathway is initiated when C1q binds to the Fc

segments of immunoglobulins. The alternative complement

pathway is activated by the spontaneous hydrolysis of C3

through complement Factor B (65).

Early studies in lung transplant recipients indicated that

patients with PGD after transplantation have higher plasma

levels of the complement protein C5a. The use of C1-esterase

inhibitor appeared to improve the outcome in cases of severe

PGD (PGD3), but these studies did not investigate the presence

of pre-existing LRAs (66). More recently, research has shed light

on the role of complement activation in PGD when pre-existing

LRAs are present (36). Using a mouse model of orthotopic single

lung transplant, we found that graft injury in LRA-pretreated

mice was associated with activation of both the classical and

alternative complement pathways. Interestingly, LRA-induced

allograft dysfunction via complement activation appeared to be a

distinct process from ischemia-reperfusion injury, as it did not

rely on neutrophil recruitment and activation of donor non-

classical monocytes, which are known drivers of PGD (36). A

study by Patel et al., using a mouse model of chronic obstructive

pulmonary disease (COPD), also reported the generation of pre-

existing LRAs and activation of the complement system after

lung transplantation, leading to PGD (67).

Complement activation also appears to play a role in the

development of CLAD. One study reported that induction of

obliterative bronchiolitis, a hallmark of CLAD, is partly

complement-dependent due to IL-17-mediated downregulation of

complement regulatory proteins in the airway epithelium. This was

associated with increased levels of C3a, a product of complement

activation, in the bronchoalveolar lavage fluid (68).

Additionally, in our recent work, we discovered that donor

non-classical monocytes become activated during ischemia-

reperfusion through a toll-receptor signaling pathway.

Consequently, they produce chemoattractants for neutrophils,

which leads to the recruitment of these cells to the transplanted

allograft and the development of primary graft dysfunction

(PGD) (69, 70). Non-classical monocytes express all activating

and inhibitory Fcγ receptors (FcγRI–FcγRIV) on their surface,

with FcγRIV (human homolog FcγRIIIA) being the most

abundant (71). These receptors play important roles in

antibody-dependent cellular cytotoxicity as well as in several

autoimmune diseases (72–75). Lung-restricted autoantibodies

(LRAs) belong to the IgG family of immunoglobulins, which

consist of Fc and F(ab’)2 fragments, giving them the ability to

activate both the complement pathway and effector cells carrying
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FcγR (10, 37). Numerous studies suggest that, even with

complement activation, FcγRs are significant mediators of IgG

effector functions in vivo (76). Future research is required to

determine if donor non-classical monocytes play a role in LRA-

induced PGD.
5. Interventions

At our medical center, we screen lung transplant patients for

any pre-existing LRAs before the transplantation procedure. If

allograft injury occurs, we conduct histological analyses,

including complement analyses, on lung parenchymal or

transbronchial biopsies. Through prospective analysis of LRAs in

56 patients undergoing lung transplantation, we found that pre-

existing LRAs were an independent predictor of grade 3 PGD

after lung transplantation. In patients with preexisting LRAs who

developed grade 3 PGD, histological features reminiscent of acute

antibody-mediated rejection were evident, along with

complement (C4d) deposition. Treating these patients with the

complement inhibitor eculizumab (a monoclonal antibody

targeting complement protein C5), in combination with plasma

exchange, helped in resolving lung allograft dysfunction (36).

Interestingly, findings in a mouse model suggest that inhibiting

IL-1β or the IL-1β receptor may be a therapeutic strategy to

prevent both ischemia-reperfusion and LRA-associated injury

(36). Notably, canakinumab and anakinra, which are agents that

block IL-1β and the IL-1β receptor, respectively, have been

approved by the FDA for other indications and have

demonstrated relatively benign short-term safety profiles.

Also, a growing medical technique use to assess and

putative improve the quality of donor lungs is Ex vivo Lung

Perfusion (EVLP), which has been shown to decrease the

development of PGD Grade 3 (77). EVLP ameliorates ischemia-

reperfusion injury by decreasing donor lung inflammation as

well as preserving epithelial integrity (78, 79), which could

potentially reduce LRA extravasation and prevent LRA-

mediated PGD.

Regarding interventions to prevent the role that LRA have in

CLAD development work from Tiriveedhi and colleagues showed

that neutralization of IL-17 with a blocking antibody in mouse

showed significant decrease in the histological markers of

obliterative airway lesions and decrease in antibodies to sAgs

(80). Also, it has been postulated that the use of EVLP to treat

the donor lung with inhibitors of exosome release could prevent

allograft immune responses to ColV and KAT (9).
6. Conclusion

Despite the improvements in surgical techniques and

immunosuppression regimes, lung transplant is still behind the

success of other solid organ transplants. The presence of LRA

before and/or after lung transplant provides another layer of

complexity. Over the last decades, there has been growing

scientific research on autoimmune responses in allograft
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rejection, in both cellular and humoral immunology. Strong

evidence suggests that LRA is linked to an increased risk of

PGD and CLAD following lung transplantation. However,

determining the most effective treatment approach remains

uncertain. Complement and IL1β inhibition are hopeful

treatments that could be foreseen in the future, nevertheless, the

pace of advancement in clinical trials, particularly randomized

controlled trials, has been slow. The gap between basic research

and clinical trials has impeded the translation of experimental

discoveries into enhanced clinical protocols and improved

patient outcomes. Until recently, the absence of readily available

commercial assays for identifying LRA posed a substantial

challenge in managing autoimmunity in lung transplantation.

Fortunately, several commercial assay kits for detecting

antibodies against COLV, KAT, AT1R, and ETAR are now

accessible, potentially bolstering our capacity to detect

autoimmune responses in allograft rejection. In conclusion, the

continuation of the success in recent basic and translational

research and the incorporation of the detection and

management of LRA into clinical practice has the potential to

improve lung transplant survival.
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