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Sex difference and
immunosenescence affect
transplantation outcomes
Ryoichi Maenosono*

Department of Urology, Faculty of Medicine, Osaka Medical and Pharmaceutical University,
Takatsuki, Japan

Kidney transplantation is a well-established alternative to renal replacement
therapy. Although the number of patients with end-stage renal disease (ESRD) is
increasing, the availability of kidney for transplantation is still insufficient to meet
the needs. As age increases, the prevalence of ESRD increases; thus, the
population of aged donors and recipients occupies large proportion.
Accumulated senescent cells secrete pro-inflammatory factors and induce
senescence. Additionally, it is gradually becoming clear that biological sex
differences can influence aging and cause differences in senescence. Here, we
review whether age-related sex differences affect organ transplant outcomes
and what should be done in the future.
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1. Introduction

It is well known that the number of patients with end-stage renal disease (ESRD)

requiring renal replacement therapy is increasing globally (1, 2), while the number of

patients on kidney transplant waiting list is also increasing. The main barrier to kidney

transplantation is severe shortage of donors. To increase the pool of organ donation,

marginal kidneys from extended-criteria donors (ECDs) have been used in the past two

decades. An ECD is often defined as a deceased donor >60 years old or 50–59 years old

meeting at least two of the following three criteria: cerebrovascular cause of death,

terminal serum creatinine >1.5 mg/dl, or history of hypertension (3). Recently, the

number of aging individuals has been increasing worldwide, especially in developed

countries, and this increase will continue for the time being. In 1950, no country had

>11% of its population aged ≥65 years; in contrast, the highest population with older

individuals was 18% in 2000. Moreover, by 2050, the percentage of older individuals is

expected to reach 35%, which is estimated to be higher than that of adolescents aged 10–

24 (3). With the aging population worldwide, the prevalence of ESRD is expected to

increase; thus, aged donors and recipients will be involved in kidney transplantation.

However, organs from older donors are underutilized, frequently discarded, or not

considered (4, 5).

Aging can affect not only physical changes but also the immune response to organ

transplantation. Accumulated evidence suggests that increased donor age is a significant

risk factor for adverse outcomes, including more frequent rejections due to augmented

immunogenicity during aging (6, 7), in addition to increased rates of chronic allograft

dysfunction in kidney, heart, and lung transplantations (8). It is well known that

senescent cells accumulate with aging and drive the immunogenicity of older organs,

which is linked to the accumulation of cell-free mitochondrial DNA that accelerates
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alloimmune responses (9). Depletion of senescent cells ameliorates

a wide range of age-associated disabilities and diseases (10). In

contrast, an attenuated acquired immune response to donor

organs is observed with recipient aging, which is related to the

graft outcome. For instance, senescence in T cells upregulates

programmed death protein (PD-1), T cell immunoglobulin and

mucin domain containing-3, and lymphocyte activation gene-3,

with impaired cytotoxicity and cytokine production, thereby

orchestrating lower antigen-specific reactions in older

individuals (11).

Simultaneously, sex difference in aging may influence the

accumulation of senescent cells. Currently, insight into gendered

innovations is recognized as an important factor in

investigations. In 2016, the National Institutes of Health (NIH)

established the Sex as a Biological Variable policy (12). Although

the effect of sex differences in transplantation is influenced by

various factors and need not describe a single factor, in

comparison with males, female sex with aging could delineate T

cell immunity and potentially impact graft survival, owing to

changing sex hormones in a lifetime.

Here, we introduce potential mechanisms and consequences of

senescence that are related to sex and discuss clinically relevant

aspects of senescent cell spread when transplanting older organs.

These interactions have seldom been discussed. Therefore, new

insights may be provided by transplantation studies.
2. Influences of biological sex
difference in a disease

It is well recognized that biological sex can affect the incidence

of diseases; females are more susceptible to autoimmune diseases

(13), cardiovascular disorders (14), and neurodegenerative

conditions (15). In contrast, male sex has been shown to be a

risk factor for infections, including COVID-19 (16, 17),

obstructive coronary artery disease (18), and Parkinson’s disease (19).

Sex differences are often defined as differences at the

chromosomal level and sex-related hormones, leading to

differences in physical characteristics and behavior.

Chromosomal difference is thought to result in sex difference.

The X chromosome harbors several genes related to immunity,

including TLR7, FOXP3, CD40l, and IL2RG. In females,

mosaicism, which causes X chromosome inactivation, is one

mechanism that modulates the normal expression of X-related

genes and immune responses, while males have only one X

chromosome; therefore, mosaicism does not appear in males

(20). It is known that as many as 23% of genes on the X

chromosome can escape inactivation, by mechanisms involving

Xist RNA and PCGF3/5 (Polycomb group RING finger) (21).

Therefore, several immunity-related genes may express at higher

levels in females (22, 23), causing inflammation and autoimmune

disease.

Aging is also recognized as an influencing factor for both sex

hormones. After adolescence, the upregulation of testosterone

and estradiol levels by gonadotropins physically characterizes

each sex. With aging, circulating testosterone levels decline in
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both men and women (24, 25), leading to osteoporosis in both

sexes (26). The correlation between immunological properties

and sex hormones has been thoroughly investigated, particularly

in relation to autoimmune diseases.

Estrogen, for instance, modulates Th1 cells (27, 28) through the

interaction of the estrogen receptor (ER) with the promoter region

of the interferon (IFN)-γ gene and through the induction of the

transcription factor T-bet (27, 28). ER alpha (Erα) knock out in

the T cell, CD4-creERflu/flu, limited the accumulation and

production of inflammatory cytokines and influenced the fate of

the cell compared to a control model, thereby showing ER and

estrogen axis strongly connecting acquired T cell immunity (29).

Moreover, castrated female mice with low dose of 17-β estradiol

replacement showed striking increase in antigen-specific Th1

response compared with an ovariectomized female model, which

showed that estrogen administration could module CD4+ T cell

activity in a dose specific manner (30); however, elevated

estrogen levels have been shown to promote an augmented Th2

cell response (31). Immune effects of estrogen appear to be dose-

dependent, as highly elevated estrogen levels during pregnancy

induce regulatory T cells (Tregs), contributing to an intact

pregnancy of a semi-allogeneic fetus (32).

However, there is evidence that the effect of estradiol on

immune response is equally capable of the opposite. In

particular, menopause and ovariectomy negatively affect

osteogenesis, thereby exacerbating bone loss. Bone marrow

mesenchymal stem cell co-cultured with ovariectomized T cell,

which expresses higher tumor necrosis factor alpha (TNF-α),

shoed reduced levels of osteogenic differentiation and reduced

expression of Runx2 and osteocalcin compared with sham mice

(33). Both opinions have something in common: pregnancy level

estradiol may induce anti-inflammatory effects by inhibiting Th1

cell response and increasing Treg number (3).

Therefore, while some studies have reported that decreased

estrogen levels could introduce fewer inflammatory effects, whether

depleted estrogen favors the establishment of inflammation may

ultimately depend on a variety of context-specific factors.
3. Effect of sex and aging on organ
transplantation

With respect to transplantations, it has been controversial whether

the relationship between sex difference can cause differences in kidney

graft outcomes because those cannot be described by only one

hormonal factor (Figure 1). Donor/recipient size mismatch between

both sexes is also recognized as having a strong influence because

nephron counts have been shown to contribute to inferior graft

function (34, 35). Chromosomal mismatch is contributing to the

outcome. Female recipients with XX as the sex chromosome have a

higher graft loss rate when receiving sex chromosome-incompatible

(XY) transplantation (36, 37).

Although several factors related to sex differences are

complexly intertwined, sex hormones, especially female

hormones, are thought to be dramatically upregulated and

downregulated during a lifetime, such as adolescence, pregnancy,
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FIGURE 1

Mechanism of sex and aging affecting transplantation. Graft size mismatch is considered as nephron counts mismatch in males and females. For female
recipients, Y chromosome is minor histo-incompatible antigen but also inactivation of X chromosome may lead to higher expression of several genes
related to immunity, such as TLR7. Aging can affect the sex hormone balance and accumulation of senescence cells, resulting in alloimmune
response changes.
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and menopause. Although the effects of sex hormones on

immunity have been recognized, their impact on alloimmune

responses over a lifetime remains unclear. In this direction,

recent studies have accumulated supporting evidence about sex

difference with aging.

A study of kidney transplantation among 3–29-years-old

showed that Th1 (IFNγ+IL-4−L-17A−) and Th17 (IL-17A+)

frequencies within CD4+ T cells could be higher at older ages,

but the frequencies of FOXP3+ Treg cells in CD4+CD25+CD127−

T cells were lower in females than in males (38). This report did

not show serum estrogen levels; however, women in their

twenties could be estimated to have higher estrogen levels than

pre-adolescent and post-menopausal women. Another study

demonstrated that younger female recipients represented by 15–

35-years-old, had inferior death-censored graft survival, whereas

graft survival was superior in older female recipients (55–75-

years-old). Experimental models also showed prolonged graft

survival in young ovariectomized females and increased the

number of estradiol recipients. Although increasing estradiol

concentrations can prompt a switch from naïve CD4+ T cells to

Th1 cells, high physiological estradiol concentrations dampen

Th1 responses and promote Tregs (39).

Although sex hormones are directly associated with aging and have

several effects on transplant immunology, the next question is whether

cellular and immune senescence in an organ transplantation could be

affected by sex difference in an aging-specific manner.

In organ transplantation, recipients of old organs show lower graft

survival with an increasing frequency of rejection, especially in young

recipients (6). In addition to the increasing number of aging donors,

ischemic reperfusion injury, which is inevitable from extraction to

transplantation, is associated with accumulated senescent cells in the
Frontiers in Transplantation 03
donor organ. In support of this, cell-free mitochondrial DNA

released by senescent cells from donor organs can promote an

inflammatory response by stimulating TLR-9, thereby activating

dendritic cellular activity and deteriorating graft outcomes (9).

Furthermore, inflammasome and IL-1 signaling are activated in

senescent cells and IL-1a reproduces a senescent-associated

secretory phenotype (SASP), suggesting that the spread of senescent

cells from donor organs could not only induce immunogenicity but

also accelerate aging in recipients, similar to the results from an

experimental study in which senescent cells were observed

surrounding a tissue adjacent to papilloma with p16Ink4a and

p21Cip1 (40). Additionally, a recent study showed that genetically

modified Vav-iCre+/−; Ercc1−/flu mice having conditional deletion of

endonuclease ERCC1, a crucial DNA repair protein in hematopoietic

cells, can induce senescence in the immune system. These mice

showed not only an impaired immune system but also non-lymphoid

organ damages, suggesting that increased immune senescence

promotes systemic aging. Interestingly, normal young mice

transplanted splenocytes from Vav-iCre+/−; Ercc1−/flu mice also

induced senescence, whereas transplantation of young immune cells

into this model attenuated their senescence. Rapamycin, a senolytic

agent, can improve immune function (41). Additionally, combination

treatment with dasatinib and quercetin depleted senescent cells in

donor organs from old mice, decreasing SASP factors and prolonging

transplant survival (9).

Thus, senolytic agents that can clear senescent cells in donor

organs may not only exert anti-inflammatory effects but also

restrain a potential transfer of senescence, which has a strong

therapeutic potential in organ transplantation; however, does

immune senescence in sex differences influence organ

transplantation outcomes?
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4. Does sex difference promote
inflammation via cellular senescence?

Generally, cellular senescence is thought to occur in response

to exogenous and endogenous inducers during the lifetime of

cells, such as telomere erosion (42, 43), oxidative stress, radiation,

ultraviolet radiation, and chemical agents (44), and then acquire

anti-apoptotic pathways and stability with growth arrest (10).

The cellular senescence is caused by generating DNA damage

and/or response to damage signaling mechanisms. Telomere

erosion can directly initiate a DNA damage response, and

chemotherapy and radiation are known to cause single- and

double-strand breaks (SSBs and DSBs) (45, 46). Such damages

are sensed by protein complexes, then ataxia-telangiectasia

mutated and ataxia-telangiectasia and Ras3-related (ATR)

proteins are recruited to DNA damage sites and facilitate

senescence-associated cell cycle arrest via the p53-p21 pathway

(47). Furthermore, the upregulation of p16ink4a causes senescence

growth arrest (44). As a result, senescent cells are accumulated in

many tissues owing to aging and/or damage. Permanently

persistent cellular senescence acquires SASP and exhibit pro-

inflammatory factors, consisting of cytokines (IL-6, IL-8, and

TNF-a) and chemokines (CCL2 and CCL20) (48).

Current evidence shows that cells from females are more

susceptible to DNA damages induced by genotoxic stress and both

SSB and DSB repair (SSBR and DSBR, respectively) appear to be

lower in these cells than that in cells from males (49). A lower

capacity for both SSBR and DSBR was observed in female patients,

while cells from females tended to have a higher proportion of

senescent cells, and cells from males underwent apoptosis or

malignant transformation (50). Estrogen, a sex hormone that

characterizes the female sex, prevents cellular senescence by

protecting against senescence-inducing DNA damage and inhibiting

the senescence establishment pathway; estrogen levels are

dramatically reduced in women after menopause. Supporting the

results from these reports, estrogen treatment was shown to prevent

Lipopolysaccharide/IFN-γ action on human M2 macrophages

through NF-γ B release in human macrophages (51). Bone marrow

mesenchymal stem cells from ovariectomized mice showed

upregulation of p53, p21, and SASP, whereas administration of high

levels of estradiol decreased the abundance of senescence properties

(p53 and p21) related to the JAK/STAT pathway (52).

Furthermore, inhibition of ER can upregulate the senescence

marker β-galactosidase (53). Many lines of evidence support that

estradiol could protect against senescence. In contrast, although

estrogen is known to indirectly suppress expression of CDKN1A,

the gene that encodes p21 through ERα-driven inhibition of

ATR and subsequent inactivation of p53 (54), some reports

showed that estrogen may promote cellular senescence by

modulating the activity of pathways that can upregulate

CDKN1A as a result of activated ERα gene expression (55) and

persistent reactive oxidative stress, thereby causing DNA damages.

Evidence indicates that senescent cells accumulate with aging,

and/or stress can spread in transplantation recipients and then

accumulate in their bodies. Senescent cells could differ not only by
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the donor’s sex (females tend to be more senescent) but also by the

sex of the recipient, and their sex hormones might upregulate or

downregulate SASP. To date, it is unclear whether senolytic agents

can be of advantage in males or females; therefore, further studies

are needed to verify that biological sex influences cellular senescence

in human contexts and reconcile contrasting predictions on how

senescence might manifest in women specifically.
5. Does senescence-associated T cell
(SAT) affected by sex difference
influence transplantation outcome?

T cells are responsible for acquired immunity, and they play an

important role in kidney transplantation. CD4+ and CD8+ T cells

usually present antigens via antigen-presenting cells, such as

macrophages or dendritic cells, and acquire specific effector

properties in secondary lymphoid tissue. T cells were initially

selected from the thymus to obtain tolerance.

However, in lineage cells, aging causes involution and declining

function of the thymus, resulting in decreased T cell production. In

total, peripheral T cell number was stable and unaffected by aging,

with the thymus contributing more at younger ages, and peripheral

T cell expansion contributing more in older individuals (56). T cell

population shifts from naïve to memory phenotype T cells in

peripheral side (57, 58), which is thought to contribute to T cell

immunosenescence, leading to an increased population with poor

responsiveness to new antigens (59). Recently, SAT cells with

defective proliferation and effector function were broadly

investigated in the context of cancer therapy. Findings from a

study suggests that inducing T cell senescence is a key strategy

used by malignant tumors to evade immune surveillance (11).

SAT cells might also be affected by sex hormone levels.

CD44highPD-1+CD4+ SAT cells from gonadal visceral adipose

tissues increased in number in ovariectomized female mice than

in naïve mice; however, estradiol replacement therapy changed

the SAT cell population (60). It has been reported that, during

transplantation, CD4+IFN-γ+ T cells from splenocytes derived

from ovariectomy and higher-level estradiol conditions (such as

pregnancy) showed lower inflammatory properties, causing

prolonged graft survival (39). In this study, ovariectomized CD4+

T cells might have a less effective function derived from

senescence; however, there was no reference to senescent cells.

Therefore, further studies are needed to transfer and apply the

findings from an animal model to a human study.
6. Discussion

Recent accumulated evidence shows that transplanted

senescent cells from older donors can negatively affect organ

transplant recipients because of the opportunity for higher graft

rejection, greater accumulation of senescence, and SASP. On the

recipients’ side, there is controversy whether T cell senescence

can positively or negatively affect transplantation immunity.
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Although several humoral factors, such as C1q, TGF-β, and/or

growth differentiation factor 11 (GDF11), have been

considered potential candidates for promoting senescence and/or

rejuvenation, androgens (e.g., testosterone, dihydrotestosterone,

and dehydroepiandrosterone) are also well-known classical

factors that are related to cellular senescence. Additionally,

fluctuating female hormones may potentially modulate cellular

senescence and SASP. Therefore, it can be concluded that the

factor of biological sex should no longer be overlooked in the

relationship between cellular senescence and immune-competent

cells. It should be noted that this mini-review has a limitation; it

does not solely describe the immune response in organ

transplantation based on the relationship between antigen-

presenting cells and T cell lineages, as B cells are also key players

in producing antibodies to donor antigens. Further studies are

needed to clarify how immune senescence affects organ

transplantation in the context of biological sex difference, and

these results can offer a situation-specific treatment, such as

combining the treatment with senolytic agents, for transplant

recipients to have favourable outcomes, according to sex and age.
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