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Translation of therapeutic
strategies to modulate B cell
reponses from non-human
primate models to human kidney
transplantation
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Annette Jackson1,2, Kitza Williams2 and Scott Sanoff3

1Duke Transplant Center, Duke University Medical Center, Durham, NC, United States, 2Department of
Surgery, Duke University, Durham, NC, United States, 3Department of Medicine, Duke University Hospital,
Durham NC, United States

Using novel drugs targeting lymphocyte costimulation, cytokines, antibody,
complement, and plasma cells, we have developed strategies in a non-human
primate model to modulate the B cell response to incompatible kidney
transplants. After more than two decades of research supported by mechanistic
studies, this has resulted in clinically relevant approaches that are currently
enrolling in clinical trials or preparing for such. In this manner, we aim to
address the problems of HLA sensitization for very highly sensitized patients
awaiting transplantation and the unmet need of effective treatment for
antibody-mediated rejection.
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1. Background and introduction

The B cell response to solid organ transplants remains the leading cause of immunologic

graft loss and an unsolved problem with respect to therapeutic strategies of prevention and

treatment (1). We have approached this immunologic challenge using animal models to

evaluate interventions that target B cells, plasma cells, cytokines, T-B cell interactions,

antibodies, and complement with varying degrees of efficacy and safety. The principal

animal model we have employed has been a non-human primate (NHP) renal allograft

model due to the genetic similarities of rhesus monkeys and humans, the same organ

transplant type as is most commonly transplanted in humans, and high compatibility of

candidate drugs designed for human use with this model. The availability of molecular

typing of NHP major histocompatibility complex, support of the work by NIH funding,

and available veterinarian support for such work has allowed considerable progress that

has led to initiation of clinical trials in humans who would otherwise have little access to

kidney transplantation or poor prognosis due to B cell mediated rejection (2).Work in

this area has been greatly aided by the progress made in different but related scientific

and therapeutic areas such as multiple myeloma, costimulation blockade, antibody and

complement research, cytokine blockade, and basic B cell and plasma cell research. The

proliferation of new drugs, some FDA-approved, has allowed us to investigate multi-drug

regimens in a university research context where strategies are not limited by loyalty to or

ownership of a particular product. We aim to not only develop better treatments for
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patients but to base these on an improved mechanistic

understanding of B cell immunology; hence, our collaboration

with an extensive team of investigators has enhanced our

learning. Lessons learned in the allo-immunized transplant

recipient appear to also apply to the immune response to pig-to-

primate kidney xenotransplants, allowing extension of the

methods and strategies from allogeneic models to the evolving

field of xenotransplantation as well.
2. Preclinical observations

Success in controlling the T cell-mediated response to organ

transplants improves graft and patient survival dramatically but

has not adequately addressed the transplant humoral response.

Additionally, the lack of adequate means to manage the humoral

response (e.g., B cell, plasma cell, antibody, or complement) has

contributed to long-term organ transplant outcomes being only

marginally improved over the past few decades (3). The impact

of humoral mechanisms on transplant rejection are more

accentuated in sensitized patients who pre- or post-transplant

develop HLA antibodies due to a sensitizing exposure to donor

HLA antigen and through inadequate suppression of the

humoral response. Fortunately, we now have a better

armamentarium to target these B cell responses, and in many

cases these drugs were developed to treat diseases in neighboring

non-transplant fields such as multiple myeloma. In order to

select promising candidates for clinical translation in

transplantation, we developed a nonhuman primate (NHP)

sensitized model that encompasses both sensitizing exposure and

clinically-relevant immunosuppression.
2.1. Sensitized nonhuman primate model

Our sensitized model involves two sequential skin grafts from

maximally MHC mismatched donor monkeys (4–6). Serial skin

grafting reliably leads to alloantibody production as confirmed by

flow crossmatch and accelerated rejection of the second skin

graft. Following sensitization, NHPs receive desensitization

therapy for one month and subsequently undergo renal

allotransplants with the kidney from the same skin donor. The

renal transplants are life-sustaining as native kidneys are both

removed. The immune response of the monkey is then assessed

post-operatively. We have established a baseline sensitized

control group treated with conventional post-transplant

immunosuppression (tacrolimus/MMF/steroid). Sensitized

animals show pronounced AMR, as evidenced by thrombotic

microangiopathy (TMA) with discrete thrombi in glomeruli,

glomerulitis, and pertitubular capilaritis accompanied by mild

interstitial inflammation after kidney transplantation (4, 7),

changes that reflect the same pathology seen in analogous human

renal transplants. Therefore, the model provides a basic platform

to evaluate clinically relevant post-transplant immunosuppressive

regimens for sensitized human transplant recipients. We

acknowledge that differences exist between immune responses of
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different species, but the NHP model is the closest available

animal model in which to conduct such research and has many

advantages including the ability to use agents developed for

human use, as most have similar biologic activity in rhesus

monkey (8).
2.2. Desensitization with costimulation
blockade (CoB) and proteasome inhibitor
(PI) in NHP model

We have evaluated various pharmacological desensitization

approaches in our sensitized NHP model (summarized in

Table 1), which includes CoB [belatacept (CTLA4-Ig) (5, 9, 10);

lulizumab (anti-CD28mAb) (13)], tocilizumab (anti-IL6R),

plerixafor (anti-CXCR4) (6), tabalumab (anti-BAFF), proteasome

inhibitors (bortezomib and carfilzomib) (15), daratumumab

(anti-CD38mAb) (6), rozanolixizumab (anti-FcRn mAb)(14), and

complement inhibitor (anti-C3) (11). We show that targeting a

single pathway does not readily achieve durable desensitization.

For example, solely targeting PC with bortezomib or solely

targeting the germinal center (GC) response with CoB failed to

decrease serum DSA level (9, 15). CoB did not affect preformed

PCs while PC depletion was rapidly compensated by the GC

response (15). Targeting antibody by interfering with IgG

recycling via FcRn showed a significant reduction of preformed

DSA but did not prevent or reduce post-transplant DSA

following an anamnestic response (14). Instead of targeting a

single pathway, we targeted both T cell help for the B cells and

plasma cells with the combination of CoB and PI which reliably

reduced preformed DSA and significantly prolonged graft

survival in sensitized NHP. We reported that animals treated

with carfilzomib and belatacept showed significantly reduced

early AMR and prolonged graft survival (10). Despite these

encouraging outcomes, some animals developed DSA and late

AMR gradually. This may reflect the limitations of the current

CNI-based immunosuppressive regimen (Tacrolimus/MMF/

Steroid) with respect to controlling the post-transplant humoral

response.
3. Targeting plasma cells

Plasma cell depletion using proteosome inhibitors such as

bortezomib and carfilzomib, or by targeting with mAb such as

daratumumab, can effectively deplete plasma cells and thereby

lower alloantibody levels over time (6, 17, 18). The impact is

non-specific with respect to antibodies and therefore potentially

reduces protective antibodies as well as anti-HLA antibodies.

Furthermore, while antibody levels can be acutely lowered by

plasma cell depletion, they rebound promptly without additional

intervention to suppress upstream B cell activation. We have

reported several approaches to prevent rebound as summarized

above in our NHP experiments. These strategies are being

implemented now in human clinical trials of kidney

transplantation summarized below and supported by not only
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TABLE 1 Desensitization strategies tested in NHP preclinical model(s).

Desensitization agents N Induction Maintenance IS Graft Survival
(days)

Outcome/
Diagnosis

Target Reference

No treatment 3 Basiliximab Tacrolimus/MMF/Steroid 4.67 ABMR/TCMR N/A (4, 9)

7 CD4/CD8
mAb

Tacrolimus/MMF/Steroid 22 ABMR N/A (4, 5)

4 CD4/CD8mAb Tacrolimus/MMF/Steroid 5 ABMR N/A (6, 10–12)

5 rhATG Tacrolimus/MMF/Steroid 5.8 ABMR/TCMR N/A (13, 14)

Belatacept 3 N/A N/A N/A No DSA reduction GC response (9)

Thrombalexin 3 CD4/CD8
mAb

Tacrolimus/MMF/Steroid 6.6 ABMR TMA (7)

Belatacept + 2C10 3 N/A N/A N/A No DSA reduction GC response (9)

Bortezomib 4 N/A N/A N/A No DSA reduction Plasma Cells (15)

Belatacept + 2C10 +
Bortezomib

3 Basiliximab Tacrolimus/MMF/Steroid >58.6 No ABMR, Weight loss Plasma Cells + GC
response

(9)

5 CD4/CD8
mAbs

Tacrolimus/MMF/Steroid >40 No ABMR, viral
complications

Plasma Cells + GC
response

(5)

Daratumumab + Plerixafor 4 CD4/CD8
mAb

Tacrolimus/MMF/Steroid 21.6 TCMR/ABMR Plasma cell/PC niche (6)

Carfilzomib 3 CD4/CD8
mAb

Tacrolimus/MMF/Steroid 6 ABMR Plasma cells (12)

Lulizumab + Carfilzomib 5 rhATG Tacrolimus/MMF/Steroid 64.8 ABMR Plasma cells + GC
response

(13)

Rozanolixizumab (Anti-FcRn
mAb)

2 rhATG Tacrolimus/MMF/Steroid 7 and 9 ABMR IgG (14)

Tocilizumab + Carfilzomib 4 CD4/CD8
mAb

Tacrolimus/MMF/Steroid 24 ABMR Plasma cells and IL-6 (12)

Compstatin (anti-C3) 6 rhATG Tacrolimus/MMF/Steroid 22.5 ABMR Complement C3 (11)

Belatacept + Carfilzomib 5 CD4/CD8
mAb

Tacrolimus/MMF/Steroid >114 ABMR Plasma cells + GC
response

(10)

5 rhATG Tacrolimus/MMF/Steroid +
Belatacept

>169 PTLD Plasma cell + GC
response

(16)

5 rhATG Rapamycin/MMF/Steroid +
Belatacept

>92 TCMR, no ABMR Plasma cell + GC
response

(16)

ABMR, antibody-mediated rejection; TCMR, T cell mediated rejection; rhATG, rhesus anti-thymocyte globulin.
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the NHP data but also by small pilot studies and case reports in

human transplantation (19, 20).
4. Measuring allo-specific B memory
cells

The CTLA4-Ig costimulatory blockade agents exert both direct

and indirect effects on different steps of the B cell-mediated

responses. In vitro studies showed that, in a T cell-independent

manner, Belatacept reduces plasmablast differentiation and Ig

production, and downregulates the expression of Blimp-1, the

master transcription factor in plasma cell differentiation (21). In

the presence of CD40l and IL-21 stimulation, belatacept (21) or

abatacept (22) treatment reduces expression of CD80 and CD86

on activated B cells. Belatacept also augments STAT3

phosphorylation in cultured B cells (21). As expected, the

reduced expression plus blockade of CD80 and CD86 on B cells

disrupts the B-Tfh cell interaction, which dampens the function

of Tfh cells as evident by decreased expression of ICOS and

PD1, and in turn lowers plasmablast differentiation (21).

In view of the multifaceted role of CTLA4-Ig costimulatory

blockade on B cells and that both historic and de novo allo-

responses can give rise to allo-specific memory B (Bmem) cells
Frontiers in Transplantation 03
(23–26), the identification and tracking of allo-specific Bmem

cells at clonal basis would provide more comprehensive

information than serum tests do at polyclonal level for the

understanding of the mechanisms and further harnessing of this

immunosuppression regimen. Based on a high-throughput single

B-cell culture method (27), we successfully identified allo-specific

Bmem cells from sensitized patients in a preliminary study (28).

We also established a multiplex reporter cell assay (28, 29) using

single HLA-antigen expressing reporter cells mimicking single-

antigen beads. This cost-efficient assay allows us to screen B cell

culture supernatants for HLA antigen binding activities in a

high-throughput manner. Ongoing efforts are being made to

increase the specificity of HLA antigen probes for efficient

isolation of allo-specific Bmem cells.
5. Assessing the impact of alloantibody

The crossmatch test hails as the gold standard in

histocompatibility testing to assess alloantibody levels that could

result in hyperacute or accelerated antibody mediated rejection.

Crossmatch tests measure alloantibodies bound to HLA

expressed on donor lymphocytes referred to as DSA, donor

specific antibody (DSA) (30). The complement dependent
frontiersin.org
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cytotoxicity crossmatch detects higher levels of DSA capable of

eliciting cell lysis while the more sensitive flow cytometric

crossmatch measures lower levels of DSA bound to donor cells

using an anti-IgG fluorescently conjugated antibody.

Therapeutics targeting cell surface proteins (e.g., CD20, CD52)

and some autoimmune conditions can interfere with crossmatch

tests resulting in false positive tests.

Development of solid phase bead immunoassays for HLA-

specific antibody testing has significantly improved the

sensitivity and specificity for detecting DSA in the sera of

transplant candidates. Current immunoassays include flow

cytometric and LuminexTM -based multiplex bead assays and

are constructed in three distinct forms: (1) screening beads

coated with pooled HLA proteins (2) HLA phenotype or

multiantigen beads using HLA proteins derived from cells and

(3) single antigen beads utilizing recombinant HLA proteins

(31). Bead assays allow testing of multiple sera in 96-well plates

using small quantities of patient serum. Each serum is tested

against 100 class I or class II beads, each bead possesses a

unique fluorescence signature and is coated with a unique HLA

class I or class II allele(s). Following a serum incubation, the

HLA- coated beads are washed and bound HLA antibody is

detected using a fluorescently labeled anti-IgG antibody. The

beads are interrogated by lasers and the fluorescence from the

bound anti-IgG detection antibody provides a mean

fluorescence intensity (MFI) read-out that is proportional to the

HLA-specific antibody bound to each particular bead. It is

important to note that these assays are semi-quantitative and

there are no standard curves to delineate antibody

concentration (32). Testing titrated sera provides the best

assessment of HLA antibody levels, however these are costly to

perform given the expense of the bead regents (33).

Solid phase bead immunoassays are powerful diagnostic tools,

yet have inherent limitations that must be overcome to assure

analytical validity. HLA proteins, especially recombinant proteins,

are prone to denaturation or misfolding leading to non-native

epitopes and false positive reactions with some patient sera (34,

35). The high density of HLA proteins on the bead surface may

not reflect the physiological HLA protein levels on vascular

endothelium leading to an overestimation of DSA effector

function and pathogenicity (36, 37). The inclusion of HLA

epitope analysis and adjunct testing with HLA phenotype beads

or crossmatch tests can reduce false positive and overestimations

of alloantibody strength. High levels of HLA antibody bound to

beads can fix complement components in sera, thereby blocking

binding of the anti-IgG detection antibody leading to

underestimations of HLA antibody levels (38). Pretreating sera to

mitigate complement interference or testing titrated sera to

remove prozone effects will provide more accurate HLA antibody

measurements (39).

Current consensus guidelines to optimize HLA antibody

detection and strength assessments recommend serum

pretreatments, HLA pattern analysis, and the use of companion

assays to confirm the presence and relative strength of HLA-

specific antibodies and optimize immunological risk assessments

(40, 41).
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6. Design of human clinical trials

The initial application of combined plasma cell depletion and

costimulation blockade to lower antibody levels in humans was

most practical to assess in highly HLA-sensitized patients awaiting

kidney transplantation. Such patients, graded by calculated panel-

reactive antibody levels (cPRA), have diminished chance of

receiving a kidney transplant due to pre-existing immunity to

potential organ donors. Despite strategies designed to preferentially

allocate donor kidneys to high PRA patients, the extremely highly

sensitized (PRA > 99.9%) have little statistical chance of receiving a

donor kidney with additional intervention such as desensitization.

Therefore, the Immune Tolerance Network (ITN) funded a pilot

study to assess the safety and efficacy of treatment with combined

plasma cell depletion and costimulation blockade based on the

NHP results summarized above. In fact, the ITN funded two such

related trials, one based at Duke called the ADAPT trial using

carfilzomib/belatacept combination therapy, and one called the

ATTAIN trial based at UCSF using daratumumab (anti-CD38

mAb)/beletacept, also supported by published NHP data. These

small studies were designed and begun during the COVID19

epidemic despite the limitations of clinical research during that

period, and were thus subject to delays, but nevertheless took

advantage of lessons learned during the epidemic about

monitoring, immunization, and treatment of COVID19. While

immunosuppressive drug trials are not ideally performed during an

infection epidemic, we nevertheless were able to plan and initiate

the trial using appropriate clinical caution. Challenges have

included extrapolating from NHP to human drug dosing and

schedules, establishing appropriate inclusion/exclusion criteria and

endpoints, and defining appropriate safety boundaries. Both the

ADAPT (NCT05017545) and ATTAIN (NCT04827979) trials are

currently enrolling at the two sites without clinical safety concerns

to date and await further data to allow appraisal of efficacy.

Mechanistic data are being generated to inform immunologic

impact of therapy and to help guide possible protocol modification.

The NIH NIAID further committed to funding a trial of

combined carfilzomib/belatacept for treatment of antibody-

mediated rejection of kidney transplants through its Clinical Trials

in Organ Transplantation (CTOT) mechanism. (CarBel trial). This

trial has completed protocol development and awaits FDA review.

This work extends the NHP work showing extended graft survival

in animals treated at the time of biopsy-proven AMR when treated

with combined carfilzomib/belatacept (unpublished data). AMR

treatment remains an unmet clinical need in transplantation in the

sense that current therapies have either not been shown to be

effective or have been shown to be ineffective (42). The evaluation

of safety and efficacy of such novel therapies therefore offers hope

for a better future for patients whose grafts develop AMR.
6.1. Summary of protocol of ADAPT trial

The ADAPT trial of desensitization seeks to test the hypothesis

that a regimen of proteasome inhibition and costimulation
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blockade will safely and effectively reduce circulating HLA

antibody and increase the likelihood of finding a compatible

kidney donor in the very highly sensitized population. The study

focuses on patients listed for renal transplantation who have a

calculated panel reactive antibody (cPRA) of >99.9%, or cPRA >

98% and >5 years on the waitlist, or cPRA >98% with an HLA-

incompatible approved living donor and not received a

transplant after one year in a kidney paired exchange program.

Such patients have an exceptionally low chance of receiving a

kidney before they succumb to the health consequences of their

renal disease. The treatment protocol for study subjects

(Figure 1) includes an initial observation period to document

that their cPRA remains stable, followed by combined treatment

with low dose carfilzomib and standard dosing of belatacept per

drug approval guidelines. The dosing strategy was based on both

the NHP treatment protocol and practical needs for human

clinical trial design and sampling. The clinical trial is coupled

with mechanistic aims seeking to evaluate the impact of therapy

on antibody levels and on allospecific memory B cells and

plasma cells using novel assay systems (28, 29). In addition, the

impact of treatment on ABO antibody levels will be assessed for

comparison to impact on alloantibody levels. Lymph node

germinal center B cell follicles will be examined by

immunocytochemistry in patients who receive a kidney

transplant. The influence of therapy on protective antibody vs.

alloantibody will be compared. These mechanistic studies aim to

shed light on both the safety and efficacy issues related to the

study and to provide basic immunologic insights into memory

B cells.

Given the observation in NHP that ongoing belatacept after

transplantation aids in suppressing AMR, human subjects who

receive a kidney transplant during the study will continue on

belatacept in addition to tacrolimus and steroids as ongoing

immunosuppression (Figure 2). Thymoglobulin will be used as

induction therapy. Both blood and bone marrow will be sampled

serially for mechanistic assessment of the immune profile of

patients. The primary safety endpoint of the study is the

proportion of patients who remain free of grade 3 or higher

infections and any malignancy; the primary efficacy endpoint is
FIGURE 1

Study regimen and timeline. Each ADAPT patient serves as their own control fo
levels. Treatment begins with combined carfilzomib (CFZ) and belatacept (B),
week observation period only in cohort 1.
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the proportion of patients who eliminate at least one HLA

antibody 20 weeks after starting treatment, who have 50% or

greater reduction in MFI of at least 3 HLA antibodies at 20

weeks, or who receive a kidney from a previously incompatible

donor within 20 weeks without graft loss due to AMR within 4

weeks post-transplant caused by an anamnestic immune

response. The trial is currently enrolling patients and at this

writing is in “pause” (Figure 3). The ADAPT study is paired

with a very similar study called the ATTAIN study, also ITN-

funded, that is very similar in design to ADAPT but is using

daratumumab (anti-CD38 mAB) in combination with belatacept

to lower alloantibody levels. The study is actively enrolling

currently. These two clinical trials of desensitization strategies

accompanied by mechanistic assays should help inform the safety

and efficacy of plasma cell targeting in conjunction with CD28

costimulation blockade.
6.2. Summary of CarBel trial protocol to
treat antibody-mediated rejection

The strategy of dual targeting of plasma cells and costimulation

blockade to prevent antibody rebound is being developed as an

approach to treatment of antibody-mediated rejection (AMR) in

the context of a Clinical Trials in Organ Transplantation (CTOT)

trial supported by the NIH. This trial is entitled “Targeting the

B Cell Response to Treat Antibody-Mediated Rejection with

Carfilzomib and Belatacept (CarBel)” and the protocol is

currently under FDA review. The basis of the experimental

therapy (combined carfilzomib and belatacept) is based on the

NHP data summarized above, the safety record of belatacept

(FDA-approved for kidney transplantation), and the work of the

Woodle group using carfilzomib with TPE to desensitize patients

(19).

The aims of the CarBel trial are: 1. To assess the safety of

CarBel therapy vs. conventional treatment of ABMR in kidney

transplant subjects; and 2. To assess the efficacy of CarBel

therapy vs. conventional treatment of ABMR in kidney

transplant subjects as measured by improvement in slope of the
r an initial observation period of 12 weeks to document stable alloantibody
with the latter continuing for one year to the primary endpoing time. *8
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FIGURE 2

Post-transplant immunosuppression regimen. Patients in the ADAPT trial who receive transplants are induced with thymoglobulin and maintained on
maintenance immunosuppression including belatacept, tacrolimus (weaned according to physician preference), and steroids. Other drugs such as
MMF are per physician preference.
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Glomerular Filtration Rate (GFR) between study entry and 12

months.

The primary endpoints of the study focus on safety and efficacy

and are summarized below.

Primary safety endpoint
Proportion of participants who do not experience any of the

following from the initiation of study treatment through the end

of study participation in the investigational arm compared to the

conventional arm:
FIGURE 3

CTOT42 CarBel protocol summary.
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• meet stopping rules for safety

• grade 3 or higher infusion reaction to carfilzomib or belatacept

• grade 3 or higher infection

• malignancy

Primary efficacy endpoint
The primary study endpoint is the difference in estimated GFR

(eGFR) slope [Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI)] from enrollment to 12 months

between the investigational and conventional arms.
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One of the many challenges of such a study is defining a

suitable control treatment since there is little evidence in support

of any treatment of AMR. Commonly used treatments of AMR

include optimization of maintenance immunosuppression, total

plasma exchange (TPE), intravenous immune globulin (IVIg),

rituximab, and proteosome inhibitors. Therefore, we chose as the

control treatments either optimization of maintenance

immunosuppression as this is the most common approach to

chronic AMR treatment, or TPE + IVIg as this is the most

commonly used treatment of acute AMR with rapidly

deteriorating renal function (rise in creatinine). While we had

originally intended to iBox as the primary endpoint, since the

FDA has not yet approved iBox as an accepted clinical trial

endpoint, we defaulted to more conventional endpoints, namely

slope of GFR at one year in experimental vs. control patients. In

other words, we will test the hypothesis that combined

carfilzomib/belatacept therapy will preserve GFR more effectively

than control treatments at one year after enrollment.

Extensive infection surveillance is included in the protocol

given the known increased risk of infection associated with

transplant immunosuppression. Adding additional plasma cell

depletion and costimulation blockade may further increase risks

of infection but an unknown risk at this time. Belatacept has

been associated with increased risk of CMV infection, and

carfilzomib has not been shown to be associated with increased

infections in transplant patients. However, any treatment that

targets immune cells may have such potential adverse effects.

We have aimed to make the inclusion criteria for the CarBel

trial specific for active AMR and chronic active AMR yet focus

only on AMR associated with alloantibody as our preliminary

data show that the treatment does lower alloantibody levels. The

study will not address AMR in the absence of alloantibody

although this is now an accepted variant of AMR by Banff criteria.

We expect to learn from the CarBel trial about the safety and

efficacy of the experimental therapy and, just as importantly,

whether we can accurately measure the impact of the therapy on

alloantibody and the frequency of allospecific B memory and

plasma cells. Such assays would be of great benefit potentially in

clinical immunology more broadly by informing the regulation of

B cell and plasma cell responses.
7. Summary

We have conducted extensive preclinical testing of multiple

strategies to desensitize and to treat AMR in a NHP kidney

transplant model in order to develop more effective means of

downregulating the B cell response to solid organ transplants

that are relevant to human transplantation. The combination of

plasma cell targeting and costimulation blockade safely and

effectively reduces the impact of sensitization on NHP kidney

transplants and therefore is being tested in analogous human

clinical scenarios. The design of these trials is based on the NHP
Frontiers in Transplantation 07
data, the feasibility of trial design in humans, and the relatively

modest published data of similar approaches in humans. Given

the large detrimental impact of the B cell response to

transplanted organs, knowledge gained in this area is necessary

and of considerable importance if we are to substantially prolong

graft survival in human transplant recipients compared to

current outcomes.
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